The Complex Role of Storms in Modulating Air-Sea CO2 Fluxes in the sub-Antarctic Southern Ocean.

Tesha Toolsee¹, Sarah-Anne Nicholson², and Pedro M. S. Monteiro³

¹University of Cape Town
²Council for Scientific and Industrial Research
³CSIR

December 27, 2023

Abstract

The intra-seasonal CO2 flux (FCO2) variability across the Southern Ocean is poorly understood due to sparse observations at the required temporal and spatial scales. Twinned Waveglider-Seaglider experiments were used to investigate how storms influence FCO2 through both the gas transfer velocity (kw) and the air-sea gradient in partial pressure of CO2 (ΔpCO2) in the sub-Antarctic zone. Winter-spring storms caused ΔpCO2 to weaken (by 15-55 μatm) due to mixing/entrainment and weaker stratification. This response in ΔpCO2 was in phase with kw resulting in a counteractive weakening in FCO2 (by 6.6 - 26.5% per storm), despite the wind-driven increase in kw. Stronger stratification during summer explained the weaker sensitivity of ΔpCO2 to storms, instead its thermal drivers dominated the ΔpCO2 variability. These results highlight the importance of observing synoptic-scale variability in ΔpCO2, the absence of which may propagate significant biases to the mean annual FCO2 estimates from large-scale observing programmes and reconstructions.
The Complex Role of Storms in Modulating Air-Sea CO₂ Fluxes in the sub-Antarctic Southern Ocean.

Tesha Toolsee¹²*, Sarah-Anne Nicholson¹, Pedro M.S. Monteiro³

¹ Southern Ocean Carbon-Climate Observatory (SOCCO), CSIR, Cape Town, South Africa
² Department of Oceanography, University of Cape Town, Cape Town, South Africa
³ School for Climate Studies, Stellenbosch University, Stellenbosch, South Africa

*Corresponding author: Tesha Toolsee (TLSTES001@myuct.ac.za)

Key Points:

- Hourly glider observations show that the impact of storms on both k_w and Δp_{CO_2} simultaneously modulates the magnitude of F_{CO_2} variability.
- Winter-spring storms weaken Δp_{CO_2} through enhanced entrainment and mixing, counteracting the expected increase in F_{CO_2} due to k_w alone.
- By not accounting for the storm feedback in both k_w and Δp_{CO_2}, the magnitude of the F_{CO_2} was found to be overestimated (by 6.6 - 26.5%).

Abstract

The intra-seasonal CO₂ flux (F_{CO_2}) variability across the Southern Ocean is poorly understood due to sparse observations at the required temporal and spatial scales. Twinned Waveglider-Seaglider experiments were used to investigate how storms influence F_{CO_2} through both the gas transfer velocity (k_w) and the air-sea gradient in partial pressure of CO₂ (Δp_{CO_2}) in the sub-Antarctic zone. Winter-spring storms caused Δp_{CO_2} to weaken (by 15-55 µatm) due to mixing/entrainment and weaker stratification. This response in Δp_{CO_2} was in phase with k_w resulting in a counteractive weakening in F_{CO_2} (by 6.6 - 26.5% per storm), despite the wind-driven increase in k_w. Stronger stratification during summer explained the weaker sensitivity of Δp_{CO_2} to storms, instead its thermal drivers dominated the Δp_{CO_2} variability. These results highlight the importance of observing synoptic-scale variability in Δp_{CO_2}, the absence of which may propagate
significant biases to the mean annual FCO$_2$ estimates from large-scale observing programmes and reconstructions.

Plain Language Summary

The sub-Antarctic zone of the Southern Ocean is a region that mostly experiences carbon dioxide (CO$_2$) uptake because of its low temperature and strong winds. The wind can influence the CO$_2$ uptake through two pathways: the speed of CO$_2$ transfer between the air-sea interface (k_w) and the difference in CO$_2$ concentration in the surface ocean and overlying atmosphere (ΔpCO$_2$). Using autonomous robots that can measure hourly air and water conditions simultaneously, we show that not resolving ΔpCO$_2$ during a storm event can lead to overestimating the CO$_2$ uptake. This is particularly important during winter and spring when the ocean’s surface layers are less stratified. The warmer temperatures during summer meant a more stratified surface layer resulting in a weaker and delayed impact of storms on the ΔpCO$_2$. This study shows that the various annual CO$_2$ uptake estimation methods used by the research community should not neglect ΔpCO$_2$ responses during storms.

1. Introduction

The sub-Antarctic zone (SAZ) of the Southern Ocean (SO) is a critical region in the global carbon cycle due to its ability to uptake (~1 Pg C yr$^{-1}$) large amounts of anthropogenic CO$_2$ (Figure 1a; DeVries et al., 2017; Gruber et al., 2019). Extra-tropical cyclones (hereafter referred to as storms) are prevalent synoptic features in the SO that occur at a 4 to 8-day frequency (Yuan, 2004; Wei & Qin, 2016; Lodise et al. 2022). These frequent storm events induce short but strong wind stress over the surface ocean which triggers several high-frequency (hourly to 10 days) responses at the air-sea and ocean-mixed layer interfaces, which have been shown to impact the air-sea CO$_2$ flux (FCO$_2$) significantly (Monteiro et al. 2015, Nicholson et al. 2022). However, despite the persistence of strong storms across the SO, few studies have investigated and quantified the role of storms on the FCO$_2$ in the SAZ, particularly under different seasonal settings.

FCO$_2$ is governed by a bulk formulation which constitutes of the gas transfer velocity (k_w) (Ho et al. 2006; Wanninkhof, 2014), the solubility constant (k_o) (Weiss, 1974) and the gradient between the partial pressure of CO$_2$ in the ocean (pCO$_{2,sea}$) and in the atmosphere (pCO$_{2,air}$)
(ΔpCO$_2$ = pCO$_{2\text{sea}}$ – pCO$_{2\text{air}}$). The passage of a storm is likely to trigger responses to each of these bulk terms, which may occur in-phase (response time is the same) or out-of-phase (response time is different) with one another. During a storm, strong wind stress will result in stronger k_w (quadratic function of wind speed; Wanninkhof et al. 2014), increasing the magnitude of FCO$_2$. Importantly, the increase in wind stress may also generate upper ocean dissipation (through shear production and buoyancy loss) which elicits physical transport within and across the mixed layer and its boundaries. This is via vertical (entrainment) and lateral (advection) exchanges of water masses into and out of the mixed layer, increasing or decreasing pCO$_{2\text{sea}}$ and ΔpCO$_2$ (Ito et al. 2016; Nicholson et al. 2022). A ‘buoyancy-dominated’ phase typically follows this ‘momentum-dominated’ phase of the storm. The quiescence period post-storm results in a loss in momentum through the drop in wind stress and a gain in buoyancy due to restratification. This can decrease k_o and increase pCO$_{2\text{sea}}$ as the solubility of CO$_2$ decreases (Sarmiento & Gruber, 2006). Above all, it may allow for an increase in the net primary productivity resulting in a net decrease in pCO$_{2\text{sea}}$ post-storm during summer (Swart et al. 2015; Nicholson et al. 2016, Carranza et al. 2018; Nicholson et al. 2019; Uchida et al. 2020).

Evidence of storm-driven responses to bulk flux terms has been documented in the subpolar SO, a region of annual mean FCO$_2$ outgassing (Nicholson et al. 2022). There, strong storm-induced wind stress was linked to increases in FCO$_2$ through the k_w parameter but also because of concurrent upper ocean mixed layer entrainment of carbon-rich waters, rapidly modifying (reversing and changing the magnitude) the ΔpCO$_2$, to result in strong outgassing events (Nicholson et al., 2022). Whether storms drive similar responses to both k_w and ΔpCO$_2$, as well as the phasing of the response of these bulk flux terms, and how it impacts the FCO$_2$ in the SAZ is yet unclear. However, some insights have been provided by Monteiro et al. (2015) through a conceptual figure, which linked storms to intra-seasonal variations of FCO$_2$, hypothesizing that storms in the SAZ triggered pCO$_{2\text{sea}}$ to increase through entrainment, decreasing the magnitude of ΔpCO$_2$, causing the FCO$_2$ ingassing to slightly weaken despite the strong wind stress induced by the storm.
Figure 1: (a) The air-sea CO₂ flux (FCO₂), averaged from monthly CSIR-ML6 data (Gregor et al. 2019) from August 2015 to February 2016, the study period. Negative FCO₂ (in shades of blue) indicates the ingassing of CO₂ and positive FCO₂ (in shades of red) represents the outgassing of CO₂. (b) The spatial characteristics of the seasonal cycle reproducibility (SCR) (method adapted from Thomalla et al. 2011) of pCO₂sea obtained from 10 years (2000 to 2009) of NEMO-PISCES simulations, highlighting the low SCR ($r^2 = 0$ to 0.65; LSCR) of pCO₂sea in the majority of the Sub-Antarctic Zone (SAZ). The black circle represents the location where the SOSCEX-III experiment was conducted and the orange contours represent the northern and southern extent of the SAZ from the sea surface height-based definition of the sub-Antarctic Front and the Polar Front (Sokolov & Rintoul, 2009).

Due to the regularity of these storms, such intra-seasonal variability is thought to dominate the seasonality of pCO₂sea, a dominant driver of FCO₂ variability, across large regions of the SO (Figure 1b; Monteiro et al. 2015; Gregor et al. 2019; Djeutchouang et al. 2022, Nicholson et al. 2022). However, because of the lack of high-frequency (< 10 days) observations throughout the SO, the mechanisms behind the intra-seasonal variability of FCO₂, that link the storm-driven variability in wind stress directly to the FCO₂ are still not well understood. There remains some debate on what scales of variability are key to accurately estimate the annual mean FCO₂. It has been argued that observed high-frequency variability in k_w only (available using high-resolution reanalysis wind products) is sufficient to capture the intra-seasonal responses of FCO₂ and the corresponding synoptic variability of pCO₂sea is of secondary importance to the overall FCO₂ estimates (Bushinsky et al. 2019). Observational evidence from other studies has shown that the phasing of both k_w and pCO₂sea to a storm event is important (Monteiro et al. 2015; Nicholson et al. 2022). This suggests that a 10-day or more sampling period may not necessarily capture storm-linked responses on the annual FCO₂ estimates and a sampling resolution of less than 3 days may
be more appropriate to capture such responses in 27.5% of the SO (Djeutchouang et al. 2022) to reduce the annual FCO$_2$ mean uncertainty to less than 10% (Monteiro et al. 2015).

