Kevin Bach Gravesen¹, Asger Brimnes Gardner¹, Emil Zanchetta Ulsig¹, Eric J Stanton¹, Mikkel Torrild Hansen¹, Simon Thorndahl Thomsen¹, Lucas Ahler¹, and Nicolas Volet¹

¹Affiliation not available

December 22, 2023
Nonlinear Schrödinger Equation for Integrated Photonics

Kevin Bach Gravesen, Asger Brimnes Gardner, Emil Zanchetta Ulsig, Eric J. Stanton, Mikkel Torrild Hansen, Simon Thorndahl Thomsen, Lucas Ahler, and Nicolas Volet

Abstract—A study is presented to provide a new formalism for describing nonlinear integrated photonics. The nonlinear Schrödinger (NLS) equation is derived from a presented chief equation in the special case of degenerate four-wave mixing. From the soliton solution to the NLS equation, a new formula for the group index and group-velocity dispersion is found. With a focus on heterogeneous waveguides, the nonlinear phase shift generated by the optical Kerr coefficient is found to be proportional to the power in the waveguide. The Kerr coefficient is found for any given material system, with the special case of an amorphous material showing a vastly simplified expression. The presented Kerr coefficient utilizes the waveguide mode and optical power, which are better defined in integrated photonics compared to conventional expressions. Using the presented Kerr coefficient, the tensor coefficient for stoichiometric silicon nitride is found based on data from previous studies.

Index Terms—Group Index, Integrated Photonics, Nonlinear Schrödinger Equation, Optical Kerr Effect, Solitons, Silicon Nitride Waveguide

I. INTRODUCTION

The nonlinear Schrödinger (NLS) equation has been a fundamental tool in photonics for decades [1], offering insights into dispersion and the behavior of light in nonlinear optical media. Its applications, spanning optical communications [2], frequency metrology [3], spectroscopy [4], ultrafast science [5], and quantum optics [6], [7], underscore its paramount importance in modern optics. Today, the NLS equation is indispensable for modeling devices like all-optical switches [8], [9] and optical parametric oscillation (OPO) [10], [11]. These advancements in nonlinear optics have not only revolutionized chip-scale photonic capabilities but have also paved the path for breakthroughs in frequency synthesis [12], precision timing for positioning and navigation [13], frequency conversion of mid-infrared [14] to deep-UV [15] and a myriad of spectroscopic techniques [16].

Using the NLS equation, one can simulate how dispersion and nonlinearities affect the shape of an optical pulse as it propagates in a nonlinear medium [17]. The typical formalism to derive the NLS equation, inherited from bulk optics, makes simplifying assumptions such as lossless system and purely transverse fields[18], [19]. However, for a guided mode in a material with loss, these assumptions may not necessarily be valid [20].

The NLS equation is derived from first principles in the special case of degenerate four-wave mixing [21]. The presented model avoids assumptions about polarization and the plane-wave approximation while accommodating discontinuities in the permittivity. This makes it universally applicable to all waveguides, especially well-suited for heterogeneous structures [22], [23], [24]. In addition, the NLS equation is typically derived assuming the existence of the optical Kerr effect [25], whereas in this work the effect follows directly from the NLS equation. The bright soliton solution of the NLS equation is presented, from which a more general expression for the group index is found, which depends on both the dispersion and the mode field patterns. The presented derivation of the Kerr effect differs from existing literature in that the nonlinear phase shift is proportional to the optical power instead of the intensity. This is a more relevant and convenient quantity in integrated photonics, since the optical intensity in waveguides varies significantly over the cross-section. The presented model leads to a compact expression for the Kerr coefficient given by the third-order nonlinear tensor and the mode profile. As the waveguide modes are readily simulated in available software, the presented formalism is a powerful tool for optical engineers to better design generated nonlinear phase shifts. To provide verification and an example of how this formalism can be used, examples are provided with silicon nitride Si₃N₄ based on previous studies.

