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Abstract

In the realm of remote sensing images, restoration and privacy preservation stand as dual challenges. While the intricate

characteristics of these images render conventional restoration methods inadequate, concerns regarding data privacy pose a

significant barrier to their optimal utilization. Addressing this multifaceted challenge, this study synergizes the Deep Memory

Connected Network (DMCN) with federated learning, enabling data-driven model improvements without direct access to the

raw image data. This federated approach, while bolstering data privacy, introduces inherent noise into the learning process.

To counteract this, techniques such as Gaussian image denoising were employed, ensuring restoration quality. Notably, the

federated DMCN exhibited commendable performance, showcasing only a marginal accuracy degradation in the face of noise.

Downsampling Units, integral to DMCN, further contributed by reducing computational overheads. Comprehensive evaluations

on remote sensing datasets underscore the promise of this federated approach, balancing data privacy with restoration fidelity,

and charting a viable path for future applications.

1



Enhanced Privacy in Optical Image Restoration:
A Federated Deep Memory-Integrated Neural

Network Approach

M. Jahanzeb Khan
1
, Suman Rath

1
, and Muhammad Hassan Zaib

2

1
Department of Computer Science and Engineering, University of Nevada, Reno,

USA
2
Department of Computer Science, Air University, Islamabad, Pakistan

Abstract. In the realm of remote sensing images, restoration and pri-
vacy preservation stand as dual challenges. While the intricate charac-
teristics of these images render conventional restoration methods inade-
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synergizes the Deep Memory Connected Network (DMCN) with feder-
ated learning, enabling data-driven model improvements without direct
access to the raw image data. This federated approach, while bolster-
ing data privacy, introduces inherent noise into the learning process. To
counteract this, techniques such as Gaussian image denoising were em-
ployed, ensuring restoration quality. Notably, the federated DMCN ex-
hibited commendable performance, showcasing only a marginal accuracy
degradation in the face of noise. Downsampling Units, integral to DMCN,
further contributed by reducing computational overheads. Comprehen-
sive evaluations on remote sensing datasets underscore the promise of
this federated approach, balancing data privacy with restoration fidelity,
and charting a viable path for future applications.
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1 Introduction

The widespread availability of high-resolution images and the progress in sensor
technology have greatly enhanced the importance of optical remote sensing in
several applications, including object detection and image classification [4, 6].
Nevertheless, despite the significant improvement in data quality, the difficulties
related to image deterioration caused by ambient conditions, sensor noise, and
other variables have become increasingly noticeable. Particularly in the field of
object detection, even little image degradations can result in substantial dif-
ferences in detection precision. Image noising is a special type of deterioration



that significantly impairs the effectiveness of object detection [5]. Therefore, the
importance of picture restoration is clear and indisputable, since it not only im-
proves visual quality but also maintains the precision of subsequent applications.

Conventional methods for image restoration have had challenges in keeping
up with the sophisticated intricacies of modern remote sensing images, despite
their effectiveness. Recent approaches, such as the Deep Memory Connected
Neural Network (DMCN) [7], have attempted to overcome this limitation by
utilizing the capabilities of deep learning to enhance the restoration procedure
[1]. However, solely concentrating on image restoration fails to comprehensively
tackle the overall difficulties. In order to achieve accurate object detection, it is
important to use an integrated strategy that successfully addresses image noise
while keeping the fundamental properties of the image.

Federated learning is a paradigm that decentralizes machine learning pro-
cesses, ensuring both data privacy and more widespread network collaboration.
The implementation of this technology in the field of remote sensing has the po-
tential to completely transform the way data is utilized, especially for tasks such
as object detection and image categorization [3]. By merging federated learning
methodologies with sophisticated picture restoration techniques, it is possible to
unite the advantages of both domains, guaranteeing superior image quality and
resilient object detection.

Given the complicated environment of optical remote sensing images and the
growing demand for precise object detection in such images, there is a clear need
to efficiently reduce image noise. The success rate of object detection systems
is severely impacted by image noise, which also reduces visual clarity. Although
conventional restoration approaches offer temporary relief, there is a requirement
for a more comprehensive solution that combines the advantages of advanced
restoration techniques with the distributed capabilities of federated learning.