In this study, we investigate the intra-seasonal changes in FCO$_2$ associated with storms and hypothesize that the wind-driven constraints on the FCO$_2$ through rapid modifications of pCO$_{2\text{sea}}$ may be as decisive as the high-frequency responses in the k_w parameter. Using high-resolution hourly glider observations, we first provide an explanation of the mechanisms that drive the pCO$_{2\text{sea}}$ variability during storms in the SAZ and then proceed to show the importance of considering the temporal aliasing of the pCO$_{2\text{sea}}$ and k_w to the strong winds on the FCO$_2$.

2. Materials and Methods

2.1 Data collection

This study utilized data collected during the third Southern Ocean Seasonal Cycle Experiment (SOSCEx-III) in the SAZ (Further description in text S1 and refer to Swart et al. 2012). This experiment involved the simultaneous deployment of two Liquid Robotics Wave Gliders (WG) (CSIR1 and CSIR2) and two buoyancy profiling Seagliders (SG542 and SG543), which sampled roughly at 8.5°E and 43°S to simulate a pseudo-mooring pattern (Figure S1a).

The WGs sampled from 14th August to 17th October 2015 (CSIR1) and from 9th December 2015 to 8th February 2016 (CSIR2), covering the late winter to the end of the summer period. A modified MAPCO$_2$ sensor made both atmospheric (xCO$_{2\text{air}}$) and oceanic (xCO$_{2\text{sea}}$) observations at hourly temporal resolution with a precision of less than 2 μatm (Sutton et al. 2014). An Airmar XW-200 Ultrasonic Weather station recorded meteorological parameters at 10-minute intervals (further details in Schmidt et al. 2017). The weather station on CSIR1 WG was however faulty, and hourly ERA5 reanalysis wind speed data was used instead (Text S2 elaborates on the choice of reanalysis product).

The Seagliders conducted a total of 1832 profiles over 196 days, measuring the conductivity, temperature, and pressure, amongst others (see Thomalla et al. (2017) for more details), of the first 1000m of the ocean in a V-shaped pattern at a dive cycle of approximately 5
hours. These two deployments resulted in a continuous sampling from 28 July to 8 December 2015 (SG543) and 8 December 2015 to 8 February 2016 (SG542).

2.2 Estimation of the bulk CO$_2$ flux

The exchange of CO$_2$ (FCO$_2$) between the surface ocean and atmosphere can be estimated using a bulk flux formula.

$$\text{FCO}_2 = k_w k_o (\text{pCO}_{2\text{sea}} - \text{pCO}_{2\text{air}})$$

(1)

where k_w (cm hr$^{-1}$) is the wind-driven gas transfer velocity (Wanninkhof, 2014), k_o (mol L$^{-1}$ atm$^{-1}$) is the solubility of CO$_2$ in seawater (Weiss, 1974), pCO$_{2\text{sea}}$ and pCO$_{2\text{air}}$ represent the partial pressure of CO$_2$ in the ocean and the atmosphere respectively. pCO$_{2\text{sea}}$ − pCO$_{2\text{air}}$ is commonly represented as ΔpCO$_2$. Text S2 and S3 describe the quality control and method of calculations of each parameter of the bulk formula.

2.3 Thermal and non-thermal decomposition of pCO$_{2\text{sea}}$

pCO$_{2\text{sea}}$ was decomposed into its thermal (pCO$_{2\text{th}}$; μatm) and non-thermal (pCO$_{2\text{nt}}$; μatm) components (Takahashi et al. 1993, 2002). pCO$_{2\text{th}}$ accounts for the thermodynamically dependent characteristics of CO$_2$ which are driven by the variability in sea surface temperature (SST) while pCO$_{2\text{nt}}$ accounts for the biophysical processes (vertical mixing and biological consumption) which change the concentration of Dissolved Inorganic Carbon (DIC) in seawater (Takahashi et al., 1993).

$$\text{pCO}_2 - \text{th} = \text{pCO}_{2\text{sea}} - \text{mean} \times e^{(0.0423(\text{SST} - \text{SST}_{\text{mean}})}}$$

(2)

$$\text{pCO}_2 - \text{nt} = \text{pCO}_{2\text{sea}} \times e^{(0.0423(\text{SST}_{\text{mean}} - \text{SST})}}$$

(3)
where \(p_{\text{CO}_2\text{sea-mean}} \) and \(\text{SST}_{\text{mean}} \) are the mean of \(p_{\text{CO}_2\text{sea}} \) and SST values throughout the entire study period respectively.

3. Results and Discussion

3.1 Observed \(p_{\text{CO}_2\text{sea}} \) variability in response to storms.

Here we examine qualitatively how the synoptic-scale momentum-buoyancy dynamics influence the phasing of \(p_{\text{CO}_2\text{sea}} \) responses to storms in the SAZ over a significant part of a seasonal cycle. To highlight the atmospheric forcing and upper ocean responses linked to storms, wind stress (a proxy for momentum fluxes), upper ocean stratification (\(N^2 \)) (a proxy for buoyancy fluxes), and the mixed layer depth (MLD) (momentum-buoyancy balance) were examined (Figures 2a and b). The \(p_{\text{CO}_2\text{sea}} \) was also decomposed into its thermal (\(p_{\text{CO}_2\text{th}} \)) and non-thermal component (\(p_{\text{CO}_2\text{nt}} \)) to differentiate biophysical responses (\(p_{\text{CO}_2\text{nt}} \)) from changes in SST (\(p_{\text{CO}_2\text{th}} \)) (Figure 2c).

The study period was characterized by three seasonal regimes (winter, spring, and summer) that represented three different responses of \(p_{\text{CO}_2\text{sea}} \) to storms (Figure 2c). During winter, \(p_{\text{CO}_2\text{th}} \) and \(p_{\text{CO}_2\text{nt}} \) showed considerable high-frequency response modes (between 1 to 6 hours), at time scales shorter than the wind stress variability (Figures 2a and c). Such high-frequency modes of variability (\(\pm 5-10 \) μatm in both \(p_{\text{CO}_2\text{th}} \) and \(p_{\text{CO}_2\text{nt}} \)) can be indicative of the presence of both sub-mesoscale features (\(O; 1-10 \) km) (Mahadevan et al. 2004; Lévy et al. 2012) and near-inertial motions (Alford et al. 2016) in the region. Sharp density gradients associated with sub-mesoscale features are short-lived (a few hours to days) and can induce strong vertical advection and mixing (Thomas et al. 2008), which can drive synoptic scale variations in the \(p_{\text{CO}_2\text{nt}} \) as seen in Figure 2. Similarly, near-inertial waves energised by storms trigger surface vertical mixing on timescale close to the inertial period (17.5 hours at 43.5°S), also driving synoptic changes in the \(p_{\text{CO}_2\text{nt}} \) (e.g., during W5 and W6, Song et al. 2019, Nicholson et al. 2022).
Figure 2: (a) Time series of ERA5 Wind Stress (Nm$^{-2}$) collocated to the gliders’ location at 8.5°E and 43°S. (b) Seaglider observed upper ocean stratification, Brunt Väisälä frequency (N2; s$^{-2}$), and mixed layer depth (m; in yellow). Methods for N2 and MLD calculation can be found in text S3 in the Supplementary Information (c) Wave Glider observed pCO$_2$sea (μatm; in black) and its thermal (pCO$_2$-th (μatm); in orange) and non-thermal (pCO$_2$-nt (μatm); in green). The seasonal regimes were defined as a negative net heat flux for winter, an increasing net heat flux for spring, and a stable positive net heat flux for summer (du Plessis et al. 2019). The grey shading highlights the duration of each storm event with storms labelled underneath (Winter: W1-W6, Spring: Sp1-Sp7, and Summer: Su1-Su12), and the grey vertical lines separate each storm (storm identification method can be found in text S4 in the Supplementary Information).

These rapid changes of DIC within the MLD are usually accompanied by rapid temperature changes (Figure 2c). The transport of subsurface water to the surface lowers the temperature within the mixed layer which can decrease the pCO$_2$-th (by increasing the solubility of CO$_2$, Sarmiento & Gruber, 2006), hence offsetting the effect of the transported DIC on the overall pCO$_2$sea (Mahadevan et al. 2004, Resplandy et al. 2009). Indeed, for most of winter, these high-frequency modes of variability have little impact on the pCO$_2$sea variability (Figure 2c), likely due to the pCO$_2$-th and pCO$_2$-nt terms cancelling each other out (Figure 2c). Instead, the net changes in pCO$_2$sea appear in phase with the wind stress variability linked to storms (Figures 2a and c). During W1 to W6, the pCO$_2$sea showed a small increase and consequent decrease (±5-15 μatm) with the synoptic wind stress cycle. A possible explanation is that the increasing wind stress generated deep mixing,
deepening the MLD (up to ~50 m day\(^{-1}\); Figure 2b) and possibly entraining DIC into the surface mixed layer (as observed in Ko et al. 2021 and Nicholson et al. 2022). As the wind stress decreases post-storm, the mixed layer re-stratifies and shoals the MLD (e.g., between W3 and W4, Figure 2b) until the next storm and the cycle repeats itself. During spring or summer, this quiescent period between storms would typically lead to phytoplankton blooms (Monteiro et al. 2015; Carranza et al. 2018), causing a drop in \(\text{pCO}_{2\text{sea}} \) but the nearly abiotic conditions (<400 mg C m\(^{-2}\) d\(^{-1}\), Figure S3) of the SAZ in winter allowed us to eliminate Net Primary Productivity (NPP) as a driver of the \(\text{pCO}_{2\text{sea}} \) changes observed. In addition to entrainment, wind-driven lateral advection of \(\text{pCO}_{2\text{sea}} \) could also drive the synoptic-scale responses in \(\text{pCO}_{2\text{sea}} \) (Figure 2b; Takahashi et al. 2009; Monteiro et al. 2015; Nicholson et al. 2022).