II. CHIEF EQUATION AND NLS EQUATION

The complex wavenumber is expressed as:

\[k = \beta + i\alpha / 2 = n\omega/c, \]

where \(\beta \) is the wavenumber, \(\alpha \) the attenuation coefficient, \(n \) is the effective refractive index of the relevant mode at the carrier frequency \(\omega/(2\pi) \), and \(c \) is the speed of light in vacuum.

The complex electric field is decomposed as [26]:

\[\tilde{E} = e^{i\varphi} Z(z,t) \tilde{\epsilon}(x,y), \]

where \(\varphi = k z - \omega t \). The complex vector \(\tilde{\epsilon} \) is the electric mode profile, which is independent of the longitudinal \(\tilde{z} \)-direction. The complex function \(Z \) is unitless and accounts for coupling between modes, as well as additional time dependence. This can be modeled through Fourier decomposition at different
Fourier frequencies $\Omega/2\pi$. The modes are normalized with the following parameter [27]:

$$ N \equiv \frac{1}{2} \int_{\mathbb{R}^2} (\vec{\varepsilon} \times \vec{\beta}) \cdot \vec{\varepsilon} \, dx \, dy, \quad (3) $$

where $\vec{\beta}$ is the magnetic mode profile and the integration extends over the transverse plane of the waveguide. The mode profiles and the effective index are found by solving the dispersion relation [28]. The Z function is then found by solving the chief equation, which is introduced now. It involves the following parameter [27]:

$$ \gamma(\Omega) = \Omega \nu_{\text{mat}}(\Omega)/c. \quad (5) $$

The K parameter can be Taylor expanded around ω:

$$ K(\Omega) \approx K(\omega) + (\Omega - \omega) k_1 + \sum_{m=2}^{\infty} \frac{(\Omega - \omega)^m}{m!} k_m. \quad (6) $$

with:

$$ k_1 \equiv \frac{dK}{d\Omega}_{\omega}, \quad k_m \equiv \frac{d^mK}{d\Omega^m}_{\omega}. \quad (7) $$

In the presence of dispersion, nonlinearity, and a finite value of attenuation, the Z function is found by solving:

$$ \partial_t Z + k_1 \partial_z Z = T + i \sum_{m=2}^{\infty} k_m \frac{(i\partial_z)^2}{m!} Z. \quad (8) $$

This chief equation is derived in the supplementary materials. In the special case of continuous-wave (cw) operation, (8) reduces to the equation reported in [29]. The term T accounts for the nonlinear interaction and is defined as:

$$ T \equiv \frac{ie^{-i\phi}}{4\mu_0 n_{\text{mat}}} \int_{-\infty}^{\infty} \Omega^2 e^{-i\Omega t} \int_{\mathbb{R}^2} \hat{\vec{\beta}}(\Omega) \cdot \vec{\varepsilon} \, dx \, dy \, d\Omega, \quad (9) $$

where $\hat{\vec{\beta}}^{(NL)}$ is the Fourier component of the nonlinear polarization and depends on the nonlinear effect of interest.

Degenerate four-wave mixing is now considered, for which:

$$ \hat{\vec{\beta}}^{(3)}(\Omega) = 3\varepsilon_0 \delta(\Omega - \omega)e^{-i\alpha t} e^{i\vec{k}Z} |Z|^2 \hat{\vec{C}}, \quad (10) $$

where ε_0 is the vacuum permittivity, C is the third-order nonlinear tensor that has been reduced by assuming Kleinmann symmetry [30] and δ is a complex 10-row vector that involves the components of the electric mode profile. These quantities are used in the definition of a unitless coupling coefficient:

$$ \kappa \equiv \frac{c\varepsilon_0}{4N} \int_{\mathbb{R}^2} (\vec{C} \vec{\beta}) \cdot \vec{\varepsilon} \, dx \, dy. \quad (11) $$

For amorphous materials, the C tensor contains only one independent coefficient (c_{11}), and [31]:

$$ (\vec{C} \vec{\beta}) \cdot \vec{\varepsilon} = \frac{c_{11}}{3} \left[(\vec{\epsilon} \cdot \vec{\varepsilon})^2 + 2 (\vec{\epsilon} \cdot \vec{\varepsilon}^*)^2 \right]. \quad (12) $$