We propose a novel method that combines the advantages of modern im-
age restoration techniques, specifically the DMCN, with the federated learning
paradigm. This guarantees the restoration of images with superior quality, while
simultaneously safeguarding the crucial characteristics necessary for object de-
tection. Our methodology specifically deals with the issue of image noising and its
impact on object detection. Our technique showcases substantial enhancements
in detection accuracy, especially when dealing with degraded image conditions.
In addition, we enhance our framework by incorporating feedback loops, which
enable the distributed nodes to acquire knowledge not only from centralized
updates but also from the achievements and shortcomings of peer nodes. This
improves the resilience of the object detection process. In this paper, we thor-
oughly examine our technique, the empirical evidence supporting our assertions,
and the wider ramifications of our work in the rapidly changing field of optical
remote sensing.
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Fig. 1: DMCN + DDFL

2 Methodology

2.1 Architecture of DMCN

In this paper, we have integrated the potency of the Deep Multiscale Convolu-
tional Neural Network (DMCN) [7] with the privacy-centric approach of Data-
Decoupled Federated Learning (DDFL) [3]. This synergy is visually encapsulated
in the architecture diagram, detailing a federated learning system where data
remains localized on the client side while promoting robust model learning.

2.2 System Components and Workflow

Clients and Data Input The system commences with multiple clients, each
equipped with a unique set of data. The data, visually represented as grayscale
images in the architecture, suggests its applicability to image processing and
computer vision tasks. Notably, data never leaves the client’s premises, aligning
with DDFL’s principle of decoupling data from learning.

Deep Multiscale Convolutional Neural Network (DMCN) The heart of
the architecture lies in the DMCN:

BasicBlock * 7: The model consists of seven sequential BasicBlocks, which
are foundational convolutional blocks. Each block is adept at extracting features
from the input data, with successive blocks refining these features for more
complex patterns.

Down Sample Unit * M: Post initial feature extraction, the data is passed
through ’M’ down-sampling units. Down-sampling reduces the spatial dimen-
sions of the data, compressing features and enabling the model to recognize
larger patterns.

Up Sample Unit * M: After down-sampling, up-sampling units restore
the data’s spatial dimensions. These units help in refining and sharpening the
features, making them more discernible. This duality of down-sampling followed
by up-sampling creates a U-shaped network, often found effective in image seg-
mentation tasks.
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2.3 Middleware and Network Management

Database Middleware Positioned after DMCN’s processing, the database
middleware serves as the liaison between the neural network and various databases.
By streamlining data requests and ensuring efficient data retrieval, it mitigates
potential lags that might emanate from disparate databases.

Network Hub This centralized hub manages network requests, ensuring smooth
data traffic flow. It plays a pivotal role in facilitating communication between
the myriad clients and the master node.

Master Node and Aggregation The master node represents the fulcrum of
the federated learning setup. All the model updates from clients converge here:

Aggregation: In this phase, the master node collates and aggregates model
updates from diverse clients. Using FedAvg aggregation algorithm ensures that
the global model benefits from the knowledge of all participating nodes.

GRPC Communication The architecture leverages GRPC [2], an efficient,
open-source framework, for seamless remote procedure calls (RPCs):

GRPC Client/Server: This bi-directional setup ensures that clients can
swiftly send their model updates to the master node and similarly receive re-
fined model parameters for local updates. The usage of GRPC underscores the
system’s commitment to speed and efficiency.

Output Generation Post-aggregation and model refinement at the master
node, the final model is adept at making predictions or inferences. The grayscale
image at the architecture’s terminus symbolizes this output, a culmination of col-
lective learning without compromising data privacy. This architecture excels in
its seamless integration. Data from the client undergoes transformation through
DMCN, interacts with databases, and culminates in collective learning at the
master node, all while DDFL principles ensure privacy and transfer of knowl-
edge over raw data. In essence, it melds deep learning with federated learning’s
privacy focus, offering strong performance without centralized data risks, and
heralding a new era of distributed machine learning systems.

3 Experiment

3.1 Datasets

To evaluate our approach, we utilize three datasets of different spatial resolu-
tions: UCMERCED: [8] Features 21 land-use scene classes in high-resolution
RGB. We use 80% for edge device training and the remaining for server testing.
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3.2 Hardware Configuration

Our setup consists of three nodes: two as client nodes, each with a local model,
and a master node overseeing the global model. The hardware for all nodes
includes; Processor: Intel Xeon CPU E5-2690 v4 @ 2.60GHz, RAM: 377GB,
Network Interface: 2x Ethernet Controller X710 for 10GbE SFP+, GPU: Tesla
P100-PCIE-12GB. A shared high-speed network ensures efficient communication
and model update transfers among nodes.