During spring, the intra-seasonal modes of variability in \(\text{pCO}_{2\text{nt}} \) (±50 μatm) were much larger than those in \(\text{pCO}_{2\text{th}} \) (±15 μatm, Figure 2c). These stronger variations in \(\text{pCO}_{2\text{nt}} \) were in turn reflected in the \(\text{pCO}_{2\text{sea}} \) (up to ±55 μatm, comparable to the seasonal variation in \(\text{pCO}_{2\text{sea}} \)) which also varied in phase with the storm wind stress cycle (\(r^2 = 0.45 \), Figure 2a). These stronger bursts in \(\text{pCO}_{2\text{sea}} \) could be linked to more intense entrainment events occurring because of stronger storms (>0.75 Nm\(^{-2}\); Figure 2a), and weaker stratification (<0.5x10\(^{-4}\) s\(^{-2}\), Figure 2b) in spring compared to winter (0.75 Nm\(^{-2}\) and 0.5 – 1.0x10\(^{-4}\) s\(^{-2}\)). These conditions favour stronger vertical mixing, entraining DIC into the mixed layer (Song et al. 2019; Nicholson et al. 2022). In addition to stronger storm-induced vertical mixing on \(\text{pCO}_{2\text{nt}} \), the surface net heat flux gradually increased towards the end of spring (du Plessis et al. 2019) leading to the \(\text{pCO}_{2\text{th}} \) to also slowly increase because of warmer SST reducing the solubility of CO\(_2\) (Mahadevan et al. 2004). The contribution of this gradual increase in \(\text{pCO}_{2\text{th}} \) and the storm-induced variation on \(\text{pCO}_{2\text{nt}} \) led to the observation of the strongest \(\text{pCO}_{2\text{sea}} \) response during Sp6 (±55 μatm) (Figure 2c).

As the surface net heat flux increased further towards the end of spring (du Plessis et al. 2019), the MLD shoaled up to 50 m (Figure 2b). \(\text{pCO}_{2\text{th}} \) was observed to exceed the \(\text{pCO}_{2\text{nt}} \) on 13 October 2015 (Figure 2c), because of an increase in SST that caused the gradual increase in \(\text{pCO}_{2\text{th}} \) and an increased consumption of DIC through NPP that led to the simultaneous gradual
decrease in pCO$_2$-nt. This reversal in the pCO$_2$-th and pCO$_2$-nt marked the transition from spring to summer regimes in the pCO$_2$sea variability 44 days before the seasonal mixed layer restratification took place (on 26 November 2015 in du Plessis et al. 2019). This highlights the seasonal transition in the primary drivers of pCO$_2$sea variability from a momentum-dominated winter to a combination of momentum and gradually increasing buoyancy-dominated spring (pCO$_2$-th, $r^2 = 0.02$) to finally a thermally and NPP-driven summer (pCO$_2$-th, $r^2 = 0.39$) (Figure 2c).

As expected, due to the increased solar radiation in summer, the pycnocline stratification strengthened (0.5x10$^{-4}$ – 1.0x10$^{-4}$ s$^{-2}$) and shoaled (50–100 m) during early summer and intensified (3.0x10$^{-4}$ – 4.4x10$^{-4}$ s$^{-2}$) and shoaled (≤50 m) further towards the end of summer (Figure 2b). As the late summer pycnocline layer shoaled and strengthened, the remnant of the winter pycnocline remained below it at approximately 100-150 m (du Plessis et al. 2019), disconnecting the deeper subsurface reservoir of higher DIC from the surface mixed layer (Sprintall et al. 1992; Swart et al. 2015). This could explain the reduced sensitivity of pCO$_2$sea to wind stress variations observed across summer (Figures 2a and c). The seasonal warming was also reflected in the slow rise in pCO$_2$-th (Mahadevan et al. 2004), with variations in pCO$_2$-nt observed during quiescent periods (e.g., between Su1 to Su2) because of consumption of DIC by high net primary productivity (Monteiro et al. 2015; Swart et al. 2015; Carranza et al. 2018; Nicholson et al. 2019; Figures 2c and S3).

3.2 The influence of the wind on both k$_w$ and ΔpCO$_2$

Given that pCO$_2$sea responds so sensitively to storm-linked momentum fluxes during winter and spring, does it also influence the synoptic cycle of the CO$_2$ flux (FCO$_2$) relative to the wind stress? To examine this question, we focused on three consecutive storms (Sp4, Sp5, and Sp6), which occurred in spring (Figure 3).
Figure 3: Time series of (a) ERA5 Wind Stress (Nm$^{-2}$), (b) Mixed Layer Depth (m; in black) and ΔpCO$_2$ (μatm; in orange), (c) k_w (cm hr$^{-1}$) and (d) CO$_2$ flux, FCO$_2$ (mol m$^{-2}$ hr$^{-1}$) as observed by the Wave Glider (FCO$_2_{\text{storm}}$; in black) and the storm-filtered FCO$_2$ (FCO$_2_{\text{storm-filtered}}$ in blue) calculated from hourly k_w and pre-storm ΔpCO$_2$ (dashed orange line), for the duration of 3 spring storms events Sp4, Sp5 and Sp6 (27 September 2015 to 9 October 2015).

The variability in ΔpCO$_2$ is controlled by the air-sea gradient of pCO$_{2\text{sea}}$ with negative values implying the ingassing of CO$_2$. Across the SO, the contribution made by pCO$_{2\text{air}}$ variability to ΔpCO$_2$ is relatively low (1-4 μatm, Tozawa et al. 2021), compared to the seasonal to intra-
seasonal variability in $\text{pCO}_{2\text{sea}}$ (10-100 μatm, Mongwe et al. 2016, Gregor et al. 2018). Furthermore, while storm linked atmospheric pressure can modulate the $\text{pCO}_{2\text{air}}$ significantly, it also influences $\text{pCO}_{2\text{sea}}$ (Text S2), resulting in the net impact of the atmospheric pressure on ΔpCO_2 to be insignificant. Therefore, $\text{pCO}_{2\text{sea}}$, and its drivers, have a decisive influence on ΔpCO_2 across the SO (Takahashi et al., 2009, Mongwe et al., 2016), and during the study period ($r^2 = 1$, Figures 2c and 3b). In response to an increase in wind stress, ΔpCO_2 weakened in magnitude (e.g. from -35 to -20 μatm during Sp5) almost in phase with the wind stress with a short lag between each peak varying between 1 to 3 hours throughout all 3 storm events (Figure 3b; brown line). The response of the MLD was, in contrast, out of phase with the wind stress (Figure 3b) which was as expected and can be explained as the delayed response of the MLD due to inertial motion set by the passing storms (Cisewski et al. 2005) and the low responsiveness of the MLD to the wind stress when compared with the active mixing layer (Whitt et al. 2019; Nicholson et al. 2022).

According to the bulk FCO_2 formula, the influence of the wind on the FCO_2 is accounted for through the nonlinear (quadratic) relationship between k_w and the wind speed (Wanninkhof et al. 2014). To examine our hypothesis about how, instead, the high-frequency variability of ΔpCO_2 and k_w are both necessary to capture the magnitude and phasing of the intra-seasonal mean FCO_2, we compared the observed FCO_2 ($\text{FCO}_2\text{-storm}$) and a calculated FCO_2 which removes the mixing/entrainment response of $\text{pCO}_{2\text{sea}}$ ($\text{FCO}_2\text{-storm-filtered}$). The $\text{FCO}_2\text{-storm-filtered}$ was re-calculated using hourly k_w but with ΔpCO_2 kept constant to its pre-storm value to filter out the storm-driven synoptic response of ΔpCO_2 (Figure 3d – blue line). For this study, using the pre-storm ΔpCO_2 was the best option (Text S4) as it mutes the influence of the previous and following storms on ΔpCO_2 during any storm to have a more accurate estimate of the FCO_2 per storm event.

With each storm, k_w increases in phase with the wind stress (Figure 3c), which, in turn, drove the increase in magnitude of the FCO_2 (Figure 3d, Wanninkhof et al. 2014). The phasing between $\text{FCO}_2\text{-storm}$ and $\text{FCO}_2\text{-storm-filtered}$ were similar, i.e., they both varied in phase with each storm because of k_w (Figure 3d). However, because ΔpCO_2 also weakened in response to the increasing wind stress, the magnitude of the $\text{FCO}_2\text{-storm}$ was lower than the $\text{FCO}_2\text{-storm-filtered}$. This is also
consistent with the observations in Monteiro et al. (2015) where FCO\textsubscript{2} was observed to weaken despite the increase in wind stress induced by storms. Bushinsky et al. (2019) suggested that the aliasing error from a 10-day sampling frequency of pCO\textsubscript{2sea} (Monteiro et al. 2015) from biogeochemical profiling floats may not be the primary source of uncertainty in the annual FCO\textsubscript{2} estimate in the SO because hourly wind speed data captures most of the intra-seasonal FCO\textsubscript{2} variability through the k\textsubscript{w} term. However, our study shows that, while the k\textsubscript{w} term does capture most of the FCO\textsubscript{2} variability, the temporal phasing of the \Delta pCO\textsubscript{2} and the k\textsubscript{w} throughout a storm event is both needed to not overestimate the intra-seasonal FCO\textsubscript{2} (by up to 0.7 molm-2hr-1 during the peak of storm Sp4) because the wind influences both the k\textsubscript{w} and the \Delta pCO\textsubscript{2} simultaneously (Figure 3d).

3.3 Seasonal-scale implications of storm-induced synoptic variability

The above experiment was replicated for the whole observed time series to further explore the implications of the complex storm-induced impacts on \Delta pCO\textsubscript{2} on the integrated seasonal mean FCO\textsubscript{2} (Figure 4). Since both k\textsubscript{w} and the wind stress were calculated as a function of the wind speed, they were also strongly correlated (r2 = 0.95; Figures 2a and 4a). The overall contribution of k\textsubscript{o} to the synoptic variability of FCO\textsubscript{2} was shown to be very small throughout the study period (r2 = 0.06; Figure 4b). The synoptic scale variability in k\textsubscript{o} (up to 0.02 molm-3atm-1), was small compared to the magnitude of its seasonal variability (up to 0.1 molm-3atm-1), both of which reflected changes in temperature and salinity instead (Figure 4b).
Figure 4: Time series of the (a) gas transfer coefficient, k_w (cm hr$^{-1}$) calculated from ERA5 winds. Wave Glider observations of (b) solubility coefficient, k_o (mol L$^{-1}$ atm$^{-1}$), (c) gradient in the partial pressure of CO$_2$ between the ocean and the atmosphere (ΔpCO$_2$ (μatm) = pCO$_{2\text{sea}}$ (μatm) − pCO$_{2\text{air}}$ (μatm)), (d) CO$_2$ flux, FCO$_2$ (mol m$^{-2}$ hr$^{-1}$) in black and the storm-filtered FCO$_2$, with the wind influence through k_w only, in blue, (e) difference between the observed FCO$_2$ and the storm filtered FCO$_2$ (mol m$^{-2}$ hr$^{-1}$), (f) Cumulative sum of the observed FCO$_2$ (in black) and storm-filtered FCO$_2$ (in blue). The grey shading represents the storm occurrences, and the grey lines separate each storm from one another.
Throughout the deployment, ΔpCO$_2$ was negative indicating a persistent ingassing flux of CO$_2$, characterized by a strong mode of synoptic-scale variability, at the sampling location (Figure 4c). The magnitude of the re-calculated FCO$_2$-storm-filtered (excluding the storm-pCO$_2$sea feedback) was consistently stronger than the FCO$_2$-storm during winter-spring but much less so during summer events (Figure 4d). This is seen through the variability in the magnitude of the difference between the observed and re-calculated fluxes (FCO$_2$-storm - FCO$_2$-storm-filtered) (Figures 4d and e). It shows that the difference in magnitude was weaker during winter (up to -0.3 molm$^{-2}$hr$^{-1}$) and strongest during spring (up to -0.7 molm$^{-2}$hr$^{-1}$) which also coincided with the pronounced synoptic variability in the pCO$_2$sea due to a combination of stronger storms (>0.75 Nm$^{-2}$), weaker stratification (<0.5x10$^{-4}$ s$^{-2}$) and the slow seasonal increase of the pCO$_2$-th component (Figure 2b and c). It also shows that the FCO$_2$ averaged per storm event can be overestimated by a minimum of 6.6% (W3 and Sp1) to a maximum of 18.3% (W6) in winter and 26.5% (Sp4) in spring if the storm-pCO$_2$sea feedback is omitted from the FCO$_2$ (Figure 4e).