Using (10) and (11) the term (9) simplifies to:

$$ T = i\Gamma e^{-i\alpha t} |Z|^2, \quad (13) $$

where:

$$ \Gamma \equiv \frac{3\omega}{c} \kappa. \quad (14) $$

Inserting (13) into (8):

$$ \partial_t Z + k_1 \partial_z Z = i\Gamma e^{-i\alpha t} |Z|^2 + i \sum_{m=2}^{\infty} k_m \frac{(i\partial_z)^2}{m!} Z. \quad (15) $$

Relation (15) is commonly referred to as the nonlinear Schrödinger equation [32]. The presented derivation differs from how the NLS equation is typically formulated by including the longitudinal component of the electric field in the wave equation, and by including attenuation in the wavenumber k through all steps, as opposed to adding a term to the left-hand side of (15) after the derivation.

A. Temporal solitons

In the case where $k_m = 0$ for $m > 2$, the following function is an exact solution to (15):

$$ Z(z, t) = Z_0 e^{\alpha G} e^{i \left[\Omega \tau - \frac{\Gamma}{2\tau_0} \right]}, \quad (16) $$

with the retarded time $\tau \equiv t - k_1 z$, a complex amplitude Z_0, a characteristic time τ_0 and a complex phase G. These parameters must satisfy the following conditions:

$$ |Z_0|^2 = \frac{k_2}{\Gamma \tau_0}, \quad (17) $$

and:

$$ G = -i \frac{k_2}{2\tau_0}. \quad (18) $$

A pulse given by (16) does not vary in shape. This is known as a temporal soliton [33], [34], [35].

The group velocity is defined as the speed of a pulse envelope. From (16) and the definition of τ, it is clear that k_1 is related to the group velocity v_g by:

$$ k_1 = 1/v_g. \quad (19) $$

From (7), k_2 relates to the group-velocity dispersion (GVD). Equation (17) imposes that the sign of k_2 should be opposite to the sign of k (seen from (14)). For bright solitons, a negative k_2 results in anomalous dispersion, and a positive k [36]. If there is zero attenuation, these conditions also imply that τ_0 is real. Hence, τ_0 represents the temporal width of the pulse.

B. Group index

From (7) and (19), the group index can be found from:

$$ n_g \equiv c/v_g = c \frac{dK}{d\Omega}_{\omega}. \quad (20) $$

This expression seems to be more general than the common expression [37]:

$$ \tilde{n}_g = n + \frac{dc}{d\omega}. \quad (21) $$

Both expressions (20) and (21) are compared in Fig. 1 by plotting the error:

$$ e \equiv (\tilde{n}_g - n)/\tilde{n}_g. \quad (22) $$
n_3 and \bar{n}_2 are found from simulations of waveguides made from Si$_3$N$_4$ and GaAs. Both structures are enclosed in SiO$_2$ cladding. As the waveguide thickness increases, the mode confinement increases, converging towards a homogeneous waveguide. The simulations are made with a 2 µm wide waveguide with a varying thickness (the Si$_3$N$_4$ waveguide is not simulated with a thickness below 100 nm, as the mode becomes highly unconfined). Values found from (21) are in general higher with a finite difference found in the third digit, showing an excellent match between the two expressions. The common expression (21) has been found to match well experimentally [38], giving us confidence in the validity of the presented formalism.

Fig. 1. Error (22) between the general expression (20) and the common expression (21) for the group index. Simulations are performed for a Si$_3$N$_4$ waveguide in red and a GaAs waveguide in blue as a function of the core thickness. Dashed lines show the confinement factor.