3.3 Network Depth and DDFL Consideration

The architecture’s depth is regulated by two parameters: (1) M: Number of
DownsampleUnit and UpsampleUnit incorporated in the DDFL framework, and
(2) B: Number of Basic Blocks within each Unit.

To assess how varying depths affect performance in a DDFL setting, we
experimented with diverse M and B combinations. As illustrated in Figure 7,
depth fluctuates from 15 (with M = 1, B = 1) to 113 (M = 3, B = 8).

Observations:

1. For M = 1: A surge in PSNR was noted with growing B, attributed to the
expanding receptive field.

2. For M = 2: PSNR ascends until B=3. Beyond B=4, the depth causes con-
vergence difficulties within the 30-epoch limit.

3. For M = 3: The excessive depth, combined with the DDFL’s data distribution
mechanism, led to convergence challenges and possible loss of detail due to
DownsampleUnits.

Incorporating performance and computational efficiency, our final model com-
prises M = 2 and B = 3, resulting in a depth of 38.

3.4 Federated Network Width and DDFL Configuration

Experiments were conducted to determine the most suitable network width for
federated DDFL deployment. Various network widths of 32, 64, 128, and 256
were examined for processing 256x256 images. The optimal balance of efficiency
and performance was achieved with a width of 64. Although wider networks are
theoretically capable, the federated setting imposes computational constraints,
leading to increased processing times. The integration of DDFL at this width is
most conducive to the federated resources available.

3.5 Evaluation of Downsample and Upsample Units in DDFL

To deduce the ramifications of Downsample and Upsample Units within the
DDFL framework, ablation experiments were conducted on the UCMERCED
dataset. Table 2 encapsulates the results, highlighting that Downsample Units,
when incorporated in a DDFL setup, markedly enhance speed and curtail mem-
ory utilization without compromising performance.

5



Width 32 64 128 256
Time (s)* 0.7054 1.4053 2.8604 5.1259

PSNR (dB) 29.99 30.06 29.99 29.94
Table 1: Federated DMCN performance with different network widths, showing
average processing time and PSNR quality metrics.

Model Memory (MB) Time (Sec) PSNR (dB)
Dis D U 8265 0.037 34.17
DMCN 3849 0.012 34.19

DMCN + DDFL 4821 0.193 33.68

Table 2: Comparison of the effects of integrating the DDFL approach with the
DMCN model. The table provides an evaluation in terms of memory usage,
processing time, and PSNR values. Dis D U serves as a baseline, representing
a network without the Downsample and Upsample Units. The experiments are
based on super-resolution tasks on the UCMERCED dataset with an upscale
factor of 2.

3.6 Effect of Memory Connection in DDFL

The role of memory links in the DDFL structure was examined. Tests revealed
that complete memory link integration achieved swift convergence and optimal
results. In Figure 2, the red line denotes DMCN’s PSNR, contrasted with the
Bicubic interpolation method, depicted by the black dashed line. The green and
blue lines display PSNR values with global and local memory links omitted,
respectively.

Significantly, when all memory links are removed (yellow line), the network
doesn’t converge. The purple dashed line showcases the enhanced DMCN with
DDFL, indicating its improved performance. These tests were conducted on
super-resolution tasks using the UCMERCED dataset at an upscale factor of 2.

3.7 Batch Normalization (BN) and PReLU in DDFL

Incorporating DDFL, the influence of BN and PReLU was inspected. As indi-
cated in Figures 3 and 4, the integration of PReLU enabled brisker convergence,
and the synergy of BN and PReLU within the DDFL framework fostered optimal
PSNR results.

3.8 Gaussian Denoising in Federated Learning: A Study on
UCMERCED Dataset

In the realm of federated learning, image denoising remains pivotal, especially
when handling datasets like UCMERCED. When it comes to denoising, one often
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Fig. 2: Extended ablation study illustrating the importance of memory connec-
tions and the integration of DDFL within the DMCN framework.

Fig. 3: PSNR (dB) results of networks with PReLU or without PReLU as baseline
alongside with DDFL PReLU or without DDFL PReLU Time means the average
time when processing an image measuring 256 × 256.

hypothesizes the underlying clean image, x, being disrupted by additive white
Gaussian noise, N. Therefore, the resultant observed image can be described as
y = x + N.