To examine the integrated impact of storms on the pCO$_2$sea, their cumulative influence on the FCO$_2$ through most of a seasonal cycle was investigated. The cumulative sum of both the FCO$_2$-storm (-1003.06 molm$^{-2}$) and FCO$_2$-storm-filtered (-1069.47 molm$^{-2}$) across winter, spring, and late summer, also showed an overall overestimation bias of 6.41% (Figure 4f), suggesting that not accounting for the storm driven responses in pCO$_2$sea on the FCO$_2$, over a significant portion of a seasonal cycle, introduces a bias in the annual cumulative FCO$_2$ uptake. At the study location, each storm had a lifespan of 1.5 to 7 days. Autonomous floats with a 10-day sampling frequency (Johnson et al. 2017) could thus have a limited probability (<10 %, Monteiro et al. 2015) of capturing the entire synoptic cycle of pCO$_2$sea (Figure 2c), resulting in the intra-seasonal FCO$_2$ variability in the SAZ not being appropriately captured (Figure 4d, Monteiro et al. 2015, Djeutchouang et al. 2022). Our results provide an initial mechanistic analysis, which support the findings of Monteiro et al. (2015) (and thereafter Djeutchouang et al. 2022), showing why a 3-day or less sampling period is necessary to reduce the uncertainties in the annual mean FCO$_2$ estimates in the SAZ.

This study was conducted in the SAZ, a region characterised by frequent storms and mesoscale features which disrupts the seasonal cycle of pCO$_2$sea leading to this region to be
dominated by intra-seasonal modes of $pCO_{2\text{sea}}$ variability (Figure 1b; Monteiro et al. 2015, Gregor et al. 2019, Djeutchouang et al. 2022). From a Seasonal Cycle Reproducibility (SCR) metric (Figure 1b), formulated from a mesoscale resolving model for the SO, we thus propose that the findings of this study will project to the low SCR regions, which extends to 25 to 30% of the SO (Figure 1b), and emphasize the need for high frequency (< 3 days) $pCO_{2\text{sea}}$ observations in such regions.

4. Synthesis

This study hypothesized that the influence of high-frequency wind variability induced by storms on $pCO_{2\text{sea}}$ contributes significantly to mean estimates of FCO_2 on seasonal to annual time scales. We showed that the wind simultaneously influences two terms of the FCO_2 bulk equation: k_w and ΔpCO_2, and that this influence was seasonally sensitive. Three main conclusions could be framed from this study.

First, the influence of the storm-driven wind on hourly $pCO_{2\text{sea}}$ observations in the SAZ was strongly seasonal. Across winter and spring, the mechanistic response of $pCO_{2\text{sea}}$ appeared mostly momentum-dominated, i.e., wind-induced entrainment and lateral advection during storm events drove most of its variability (Figure 2), with the influence of NPP being very small to undetectable (Figure S3). During summer, $pCO_{2\text{sea}}$ variability seemed predominantly affected by NPP and changes in the SST, with $pCO_{2\text{sea}}$ responses to the storm-driven wind variability being weakly sensitive (Figure 2). Future work and experiments will include observations of turbulent mixing to provide a more quantitative analysis of the associated mechanisms to discern the vertical entrainment of DIC from horizontal advection (e.g., Nicholson et al. 2022).

Second, based on these seasonally different mechanistic responses in $pCO_{2\text{sea}}$, storms have been shown to counterintuitively weaken the FCO_2, due to the weakening in the magnitude of ΔpCO_2, despite the increase in k_w, throughout winter and spring (Figure 4). This highlights the
importance of sampling ΔpCO_2 at high frequencies to minimize a potential overestimation of the FCO_2 uptake by up to 18.3% in winter and 26.5% in spring.

Finally, the integrated influence of these synoptic scale overestimations of the FCO_2 over an entire seasonal cycle, showed that the cumulative sum of the strength of FCO_2 uptake could be overestimated by 6.41% (Figure 4e) and this bias can be projected to 25 to 30% of the area of the SO (Figure 1).

Acknowledgments

This work is part of the Ph.D. of Tesha Toolsee who was partially funded by the South African National Research Foundation (NRF grant: MND210514601456/145319) and the Council of Scientific and Industrial Research (CSIR) Doctoral Studentship funds. PMS Monteiro and S.-A Nicholson are supported by the European Union's Horizon 2020 research and innovation program under Grant 821001 (SO-CHIC) and the NRF-SANAP (SNA170522231782, SANAP200324510487). The authors of this work would like to thank SANAP and the captain and crew of the S. A. Agulhas II, as well as Sea Technology Services for their contribution in the deployment and retrieval of the gliders.

Open Research

The Wave Glider and Profiling buoyancy glider data were provided by the Southern Ocean Carbon and Climate Observatory (SOCCO-CSIR). ERA5 reanalysis wind speeds, wind stress, and pressure data were produced by the European Centre for Medium-Range Weather Forecasts (ECMWF), and obtained from https://cds.climate.copernicus.eu/cdsapp#!/dataset/reanalysis-era5-pressurelevels?tab=overview and accessed on 1 March 2022. CSIR-ML6 data version 2019a is available from Ocean Carbon Data system (OCADS; https://doi.org/10.25921/z682-mn47, Gregor et al., 2019).
References

Figure 1.
Figure 2.
Figure 3.
Figure 4.
The Complex Role of Storms in Modulating Air-Sea CO$_2$ Fluxes in the sub-Antarctic Southern Ocean.

Tesha Toolsee1,2,*, Sarah-Anne Nicholson1, Pedro M.S. Monteiro3

1 Southern Ocean Carbon-Climate Observatory (SOCCO), CSIR, Cape Town, South Africa
2 Department of Oceanography, University of Cape Town, Cape Town, South Africa
3 School for Climate Studies, Stellenbosch University, Stellenbosch, South Africa

*Corresponding author: Tesha Toolsee (TLSTES001@myuct.ac.za)

Key Points:

- Hourly glider observations show that the impact of storms on both k_w and ΔpCO$_2$ simultaneously modulates the magnitude of FCO$_2$ variability.
- Winter-spring storms weaken ΔpCO$_2$ through enhanced entrainment and mixing, counteracting the expected increase in FCO$_2$ due to k_w alone.
- By not accounting for the storm feedback in both k_w and ΔpCO$_2$, the magnitude of the FCO$_2$ was found to be overestimated (by 6.6 - 26.5%).

Abstract

The intra-seasonal CO$_2$ flux (FCO$_2$) variability across the Southern Ocean is poorly understood due to sparse observations at the required temporal and spatial scales. Twinned Waveglider-Seaglider experiments were used to investigate how storms influence FCO$_2$ through both the gas transfer velocity (k_w) and the air-sea gradient in partial pressure of CO$_2$ (ΔpCO$_2$) in the sub-Antarctic zone. Winter-spring storms caused ΔpCO$_2$ to weaken (by 15-55 μatm) due to mixing/entrainment and weaker stratification. This response in ΔpCO$_2$ was in phase with k_w resulting in a counteractive weakening in FCO$_2$ (by 6.6 - 26.5% per storm), despite the wind-driven increase in k_w. Stronger stratification during summer explained the weaker sensitivity of ΔpCO$_2$ to storms, instead its thermal drivers dominated the ΔpCO$_2$ variability. These results highlight the importance of observing synoptic-scale variability in ΔpCO$_2$, the absence of which may propagate...
significant biases to the mean annual FCO\textsubscript{2} estimates from large-scale observing programmes and reconstructions.

Plain Language Summary

The sub-Antarctic zone of the Southern Ocean is a region that mostly experiences carbon dioxide (CO\textsubscript{2}) uptake because of its low temperature and strong winds. The wind can influence the CO\textsubscript{2} uptake through two pathways: the speed of CO\textsubscript{2} transfer between the air-sea interface (k\textsubscript{w}) and the difference in CO\textsubscript{2} concentration in the surface ocean and overlying atmosphere (ΔpCO\textsubscript{2}). Using autonomous robots that can measure hourly air and water conditions simultaneously, we show that not resolving ΔpCO\textsubscript{2} during a storm event can lead to overestimating the CO\textsubscript{2} uptake. This is particularly important during winter and spring when the ocean’s surface layers are less stratified. The warmer temperatures during summer meant a more stratified surface layer resulting in a weaker and delayed impact of storms on the ΔpCO\textsubscript{2}. This study shows that the various annual CO\textsubscript{2} uptake estimation methods used by the research community should not neglect ΔpCO\textsubscript{2} responses during storms.