III. OPTICAL KERR EFFECT

An important implication of the NLS equation is the optical Kerr effect. Under continuous-wave (cw) excitation, the NLS equation (15) reduces to:

$$\partial_z Z = i\Gamma e^{-\alpha z} Z |Z|^2.$$ \hspace{1cm} (23)

The Z function can be expressed as:

$$Z = e^{i\phi} Z_r,$$ \hspace{1cm} (24)

with a phase ϕ and a norm Z_r, such that:

$$\partial_z Z = e^{i\phi}(\partial_z Z_r + iZ\partial_z \phi).$$ \hspace{1cm} (25)

From (23) one deduces that $\partial_z Z = 0$. Using the expression for the optical power:

$$P = N e^{-\alpha z} Z_r^2,$$ \hspace{1cm} (26)

one finds:

$$\partial_z \phi = \frac{\Gamma}{N} P,$$ \hspace{1cm} (27)

with Γ from (14). The third-order nonlinearity induces a phase change. This is known as the optical Kerr effect. One further defines a change of effective index by:

$$\Delta n = \frac{c}{\omega} \partial_z \phi = n_2 P,$$ \hspace{1cm} (28)

with the Kerr coefficient:

$$n_2 \equiv 3\kappa/N.$$ \hspace{1cm} (29)

Notice that (28) is proportional to the power. This contrasts with the classical result from bulk optics where the optical Kerr effect induces a change of material refractive index proportional to the intensity.

For a waveguide based on amorphous materials, (12) applies. For waveguides with a negligible nonlinear contribution from the cladding, the coupling coefficient (11) reduces to:

$$\kappa = \frac{c\varepsilon_0}{12N} c_{11} \Sigma,$$ \hspace{1cm} (30)

where:

$$\Sigma \equiv \iint_{\mathbb{R}^2} (\vec{\varepsilon} \cdot \vec{\varepsilon})^2 + 2(\vec{\varepsilon} \cdot \vec{\varepsilon})^2 \ dx \ dy.$$ \hspace{1cm} (31)

The Kerr coefficient can then be expressed as:

$$n_2 = \frac{c\varepsilon_0}{4N^2} c_{11} \Sigma.$$ \hspace{1cm} (32)

Using the mode profile to calculate a nonlinear effective refractive index has been already reported, e.g. in Ref. [39]. The present formalism expands on this. Derived directly from the NLS equation, (29) is more general and works for all material systems.

A. Third-order nonlinear coefficient

The usual formalism of the Kerr effect uses an effective area A_{eff} of the mode profile to have it represented with respect to intensity [40]. To translate it to the presented formalism, the Kerr coefficient \bar{n}_2, given in the intensity formalism, can be divided by the effective area A_{eff}.

This approach is used to find the c_{11} tensor element of amorphous Si$_3$N$_4$ from multiple previous works by using the measured Kerr coefficient reported in the intensity formalism in Si$_3$N$_4$ waveguides, see Table I. Si$_3$N$_4$ is chosen as it has a high third-order nonlinearity [41], a broad transparency range [42], and is an amorphous material for which (32) is applicable. The waveguide structures in the investigated works are either a Si$_3$N$_4$ waveguide embedded by SiO$_2$ cladding [42], [41] or a substrate of SiO$_2$ with a Si$_3$N$_4$ waveguide embedded and air on top [43].

From these heterogeneous structures, the transverse integral in (11) is split into two parts, one for the cladding and one for the waveguide. The total effective Kerr coefficient is a sum of the effective Kerr coefficient stemming from both the waveguide core and the cladding:

$$n_2 = \frac{3\varepsilon_0}{4N^2} \left(\Sigma_{\text{wg}} + \Sigma_{\text{clad}} \right),$$ \hspace{1cm} (33)

with:

$$\Sigma_{\text{wg}} \equiv \iint_{\text{wg}} (C_{\text{wg}} \vec{\varepsilon}^* \cdot \vec{\varepsilon}) \ dx \ dy,$$ \hspace{1cm} (34a)

and:

$$\Sigma_{\text{clad}} \equiv \iint_{\text{clad}} (C_{\text{clad}} \vec{\varepsilon}^* \cdot \vec{\varepsilon}) \ dx \ dy.$$ \hspace{1cm} (34b)

The electric mode profiles $\vec{\varepsilon}$ are obtained from mode simulation, leaving the c_{11} tensor element for each material as the
unknown variables. Using existing values of c_{11} for SiO$_2$ of 0.389×10^{-22} m2/V2 [44], c_{11} for Si$_3$N$_4$ can be found.