For our study, we adopted noise levels σ = 15, 25, 35, 45, and 55. We initiated
training the DMCN-S specifically for Gaussian denoising at each noise level.
Later, the DMCN-B model was extended to cater to blind noise levels by training
it across the spectrum of noise levels. With this configuration, even if a test image
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Fig. 4: PSNR (dB) results of networks with BN or without BN (as baseline)
alongside with DDFL BN or without BN. Time means the average time of pro-
cessing an image measuring 256 × 256.

Noise Level (σ) Noisy DMCN-B DMCN-S DDFL (B) DDFL (S)
15 24.68/0.7928 32.30/0.9450 32.38/0.9672 31.80/0.9400 31.90/0.9622
25 20.32/0.7530 29.94/0.9132 30.07/0.9155 29.44/0.9100 29.57/0.9125
35 17.52/0.7094 28.45/0.8863 28.64/0.9031 27.95/0.8820 28.14/0.8990
45 15.50/0.6825 27.36/0.8627 27.59/0.8649 26.86/0.8580 27.09/0.8605
55 13.96/0.6177 26.49/0.8399 26.73/0.8597 25.99/0.8350 26.23/0.8550

Table 3: Evaluation on UC dataset

possesses an unknown noise level, the DMCN-B model can adequately denoise
it.

Training Specifics for Federated Learning While focusing on the UCMERCED
dataset within a federated learning context, the DMCN-S model dedicated to a
particular noise level was trained. Training patches of 50 x 50 were extracted.
Echoing past research methodologies, our denoising approach was confined to
grayscale images. The learning rate was fixed at 1e-3, subjected to decay ev-
ery ten epochs. ADAM optimizer was utilized, and the loss function outlined
in Equation (3.8) was optimized. For comparative analysis, we benchmarked
our approach against notable denoising methodologies like BM3D, WNNM, and
DnCNN.

Given a distorted input image Y , our objective is to fine-tune the parame-
ters Θ = {Wi, bi} by minimizing the disparity between the ground truth high-
resolution (HR) image X and the reconstructed image Xb = F (Y ;Θ). The loss
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function for DMCN can be formulated as:

L(Θ) = 1
n

n

∑
i=1

∣cXi −Xi∣

Quantitative Outcomes for UCMERCED Dataset The UCMERCED
dataset’s performance metrics, namely PSNR and SSIM, for diverse denoising
methods are presented in Table 3. The evaluation demonstrates the pronounced
superiority of both DMCN-S and DMCN-B models in terms of PSNR compared
to other models. Remarkably, even the DMCN-B model, which is crafted for
blind noise levels, outperforms the DnCNN-S model, a specialized model for
explicit noise levels.

Remote sensing images in the UCMERCED dataset pose significant chal-
lenges for most denoising networks due to their complexity. In this context, the
superior performance of the DMCN model, even over the renowned DnCNN
model, highlights its robustness in federated learning settings.

The DDFL models, though slightly less effective than the DMCN models,
represent the trade-off between privacy preservation and performance. Methods
like DDFL, while prioritizing data privacy, might introduce or inadequately re-
move noise. Still, their performance is commendable and emphasizes that data
privacy in federated networks can be achieved without drastically compromising
reliability.

In summary, the UCMERCED dataset analysis showcases the DMCNmodel’s
prowess in Gaussian denoising tasks and the balance between privacy and per-
formance.

4 Conclusion

This paper introduces a federated learning system focused on data security and
decentralized processes to bolster data privacy. Using datasets like UCMERCED,
we demonstrated the robustness of our method. Our results reveal that merging
the DDFL framework with Downsample and Upsample Units results in faster
computation and reduced memory use without compromising performance.

Ablation studies underscore the pivotal role of memory links in DDFL, em-
phasizing faster convergence and improved outcomes when fully utilized. Incor-
porating PReLU accelerated convergence, while the combined effect of BN and
PReLU yielded the best PSNR results in the DDFL setup.

Our analysis on Gaussian denoising, especially with the UCMERCED dataset,
confirmed DMCN’s superiority in handling both targeted and unknown noise
scenarios. Notably, while DMCN outperformed the DnCNN model in processing
intricate remote sensing images, the slight performance gap between DDFL and
DMCN underlines the trade-offs between data privacy and peak performance.

In conclusion, our work pioneers a balance between data privacy and perfor-
mance in federated learning, suggesting it can achieve robust confidentiality and
competitive outcomes. Future studies could refine these methodologies, bridging
the trade-off gap, and broadening their applicability.
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