1. Introduction

The sub-Antarctic zone (SAZ) of the Southern Ocean (SO) is a critical region in the global carbon cycle due to its ability to uptake (~1 Pg C yr-1) large amounts of anthropogenic CO\textsubscript{2} (Figure 1a; DeVries et al., 2017; Gruber et al., 2019). Extra-tropical cyclones (hereafter referred to as storms) are prevalent synoptic features in the SO that occur at a 4 to 8-day frequency (Yuan, 2004; Wei & Qin, 2016; Lodise et al. 2022). These frequent storm events induce short but strong wind stress over the surface ocean which triggers several high-frequency (hourly to 10 days) responses at the air-sea and ocean-mixed layer interfaces, which have been shown to impact the air-sea CO\textsubscript{2} flux (FCO\textsubscript{2}) significantly (Monteiro et al. 2015, Nicholson et al. 2022). However, despite the persistence of strong storms across the SO, few studies have investigated and quantified the role of storms on the FCO\textsubscript{2} in the SAZ, particularly under different seasonal settings.

FCO\textsubscript{2} is governed by a bulk formulation which constitutes of the gas transfer velocity (k\textsubscript{w}) (Ho et al. 2006; Wanninkhof, 2014), the solubility constant (k\textsubscript{o}) (Weiss, 1974) and the gradient between the partial pressure of CO\textsubscript{2} in the ocean (pCO\textsubscript{2sea}) and in the atmosphere (pCO\textsubscript{2air}).
(ΔpCO$_2$ = pCO$_2$sea − pCO$_2$air). The passage of a storm is likely to trigger responses to each of these bulk terms, which may occur in-phase (response time is the same) or out-of-phase (response time is different) with one another. During a storm, strong wind stress will result in stronger k_w (quadratic function of wind speed; Wanninkhof et al. 2014), increasing the magnitude of FCO$_2$. Importantly, the increase in wind stress may also generate upper ocean dissipation (through shear production and buoyancy loss) which elicits physical transport within and across the mixed layer and its boundaries. This is via vertical (entrainment) and lateral (advection) exchanges of water masses into and out of the mixed layer, increasing or decreasing pCO$_2$sea and ΔpCO$_2$ (Ito et al. 2016; Nicholson et al. 2022). A ‘buoyancy-dominated’ phase typically follows this ‘momentum-dominated’ phase of the storm. The quiescence period post-storm results in a loss in momentum through the drop in wind stress and a gain in buoyancy due to restratification. This can decrease k_o and increase pCO$_2$sea as the solubility of CO$_2$ decreases (Sarmiento & Gruber, 2006). Above all, it may allow for an increase in the net primary productivity resulting in a net decrease in pCO$_2$sea post-storm during summer (Swart et al. 2015; Nicholson et al. 2016, Carranza et al. 2018; Nicholson et al. 2019; Uchida et al. 2020).

Evidence of storm-driven responses to bulk flux terms has been documented in the subpolar SO, a region of annual mean FCO$_2$ outgassing (Nicholson et al. 2022). There, strong storm-induced wind stress was linked to increases in FCO$_2$ through the k_w parameter but also because of concurrent upper ocean mixed layer entrainment of carbon-rich waters, rapidly modifying (reversing and changing the magnitude) the ΔpCO$_2$ to result in strong outgassing events (Nicholson et al., 2022). Whether storms drive similar responses to both k_w and ΔpCO$_2$, as well as the phasing of the response of these bulk flux terms, and how it impacts the FCO$_2$ in the SAZ is yet unclear. However, some insights have been provided by Monteiro et al. (2015) through a conceptual figure, which linked storms to intra-seasonal variations of FCO$_2$, hypothesizing that storms in the SAZ triggered pCO$_2$sea to increase through entrainment, decreasing the magnitude of ΔpCO$_2$, causing the FCO$_2$ ingassing to slightly weaken despite the strong wind stress induced by the storm.
Due to the regularity of these storms, such intra-seasonal variability is thought to dominate the seasonality of pCO$_{2\text{sea}}$, a dominant driver of FCO$_2$ variability, across large regions of the SO (Figure 1b; Monteiro et al. 2015; Gregor et al. 2019; Djeutchouang et al. 2022, Nicholson et al. 2022). However, because of the lack of high-frequency (< 10 days) observations throughout the SO, the mechanisms behind the intra-seasonal variability of FCO$_2$, that link the storm-driven variability in wind stress directly to the FCO$_2$ are still not well understood. There remains some debate on what scales of variability are key to accurately estimate the annual mean FCO$_2$. It has been argued that observed high-frequency variability in k$_w$ only (available using high-resolution reanalysis wind products) is sufficient to capture the intra-seasonal responses of FCO$_2$ and the corresponding synoptic variability of pCO$_{2\text{sea}}$ is of secondary importance to the overall FCO$_2$ estimates (Bushinsky et al. 2019). Observational evidence from other studies has shown that the phasing of both k$_w$ and pCO$_{2\text{sea}}$ to a storm event is important (Monteiro et al. 2015; Nicholson et al. 2022). This suggests that a 10-day or more sampling period may not necessarily capture storm-linked responses on the annual FCO$_2$ estimates and a sampling resolution of less than 3 days may
be more appropriate to capture such responses in 27.5% of the SO (Djeutchouang et al. 2022) to reduce the annual FCO$_2$ mean uncertainty to less than 10% (Monteiro et al. 2015).

In this study, we investigate the intra-seasonal changes in FCO$_2$ associated with storms and hypothesize that the wind-driven constraints on the FCO$_2$ through rapid modifications of pCO$_{2\text{sea}}$ may be as decisive as the high-frequency responses in the k_w parameter. Using high-resolution hourly glider observations, we first provide an explanation of the mechanisms that drive the pCO$_{2\text{sea}}$ variability during storms in the SAZ and then proceed to show the importance of considering the temporal aliasing of the pCO$_{2\text{sea}}$ and k_w to the strong winds on the FCO$_2$.

2. Materials and Methods

2.1 Data collection

This study utilized data collected during the third Southern Ocean Seasonal Cycle Experiment (SOSCEx-III) in the SAZ (Further description in text S1 and refer to Swart et al. 2012). This experiment involved the simultaneous deployment of two Liquid Robotics Wave Gliders (WG) (CSIR1 and CSIR2) and two buoyancy profiling Seagliders (SG542 and SG543), which sampled roughly at 8.5°E and 43°S to simulate a pseudo-mooring pattern (Figure S1a).

The WGs sampled from 14th August to 17th October 2015 (CSIR1) and from 9th December 2015 to 8th February 2016 (CSIR2), covering the late winter to the end of the summer period. A modified MAPCO$_2$ sensor made both atmospheric (xCO$_{2\text{air}}$) and oceanic (xCO$_{2\text{sea}}$) observations at hourly temporal resolution with a precision of less than 2 μatm (Sutton et al. 2014). An Airmar XW-200 Ultrasonic Weather station recorded meteorological parameters at 10-minute intervals (further details in Schmidt et al. 2017). The weather station on CSIR1 WG was however faulty, and hourly ERA5 reanalysis wind speed data was used instead (Text S2 elaborates on the choice of reanalysis product).

The Seagliders conducted a total of 1832 profiles over 196 days, measuring the conductivity, temperature, and pressure, amongst others (see Thomalla et al. (2017) for more details), of the first 1000m of the ocean in a V-shaped pattern at a dive cycle of approximately 5
hours. These two deployments resulted in a continuous sampling from 28 July to 8 December 2015 (SG543) and 8 December 2015 to 8 February 2016 (SG542).

2.2 Estimation of the bulk CO$_2$ flux

The exchange of CO$_2$ (FCO$_2$) between the surface ocean and atmosphere can be estimated using a bulk flux formula.

\[
FCO_2 = k_w k_o (pCO_{2\text{sea}} - pCO_{2\text{air}})
\]

(1)

where k_w (cm hr$^{-1}$) is the wind-driven gas transfer velocity (Wanninkhof, 2014), k_o (mol L$^{-1}$ atm$^{-1}$) is the solubility of CO$_2$ in seawater (Weiss, 1974), $pCO_{2\text{sea}}$ and $pCO_{2\text{air}}$ represent the partial pressure of CO$_2$ in the ocean and the atmosphere respectively. $pCO_{2\text{sea}} - pCO_{2\text{air}}$ is commonly represented as ΔpCO_2. Text S2 and S3 describe the quality control and method of calculations of each parameter of the bulk formula.

2.3 Thermal and non-thermal decomposition of $pCO_{2\text{sea}}$

$pCO_{2\text{sea}}$ was decomposed into its thermal ($pCO_{2\text{th}}$; μatm) and non-thermal ($pCO_{2\text{nt}}$; μatm) components (Takahashi et al. 1993, 2002). $pCO_{2\text{th}}$ accounts for the thermodynamically dependent characteristics of CO$_2$ which are driven by the variability in sea surface temperature (SST) while $pCO_{2\text{nt}}$ accounts for the biophysical processes (vertical mixing and biological consumption) which change the concentration of Dissolved Inorganic Carbon (DIC) in seawater (Takahashi et al., 1993).

\[
pCO_{2\text{th}} = pCO_{2\text{sea-mean}} \times e^{0.0423(SST-SST_{\text{mean}})}
\]

(2)

\[
pCO_{2\text{nt}} = pCO_{2\text{sea}} \times e^{0.0423(SST_{\text{mean}}-SST)}
\]

(3)
where $\text{pCO}_{2\text{sea-mean}}$ and SST_{mean} are the mean of $\text{pCO}_{2\text{sea}}$ and SST values throughout the entire study period respectively.

3. Results and Discussion

3.1 Observed $\text{pCO}_{2\text{sea}}$ variability in response to storms.

Here we examine qualitatively how the synoptic-scale momentum-buoyancy dynamics influence the phasing of $\text{pCO}_{2\text{sea}}$ responses to storms in the SAZ over a significant part of a seasonal cycle. To highlight the atmospheric forcing and upper ocean responses linked to storms, wind stress (a proxy for momentum fluxes), upper ocean stratification (N^2) (a proxy for buoyancy fluxes), and the mixed layer depth (MLD) (momentum-buoyancy balance) were examined (Figures 2a and b). The $\text{pCO}_{2\text{sea}}$ was also decomposed into its thermal ($\text{pCO}_{2\text{-th}}$) and non-thermal component ($\text{pCO}_{2\text{-nt}}$) to differentiate biophysical responses ($\text{pCO}_{2\text{-nt}}$) from changes in SST ($\text{pCO}_{2\text{-th}}$) (Figure 2c).