In literature sources where the effective area is not provided [41], [42], it is instead found from mode simulations using the provided waveguide geometries in EMode [45]. All three papers considered the fundamental TE mode. The simulated mode profiles have waveguide confinement of 70-90%, with an evanescent field extending into the cladding. As an example, the mode profile of the waveguide from [41] is plotted in Figure 2. With low waveguide confinement, using a model that allows for heterogeneous structures becomes necessary.

The c_{11} coefficient found from each literature source results in a value for Si$_3$N$_4$:

$$c_{11} = 0.849 \times 10^{-21} \text{ m}^2/\text{V}^2.$$ (35)

Not all sources provided uncertainties for their measurements, preventing error estimation. The variations in values can be a result of the manufacturing process, as the flow ratio during chemical vapor deposition (CVD) has been shown to modify the stoichiometry of SiN films [46], [47]. The high uncertainty on the measurements from [42], and the resulting high uncertainties found for the nonlinear tensor elements, are also seen in other materials, such as barium borate (BBO) [48].

IV. Discussion

The presented NLS equation for integrated photonics differs from the currently accepted derivations in multiple aspects. In particular, it avoids a series of assumptions such as plane wave propagation, the magnitude of the longitudinal component along \hat{z}, the existence of the optical Kerr effect, and the magnitude of the nonlinear effects. Lastly, the derivation is conducted using the complex wavenumber \vec{k}, which includes a finite value of attenuation through the entire derivation. By including the attenuation through the entire derivation, the resulting chief equation and NLS equation give insight into how attenuation affects nonlinear mode coupling. Nonlinear effects such as two-photon absorption, stimulated Raman scattering, and stimulated Brillouin scattering are not explicitly included in the derivation on the NLS equation, but could, along with other nonlinear effects, be included in $\vec{P}^{(\text{NL})}$ in the chief equation, (8), or in the attenuation coefficient.

As the presented explicit formula for the group index, (20), shows good coincidence with the conventional expression, (21), our confidence in the validity of the presented formalism is very high. Having an explicit formula for the group index, and therefore GVD, provides more insights into how to engineer these quantities to desired values, e.g. normal or anomalous dispersion.

The optical Kerr effect given by optical power is optimal for higher-order modes, where the effective area is a bad representation of the intensity. Two different modes can exhibit the same effective area, but a non-fundamental mode can achieve a substantially higher peak intensity, increasing the Kerr effect. Power is also used more in a laboratory setting, and hence a more convenient quantity for calculations. As the model allows for heterogeneous waveguides, its strength is apparent when a significant part of the mode profile leaks into the cladding/substrate, as in thin waveguides, leading to multiple contributions to the generated phase shift. The contributions
are accounted for in (11) by splitting the integral into as many terms as there are nonlinear contributions, as done in the presented example. Combined with the presented method for calculating \(C_{11} \), the expression for the Kerr coefficient given in this paper will allow for better predictions in the design of devices utilizing the Kerr effect, such as all-optical switches. The limiting factor for the accuracy of the model now becomes the large uncertainties in the \(C \) tensor elements, especially for non-amorphous materials with multiple independent tensor elements [49], [48].

V. CONCLUSION

This study introduces a novel formalism for describing nonlinear integrated photonics, derived from a generalized chief equation. The resulting nonlinear Schrödinger equation is applied to the case of degenerate four-wave mixing, revealing a bright soliton solution. The NLS equation is used in an effort to express the relevant nonlinear tensor coefficient in terms of optical power, yielding a Kerr coefficient.

This work has been submitted to the IEEE for possible publication. Copyright may be transferred without notice, after which this version may no longer be accessible.

REFERENCES

[45] EMode (version 0.0.6-b4) [Software] from EMode Photonix. Available at emodephotonix.com.