The study period was characterized by three seasonal regimes (winter, spring, and summer) that represented three different responses of $\text{pCO}_{2\text{sea}}$ to storms (Figure 2c). During winter, $\text{pCO}_{2\text{-th}}$ and $\text{pCO}_{2\text{-nt}}$ showed considerable high-frequency response modes (between 1 to 6 hours), at time scales shorter than the wind stress variability (Figures 2a and c). Such high-frequency modes of variability (±5-10 μatm in both $\text{pCO}_{2\text{-th}}$ and $\text{pCO}_{2\text{-nt}}$) can be indicative of the presence of both sub-mesoscale features (O; 1-10 km) (Mahadevan et al. 2004; Lévy et al. 2012) and near-inertial motions (Alford et al. 2016) in the region. Sharp density gradients associated with sub-mesoscale features are short-lived (a few hours to days) and can induce strong vertical advection and mixing (Thomas et al. 2008), which can drive synoptic scale variations in the $\text{pCO}_{2\text{-nt}}$ as seen in Figure 2. Similarly, near-inertial waves energized by storms trigger surface vertical mixing on timescales close to the inertial period (17.5 hours at 43.5°S), also driving synoptic changes in the $\text{pCO}_{2\text{-nt}}$ (e.g., during W5 and W6, Song et al. 2019, Nicholson et al. 2022).
Figure 2: (a) Time series of ERA5 Wind Stress (Nm$^{-2}$) collocated to the gliders’ location at 8.5°E and 43°S. (b) Seaglider observed upper ocean stratification, Brunt Väisälä frequency (N2; s$^{-2}$), and mixed layer depth (m; in yellow). Methods for N2 and MLD calculation can be found in text S3 in the Supplementary Information (c) Wave Glider observed pCO$_{2sea}$ (μatm; in black) and its thermal (pCO$_{2\text{-th}}$ (μatm); in orange) and non-thermal (pCO$_{2\text{-nt}}$ (μatm); in green). The seasonal regimes were defined as a negative net heat flux for winter, an increasing net heat flux for spring, and a stable positive net heat flux for summer (du Plessis et al. 2019). The grey shading highlights the duration of each storm event with storms labelled underneath (Winter: W1-W6, Spring: Sp1-Sp7, and Summer: Su1-Su12), and the grey vertical lines separate each storm (storm identification method can be found in text S4 in the Supplementary Information).

These rapid changes of DIC within the MLD are usually accompanied by rapid temperature changes (Figure 2c). The transport of subsurface water to the surface lowers the temperature within the mixed layer which can decrease the pCO$_{2\text{-th}}$ (by increasing the solubility of CO$_2$, Sarmiento & Gruber, 2006), hence offsetting the effect of the transported DIC on the overall pCO$_{2sea}$ (Mahadevan et al. 2004, Resplandy et al. 2009). Indeed, for most of winter, these high-frequency modes of variability have little impact on the pCO$_{2sea}$ variability (Figure 2c), likely due to the pCO$_{2\text{-th}}$ and pCO$_{2\text{-nt}}$ terms cancelling each other out (Figure 2c). Instead, the net changes in pCO$_{2sea}$ appear in phase with the wind stress variability linked to storms (Figures 2a and c). During W1 to W6, the pCO$_{2sea}$ showed a small increase and consequent decrease (±5-15 μatm) with the synoptic wind stress cycle. A possible explanation is that the increasing wind stress generated deep mixing,
deepening the MLD (up to ~50 m day^{-1}; Figure 2b) and possibly entraining DIC into the surface mixed layer (as observed in Ko et al. 2021 and Nicholson et al. 2022). As the wind stress decreases post-storm, the mixed layer re-stratifies and shoals the MLD (e.g., between W3 and W4, Figure 2b) until the next storm and the cycle repeats itself. During spring or summer, this quiescent period between storms would typically lead to phytoplankton blooms (Monteiro et al. 2015; Carranza et al. 2018), causing a drop in pCO_{2sea} but the nearly abiotic conditions (<400 mg C m^{-2} d^{-1}, Figure S3) of the SAZ in winter allowed us to eliminate Net Primary Productivity (NPP) as a driver of the pCO_{2sea} changes observed. In addition to entrainment, wind-driven lateral advection of pCO_{2sea} could also drive the synoptic-scale responses in pCO_{2sea} (Figure 2b; Takahashi et al. 2009; Monteiro et al. 2015; Nicholson et al. 2022).

During spring, the intra-seasonal modes of variability in pCO_{2nt} (±50 µatm) were much larger than those in pCO_{2-th} (±15 µatm, Figure 2c). These stronger variations in pCO_{2nt} were in turn reflected in the pCO_{2sea} (up to ±55 µatm, comparable to the seasonal variation in pCO_{2sea}) which also varied in phase with the storm wind stress cycle (r^2 = 0.45, Figure 2a). These stronger bursts in pCO_{2sea} could be linked to more intense entrainment events occurring because of stronger storms (>0.75 N m^{-2}; Figure 2a), and weaker stratification (<0.5x10^{-4} s^{-2}, Figure 2b) in spring compared to winter (0.75 N m^{-2} and 0.5 – 1.0x10^{-4} s^{-2}). These conditions favour stronger vertical mixing, entraining DIC into the mixed layer (Song et al. 2019; Nicholson et al. 2022). In addition to stronger storm-induced vertical mixing on pCO_{2-nt}, the surface net heat flux gradually increased towards the end of spring (du Plessis et al. 2019) leading to the pCO_{2-th} to also slowly increase because of warmer SST reducing the solubility of CO_{2} (Mahadevan et al. 2004). The contribution of this gradual increase in pCO_{2-th} and the storm-induced variation on pCO_{2-nt} led to the observation of the strongest pCO_{2sea} response during Sp6 (±55 µatm) (Figure 2c).

As the surface net heat flux increased further towards the end of spring (du Plessis et al. 2019), the MLD shoaled up to 50 m (Figure 2b). pCO_{2-th} was observed to exceed the pCO_{2-nt} on 13 October 2015 (Figure 2c), because of an increase in SST that caused the gradual increase in pCO_{2-th} and an increased consumption of DIC through NPP that led to the simultaneous gradual
decrease in pCO$_2$-nt. This reversal in the pCO$_2$-th and pCO$_2$-nt marked the transition from spring to summer regimes in the pCO$_2$sea variability 44 days before the seasonal mixed layer restratification took place (on 26 November 2015 in du Plessis et al. 2019). This highlights the seasonal transition in the primary drivers of pCO$_2$sea variability from a momentum-dominated winter to a combination of momentum and gradually increasing buoyancy-dominated spring (pCO$_2$-th, r2 = 0.02) to finally a thermally and NPP-driven summer (pCO$_2$-th, r2 = 0.39) (Figure 2c).

As expected, due to the increased solar radiation in summer, the pycnocline stratification strengthened (0.5x10$^{-4}$ – 1.0x10$^{-4}$ s$^{-2}$) and shoaled (50–100 m) during early summer and intensified (3.0x10$^{-4}$ – 4.4x10$^{-4}$ s$^{-2}$) and shoaled (≤50 m) further towards the end of summer (Figure 2b). As the late summer pycnocline layer shoaled and strengthened, the remnant of the winter pycnocline remained below it at approximately 100-150 m (du Plessis et al. 2019), disconnecting the deeper subsurface reservoir of higher DIC from the surface mixed layer (Sprintall et al. 1992; Swart et al. 2015). This could explain the reduced sensitivity of pCO$_2$sea to wind stress variations observed across summer (Figures 2a and c). The seasonal warming was also reflected in the slow rise in pCO$_2$-th (Mahadevan et al. 2004), with variations in pCO$_2$-nt observed during quiescent periods (e.g., between Su1 to Su2) because of consumption of DIC by high net primary productivity (Monteiro et al. 2015; Swart et al. 2015; Carranza et al. 2018; Nicholson et al. 2019; Figures 2c and S3).

3.2 The influence of the wind on both k$_w$ and ΔpCO$_2$

Given that pCO$_2$sea responds so sensitively to storm-linked momentum fluxes during winter and spring, does it also influence the synoptic cycle of the CO$_2$ flux (FCO$_2$) relative to the wind stress? To examine this question, we focused on three consecutive storms (Sp4, Sp5, and Sp6), which occurred in spring (Figure 3).
Figure 3: Time series of (a) ERA5 Wind Stress (Nm⁻²), (b) Mixed Layer Depth (m; in black) and ∆pCO₂ (μatm; in orange), (c) k_w (cm hr⁻¹) and (d) CO₂ flux, FCO₂ (mol m⁻² hr⁻¹) as observed by the Wave Glider (FCO₂_storm; in black) and the storm-filtered FCO₂ (FCO₂_storm-filtered in blue) calculated from hourly k_w and pre-storm ∆pCO₂ (dashed orange line), for the duration of 3 spring storms events Sp4, Sp5 and Sp6 (27 September 2015 to 9 October 2015).

The variability in ∆pCO₂ is controlled by the air-sea gradient of pCO₂sea with negative values implying the ingassing of CO₂. Across the SO, the contribution made by pCO₂air variability to ∆pCO₂ is relatively low (1-4 μatm, Tozawa et al. 2021), compared to the seasonal to intra-
seasonal variability in pCO$_{2\text{sea}}$ (10-100 μatm, Mongwe et al. 2016, Gregor et al. 2018). Furthermore, while storm linked atmospheric pressure can modulate the pCO$_{2\text{air}}$ significantly, it also influences pCO$_{2\text{sea}}$ (Text S2), resulting in the net impact of the atmospheric pressure on ΔpCO$_2$ to be insignificant. Therefore, pCO$_{2\text{sea}}$, and its drivers, have a decisive influence on ΔpCO$_2$ across the SO (Takahashi et al., 2009, Mongwe et al., 2016), and during the study period ($r^2 = 1$, Figures 2c and 3b). In response to an increase in wind stress, ΔpCO$_2$ weakened in magnitude (e.g. from -35 to -20 μatm during Sp5) almost in phase with the wind stress with a short lag between each peak varying between 1 to 3 hours throughout all 3 storm events (Figure 3b; brown line). The response of the MLD was, in contrast, out of phase with the wind stress (Figure 3b) which was as expected and can be explained as the delayed response of the MLD due to inertial motion set by the passing storms (Cisewski et al. 2005) and the low responsiveness of the MLD to the wind stress when compared with the active mixing layer (Whitt et al. 2019; Nicholson et al. 2022).

According to the bulk FCO$_2$ formula, the influence of the wind on the FCO$_2$ is accounted for through the nonlinear (quadratic) relationship between k_w and the wind speed (Wanninkhof et al. 2014). To examine our hypothesis about how, instead, the high-frequency variability of ΔpCO$_2$ and k_w are both necessary to capture the magnitude and phasing of the intra-seasonal mean FCO$_2$, we compared the observed FCO$_2$ (FCO$_2$-storm) and a calculated FCO$_2$ which removes the mixing/entrainment response of pCO$_{2\text{sea}}$ (FCO$_2$-storm-filtered). The FCO$_2$-storm-filtered was re-calculated using hourly k_w but with ΔpCO$_2$ kept constant to its pre-storm value to filter out the storm-driven synoptic response of ΔpCO$_2$ (Figure 3d – blue line). For this study, using the pre-storm ΔpCO$_2$ was the best option (Text S4) as it mutes the influence of the previous and following storms on ΔpCO$_2$ during any storm to have a more accurate estimate of the FCO$_2$ per storm event.

With each storm, k_w increases in phase with the wind stress (Figure 3c), which, in turn, drove the increase in magnitude of the FCO$_2$ (Figure 3d, Wanninkhof et al. 2014). The phasing between FCO$_2$-storm and FCO$_2$-storm-filtered were similar, i.e., they both varied in phase with each storm because of k_w (Figure 3d). However, because ΔpCO$_2$ also weakened in response to the increasing wind stress, the magnitude of the FCO$_2$-storm was lower than the FCO$_2$-storm-filtered. This is also
consistent with the observations in Monteiro et al. (2015) where FCO$_2$ was observed to weaken despite the increase in wind stress induced by storms. Bushinsky et al. (2019) suggested that the aliasing error from a 10-day sampling frequency of pCO$_{2\text{sea}}$ (Monteiro et al. 2015) from biogeochemical profiling floats may not be the primary source of uncertainty in the annual FCO$_2$ estimate in the SO because hourly wind speed data captures most of the intra-seasonal FCO$_2$ variability through the k_w term. However, our study shows that, while the k_w term does capture most of the FCO$_2$ variability, the temporal phasing of the ΔpCO$_2$ and the k_w throughout a storm event is both needed to not overestimate the intra-seasonal FCO$_2$ (by up to 0.7 molm$^{-2}$hr$^{-1}$ during the peak of storm Sp4) because the wind influences both the k_w and the ΔpCO$_2$ simultaneously (Figure 3d).

3.3 Seasonal-scale implications of storm-induced synoptic variability

The above experiment was replicated for the whole observed time series to further explore the implications of the complex storm-induced impacts on ΔpCO$_2$ on the integrated seasonal mean FCO$_2$ (Figure 4). Since both k_w and the wind stress were calculated as a function of the wind speed, they were also strongly correlated ($r^2 = 0.95$; Figures 2a and 4a). The overall contribution of k_o to the synoptic variability of FCO$_2$ was shown to be very small throughout the study period ($r^2 = 0.06$; Figure 4b). The synoptic scale variability in k_o (up to 0.02 molm$^{-3}$atm$^{-1}$), was small compared to the magnitude of its seasonal variability (up to 0.1 molm$^{-3}$atm$^{-1}$), both of which reflected changes in temperature and salinity instead (Figure 4b).
Figure 4: Time series of the (a) gas transfer coefficient, k_w (cm hr$^{-1}$) calculated from ERA5 winds. Wave Glider observations of (b) solubility coefficient, k_o (mol L$^{-1}$ atm$^{-1}$), (c) gradient in the partial pressure of CO$_2$ between the ocean and the atmosphere (ΔpCO$_2$ (μatm) = pCO$_2$sea (μatm) – pCO$_2$air (μatm)), (d) CO$_2$ flux, FCO$_2$ (mol m$^{-2}$ hr$^{-1}$) in black and the storm-filtered FCO$_2$, with the wind influence through k_w only, in blue, (e) difference between the observed FCO$_2$ and the storm filtered FCO$_2$ (mol m$^{-2}$ hr$^{-1}$), and (f) cumulative sum of the observed FCO$_2$ (in black) and storm-filtered FCO$_2$ (in blue). The grey shading represents the storm occurrences, and the grey lines separate each storm from one another.
Throughout the deployment, ΔpCO$_2$ was negative indicating a persistent ingassing flux of CO$_2$, characterized by a strong mode of synoptic-scale variability, at the sampling location (Figure 4c). The magnitude of the re-calculated FCO$_2$-storm-filtered (excluding the storm-pCO$_2$$_{sea}$ feedback) was consistently stronger than the FCO$_2$-storm during winter-spring but much less so during summer events (Figure 4d). This is seen through the variability in the magnitude of the difference between the observed and re-calculated fluxes (FCO$_2$-storm - FCO$_2$-storm-filtered) (Figures 4d and e). It shows that the difference in magnitude was weaker during winter (up to -0.3 molm$^{-2}$hr$^{-1}$) and strongest during spring (up to -0.7 molm$^{-2}$hr$^{-1}$) which also coincided with the pronounced synoptic variability in the pCO$_2$$_{sea}$ due to a combination of stronger storms ($>$0.75 Nm$^{-2}$), weaker stratification ($<$0.5x10$^{-4}$ s$^{-2}$) and the slow seasonal increase of the pCO$_2$-th component (Figure 2b and c). It also shows that the FCO$_2$ averaged per storm event can be overestimated by a minimum of 6.6% (W3 and Sp1) to a maximum of 18.3% (W6) in winter and 26.5% (Sp4) in spring if the storm-pCO$_2$$_{sea}$ feedback is omitted from the FCO$_2$ (Figure 4e).

To examine the integrated impact of storms on the pCO$_2$$_{sea}$, their cumulative influence on the FCO$_2$ through most of a seasonal cycle was investigated. The cumulative sum of both the FCO$_2$-storm (-1003.06 molm$^{-2}$) and FCO$_2$-storm-filtered (-1069.47 molm$^{-2}$) across winter, spring, and late summer, also showed an overall overestimation bias of 6.41% (Figure 4f), suggesting that not accounting for the storm driven responses in pCO$_2$$_{sea}$ on the FCO$_2$, over a significant portion of a seasonal cycle, introduces a bias in the annual cumulative FCO$_2$ uptake. At the study location, each storm had a lifespan of 1.5 to 7 days. Autonomous floats with a 10-day sampling frequency (Johnson et al. 2017) could thus have a limited probability (<10 %, Monteiro et al. 2015) of capturing the entire synoptic cycle of pCO$_2$$_{sea}$ (Figure 2c), resulting in the intra-seasonal FCO$_2$ variability in the SAZ not being appropriately captured (Figure 4d, Monteiro et al. 2015, Djeutchouang et al. 2022). Our results provide an initial mechanistic analysis, which support the findings of Monteiro et al. (2015) (and thereafter Djeutchouang et al. 2022), showing why a 3-day or less sampling period is necessary to reduce the uncertainties in the annual mean FCO$_2$ estimates in the SAZ.

This study was conducted in the SAZ, a region characterised by frequent storms and mesoscale features which disrupts the seasonal cycle of pCO$_2$$_{sea}$ leading to this region to be
dominated by intra-seasonal modes of pCO$_{2\text{sea}}$ variability (Figure 1b; Monteiro et al. 2015, Gregor et al. 2019, Djeutchouang et al. 2022). From a Seasonal Cycle Reproducibility (SCR) metric (Figure 1b), formulated from a mesoscale resolving model for the SO, we thus propose that the findings of this study will project to the low SCR regions, which extends to 25 to 30% of the SO (Figure 1b), and emphasize the need for high frequency (< 3 days) pCO$_{2\text{sea}}$ observations in such regions.

4. Synthesis

This study hypothesized that the influence of high-frequency wind variability induced by storms on pCO$_{2\text{sea}}$ contributes significantly to mean estimates of FCO$_2$ on seasonal to annual time scales. We showed that the wind simultaneously influences two terms of the FCO$_2$ bulk equation: k_w and ΔpCO$_2$, and that this influence was seasonally sensitive. Three main conclusions could be framed from this study.

First, the influence of the storm-driven wind on hourly pCO$_{2\text{sea}}$ observations in the SAZ was strongly seasonal. Across winter and spring, the mechanistic response of pCO$_{2\text{sea}}$ appeared mostly momentum-dominated, i.e., wind-induced entrainment and lateral advection during storm events drove most of its variability (Figure 2), with the influence of NPP being very small to undetectable (Figure S3). During summer, pCO$_{2\text{sea}}$ variability seemed predominantly affected by NPP and changes in the SST, with pCO$_{2\text{sea}}$ responses to the storm-driven wind variability being weakly sensitive (Figure 2). Future work and experiments will include observations of turbulent mixing to provide a more quantitative analysis of the associated mechanisms to discern the vertical entrainment of DIC from horizontal advection (e.g., Nicholson et al. 2022).

Second, based on these seasonally different mechanistic responses in pCO$_{2\text{sea}}$, storms have been shown to counterintuitively weaken the FCO$_2$, due to the weakening in the magnitude of ΔpCO$_2$, despite the increase in k_w, throughout winter and spring (Figure 4). This highlights the
importance of sampling $\Delta p\text{CO}_2$ at high frequencies to minimize a potential overestimation of the FCO$_2$ uptake by up to 18.3% in winter and 26.5% in spring.

Finally, the integrated influence of these synoptic scale overestimations of the FCO$_2$ over an entire seasonal cycle, showed that the cumulative sum of the strength of FCO$_2$ uptake could be overestimated by 6.41% (Figure 4e) and this bias can be projected to 25 to 30% of the area of the SO (Figure 1).

Acknowledgments

This work is part of the Ph.D. of Tesha Toolsee who was partially funded by the South African National Research Foundation (NRF grant: MND210514601456/145319) and the Council of Scientific and Industrial Research (CSIR) Doctoral Studentship funds. PMS Monteiro and S.-A Nicholson are supported by the European Union's Horizon 2020 research and innovation program under Grant 821001 (SO-CHIC) and the NRF-SANAP (SNA170522231782, SANAP200324510487). The authors of this work would like to thank SANAP and the captain and crew of the S. A. Agulhas II, as well as Sea Technology Services for their contribution in the deployment and retrieval of the gliders.

Open Research

The Wave Glider and Profiling buoyancy glider data were provided by the Southern Ocean Carbon and Climate Observatory (SOCCO-CSIR), available at https://doi.org/10.5281/zenodo.10389978. ERA5 reanalysis wind speeds, wind stress, and pressure data were produced by the European Centre for Medium-Range Weather Forecasts (ECMWF), available at https://doi.org/10.24381/cds.bd0915c6 and accessed on 1 March 2022. CSIR-ML6 data version 2019a is available from Ocean Carbon Data system (OCADS; https://doi.org/10.25921/z682-mn47, Gregor et al., 2019).
References

Supporting Information for

The Complex Role of Storms in Modulating Intra-seasonal Air-Sea CO₂ Fluxes in the Sub-Antarctic Atlantic Southern Ocean.

Tesha Toolsee¹,²,*, Sarah-Anne Nicholson¹, Pedro M.S. Monteiro³

1 Southern Ocean Carbon-Climate Observatory (SOCCO), CSIR, Cape Town, South Africa
2 Department of Oceanography, University of Cape Town, Cape Town, South Africa
3 School for Climate Studies, Stellenbosch University, Stellenbosch, South Africa

*Corresponding author: Tesha Toolsee (TLSTES001@myuct.ac.za)

Contents of this file

1. Text S1 to S4
2. Figures S1 to S4

Introduction

This supplementary text (S1 to S4) provides additional and detailed information about the Southern Ocean Seasonal Cycle Experiment (SOSCEx) from which the glider data originate, and the data processing conducted on the glider data. Additionally, the methods used to calculate each parameter of the bulk CO₂ flux equation are explained in more detail in text S2. The supplementary figures (S1 to S4) show additional information referenced in the main text such as the different datasets used to identify the best fitted reanalysis wind product.
Text S1. Southern Ocean Seasonal Cycle Experiment (SOSCEx)

The Southern Ocean Seasonal Cycle Experiment (SOSCEx) initiated in 2012 is a multi-year observational programme designed to address the intra-seasonal to submesoscale uncertainty that connects the carbon cycle in the Southern Ocean to global climate variability (Swart et al., 2012). SOSCEx reflects a shift from historical ship-based observations to high-resolution autonomous sampling by gliders. These seasonal-long experiments involve simultaneous observations of the coupled air-sea and mixed-layer interface using twinned surface vehicles (Wave Gliders) and profiling buoyancy gliders (Seaglider).

Text S2. Estimation of the bulk CO\textsubscript{2} flux

k_w is governed by complex boundary layer processes that are largely controlled by wind speed (Ho et al. 2006, Wanninkhof, 2014). This relationship is based on the assumption that surface wind speed induces shear stress on the surface boundary layer of the ocean, triggering turbulence that has the ability to change the k_w. Consequently, k_w is commonly expressed as a function of wind speed (Wanninkhof, 1992, Sweeney et al., 2007, Blomquist et al., 2017). In the current study, due to the location of the Wave Gliders being in a high wind speed regime, a quadratic parameterization was used to estimate k_w (Ho et al. 2006, Wanninkhof, 2014).

\begin{equation}
K_w = 0.251 < U^2 > \left(\frac{Sc}{660} \right)^{-0.5}
\end{equation}

where 0.251 cm hr-1 is the coefficient of gas transfer ‘a’, $< U^2 >$ is the square of the wind speed (m s-1) at 10 m from the ocean surface and Sc is the Schmidt number calculated using the methods described in Wanninkhof (2014). The impact of temperature dependence of the Schmidt number on the k_w throughout the Wave Gliders deployment showed to be minimal ($r^2 = 0.006$) and we could thus safely explain the majority of the intra-seasonal k_w variability from the wind speed ($r^2 = 0.94$).
The weather station on the Wave Glider, CSIR1, was however faulty and no usable atmospheric data is available from 14th August 2015 to 17th October 2015 in order to obtain $<U^2>$. Amongst four different reanalysis products; ECMWF Reanalysis v5 hourly reanalysis (ERA5; Hersbach et al. 2020), Japanese 55 years 3 hourly reanalysis (JRA-55; Tsujino et al. 2018), National Centres for Environment Predictions v2 6 hourly reanalysis (NCEP-II; Kanamitsu et al. 2002) and the Cross-Calibrated Multi-Platform v3 6 hourly reanalysis (CCMP; Mears et al. 2022), the hourly ERA5 was found to be the best-fitted product to replace the Wave Glider’s atmospheric data ($r^2 = 0.788$; Figure S1b and c). Although Schmidt et al. (2017) found NCEP-II to be the best-performing reanalysis product for our study period and region, the newly available ERA5 hourly reanalysis product was not included in their analysis. Similarly, ERA5 wind stress data was used to highlight the passage of the storms in Figure 2.

\[k_0 = A_1 + A_2 \left(\frac{100}{SST} \right) + A_3 \left(\frac{SST}{100} \right) + S[B_2 + B_2 \left(\frac{SST}{100} \right) + B_3 \left(\frac{SST}{100} \right)^2] \] (2)

Where A_1, A_2, A_3, B_1, B_2, and B_3 were obtained from Table 2 of Wanninkhof (2014).

The hourly xCO$_{2\text{air}}$ and xCO$_{2\text{sea}}$ measurements underwent quality control where outliers above the 99th percentile and lower 1st percentile of their discrete temporal difference were removed. pCO$_{2\text{air}}$ (μatm) and pCO$_{2\text{sea, observed}}$ (μatm) were both calculated using the following equation (Pierrot et al., 2009).

\[\text{pCO}_{2\text{air/sea, observed}} = \text{xCO}_{2\text{air/sea}}[P - \text{pH}_2\text{O}] \] (3)

where P (atm) is the observed atmospheric pressure measured from the Wave Gliders, pH$_2$O (atm) is the water vapor pressure at the surface of the ocean and is calculated as follows (Weiss and Price, 1980).
where T is the temperature inside the xCO$_2$ analyser (K), and S is the sea surface salinity ($\%_o$).

Although the xCO$_2$ analyser and the SST probe are located in close proximity to each other on the Wave Gliders, an empirical temperature correction was still conducted on pCO$_{2\text{sea,observed}}$ to offset any disparity in the temperatures recorded inside the xCO$_2$ analyzer and the SST probe (Takahashi et al., 1993).

$$pCO_{2\text{sea(temp corrected)}} = pCO_{2\text{sea-observed}} e^{0.0423(SST-T)}$$

Finally, to obtain a thermodynamically correct and consistent pCO$_{2\text{sea}}$, the mean pCO$_{2\text{air}}$ of the entire study period (392.524 μatm) was added to ΔpCO$_2$ (pCO$_{2\text{sea(temp corrected)}} - pCO_{2\text{air}}$).

$$pCO_{2\text{sea}} = \Delta pCO_2 + 392.524 \mu\text{atm}$$

Text S3. Calculation of Brunt-Väisälä Frequency (N^2) and Mixed Layer Depth (MLD)

N^2 (s$^{-2}$), also known as the buoyancy frequency, is the parameterization of stratification in the upper ocean (McDougall et al. 2003).

$$N^2 \equiv -\frac{g}{\rho} \frac{d\rho}{dz}$$

where ρ is the potential density, g is the gravitational acceleration and z is depth.

Temperature and salinity data with depth from the Seaglider were used to calculate ρ.

MLD was defined as the depth where the density difference threshold first exceeds 0.03 kg m$^{-3}$ from the surface (de Boyer Montégut et al. 2004; Dong et al. 2008). The MLD data was
smoothed with a 6-point rolling mean. The Python GliderTools package was used to calculate both N^2 and MLD (Gregor et al. 2019).

Text S4. Storm identification

The meteorological characteristics linked to the passage of storms are usually associated with a drop in the mean sea level pressure and a sudden change in the wind speed and direction. In the case of extratropical storms in the Southern Ocean, a set of meteorological criteria were defined to identify those storms (Figure S2). Periods of simultaneous wind speed exceeding 10 m s$^{-1}$ (force 5 on the Beaufort scale) (Carranza et al. 2018) and a rate of change of atmospheric pressure (dP/dt) exceeding 0.1 hPa hr$^{-1}$ (Wang et al., 2015; Bharti et al., 2019) were labelled as storms. These thresholds are useful for identifying the central part of the storm. However, to capture pre-storm and post-storm conditions the start and the end of each storm were identified as the wind stress minimum before and after the central part of the storm respectively. A total of 25 storm events were identified, out of which 6 occurred in winter, 7 in spring and 12 in summer.
Figure S1. (a) Pseudo-mooring sampling pattern of the SOSCEX-III Wave Gliders (WG) centered around 8.5°E and 43°S in black and the spatial distribution of the gridded ERA5 reanalysis wind stress data in red. Linear regression analysis between (b) ERA-5 and WG, (c) JRA-55 and WG, (d) NCEP-II and WG, and (e) CCMP and WG. (f) Time series of ERA-5 wind stress (in red) and WG wind stress (in black) for their respective available duration.
Figure S2. (a) Time series of (a) atmospheric pressure (hPa) recorded by the WG (b) Rate of change of Pressure (dP/dt; hPa), (c) ERA-5 wind speed (m s\(^{-1}\)) from 14th August 2015 to 17th October 2015 and 9th December 2015 to 8th February 2016. The grey shading represents the storm occurrences, and the gray lines separate each storm from one another.

Figure S3: Hovmöller diagram of the Net Primary Productivity (NPP; mg C m\(^{-2}\) d\(^{-1}\)) estimated using the Carbon, Absorption, and Fluorescence Euphotic-resolving (CAFE) model from the version 6 of the Ocean Colour Climate Change Initiative (OCCCI v6). The solid black line refers to the location of the gliders’ deployment. Note the low NPP (< 400 mg C m\(^{-2}\) d\(^{-1}\)) during late winter and spring and the high NPP (> 600 mg C m\(^{-2}\) d\(^{-1}\)) during summer at the gliders’ location.
Figure S4: Time series of the (a) gas transfer coefficient, k_w (cm hr$^{-1}$), (b) solubility coefficient, k_o (mol L$^{-1}$ atm$^{-1}$), (c) gradient in the partial pressure of CO$_2$ in the ocean and the atmosphere (ΔpCO$_2$ (µatm) = pCO$_{sea}$ (µatm) – pCO$_{air}$ (µatm)), with hourly ΔpCO$_2$ represented in black, 10-days rolling mean in ΔpCO$_2$ in orange and pre-storm values of ΔpCO$_2$ in blue, (d) CO$_2$ flux, FCO$_2$ (mol m$^{-2}$ hr$^{-1}$) as observed by the Wave Gliders in black and the multiple filtered FCO$_2$ estimated using different sub-sampled ΔpCO$_2$, (e) difference between the observed FCO$_2$ and the filtered FCO$_2$ from the different methods used (mol m$^{-2}$ hr$^{-1}$). All three experiments showed an overestimation of the FCO$_2$ but at slightly different magnitudes. The grey shading represents the storm occurrences, and the grey lines separate each storm from one another.
References

