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Abstract

Predicting the future dynamics of populations is a key goal in ecology. Recent conceptual work has sug-
gested that populations under a growing stressor should exhibit a series of stereotypical and sequential
shifts in behaviour, traits, and finally abundance before undergoing decline to extinction. This timeline of
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signals is a promising theoretical framework to forecast population declines in ecological systems long befo-
re system/population collapse. However, the need for high-resolution multidimensional data simultaneously
characterising, at the individual level, behaviour and traits, as well as population-level measures of abun-
dance, over several generations, has prevented empirical demonstrations of a timeline to collapse. Here, we
use an autonomously monitored, high-throughput experimental system to generate individual-based data on
populations of the ciliate Paramecium caudatum forced to collapse due to increasingly stressful environments.
We demonstrate that the gradual introduction of a pollution stressor elicited a predictable sequence of stress
responses - declines in movement speed, then body length, then early warning signals of population collapse,
and finally abundance declines. Contrarily, a press disturbance generated by introduction of predators did not
induce the timeline of signals. The onset of detectable signals of stress in the gradually polluted populations
occurred one generation before early warning signals were detectable, and two generation before abundance
decline, emphasising that monitoring the behaviours and traits of individuals provides crucial information
to help effectively forecast population declines.

Introduction

Human activities are the root cause of stressors including habitat loss and degradation, climatic change,
overexploitation, pollutants and the introduction of invasive species (Bonebrake et al. 2019; IPBES 2019),
which pose both immediate risks of population decline, and future risks of abrupt ecosystem change (Botta et
al. 2019; Pigotet al. 2023). Such abrupt change arises when species can no longer adapt or move in response
to stress, resulting in local extinction (i.e. collapse in species abundance), which can destabilise ecological
networks and hamper ecosystem service provision (Strona 2022). Given this, our ability to predict whether
a given population is at risk of collapse is a fundamental goal in biodiversity monitoring and conservation.
Extensive efforts have been made to analyse and forecast population dynamics, either using empirically
derived population models to understand extinction risk (e.g. population viability analysis, Chaudhary &
Oli 2020; Coulson et al. 2001; Jacksonet al. 2019), or forecasting the occurrence of a critical transitions
using early warning signals (EWSs) based on changes in the abundance of a population(Clements & Ozgul
2018). However, such tools are highly variable in their reliability (Brook et al. 2000; Butitta et al. 2017;
Patterson et al. 2021; Su et al. 2021), particularly when data quality is poor (e.g. time series long enough
to capture demographic processes, Coulson et al.2001) and model assumptions are not met (Boettiger &
Hastings 2012). Most importantly, current tools are often limited in their forecast horizon; the upper limit
of time in the future for effectively predicting ecological change (Clements & Ozgul 2016a; Petchey et al.
2015). Short forecast horizons hamper our ability to implement management actions and reverse population
declines, and increasing the forecast horizon is a key goal in biodiversity monitoring (IPBES 2019).

Recent advances have highlighted the value of incorporating data beyond that typically used in predictive
ecology (abundance and demography), particularly individual based data (behaviour and morphology), which
are predicted to change rapidly in response to stressors (Cerini et al. 2023a; Clements & Ozgul 2018). For
example, including body size data in EWS frameworks increases the accuracy of signals inferring collapse and
decreases the length of time series required to predict critical transitions (Clements et al. 2017; Clements
& Ozgul 2016a). Indeed, scaling from individual level processes to the population level, from a basis of
physiological responses to the environment (Brown et al. 2004; Wikelski & Cooke 2006), can provide a
more complete picture of population change (Cerini et al. 2023a). For example, environmental stressors
influence physiological pathways, which in the short-term can impact behaviour; but over longer timescales
chronic stressors influence morphological traits and, ultimately, demographic rates and population dynamics
(Guindre-Parker & Rubenstein 2021). Thus, downstream effects of stressor-induced physiological changes
acting on behaviour and morphology create the opportunity to observe a sequence of signals before changes
in population abundance occur, which we term thetimeline to population collapse (Cerini et al. 2023a) or
simply timeline to collapse . The timeline to collapse, integrating individual and population level responses
to stressors, lays the conceptual groundwork for a generalizable framework in ecological monitoring, with
far-reaching potential to improve the forecast horizon and the reliability of EWSs.

The implementation of the timeline to collapse framework requires intensive monitoring of populations



to build time series of multidimensional data from the individual to the population level (e.g. behaviour,
morphology and abundance, Cerini et al. 2023a). Promisingly, the rise of autonomous monitoring in ecology
has the potential to fill this multidimensional data gap (Besson et al.2022; Cavender-Bares et al. 2022),
but in spite of this, an appropriate dataset to empirically test the timeline has previously not existed. Here
we employ a cutting-edge autonomous monitoring system to collect multidimensional data on experimental
protist populations that were driven to extinction by increasingly stressful environmental conditions. The
conceptual framework assumes that a gradual increase from low to high stressors levels (i.e. ramp disturbance
(Lake 2003)) is the ideal condition to observe the timeline of signals, whereby individuals have time to
implement phenotypical responses (Ceriniet al. 2023a). In contrast, an immediate transition from unstressed
to stressed conditions, characterized by a sudden, high-magnitude stressor event (i.e. a press disturbance,
Bender et al. 1984) might be less likely to generate an observable timeline to collapse. Thus, to test both
scenarios, we induced decline in populations of the widely used ciliate model Paramecium caudatumby means
of: i) gradually increasing the levels of a pollutant (ramp disturbance), and ii) the introduction of a predatory
species (press disturbance), whilst concurrently monitoring movement speed, body size, and abundance nine
times every generation. We compared control and stressor treatments using general additive models and
predicted the temporal occurrence of changes in behaviour, morphology, abundance trends, and widely used
abundance EWSs. We show that the pollution stressor induced a clear series of observable changes which
mirrored that predicted by the timeline to collapse conceptual model, where shifts in the individual-level
features (behaviours, morphologies) were detected more than two generation times before the abundance
decline to extinction. However, due to the sudden occurrence of high predation rates, the timeline was not
observed in populations stressed by the addition of a predator, confirming that its occurrence might depend
on stressor typology and severity.

Results

We established 10 replicate populations of P. caudatum for each of three experimental treatments: control,
increasing Cu?" pollution, and introduction of aStenostomum virginianum flatworm predator population
(Figure 1). Following five days of initial acclimatisation in the absence of any stressor, populations were
monitored for a total of approximately 24 generations, with the full experiment lasting 560 hours. We intro-
duced stressors after ~330 hours (14 generations). We monitored populations using a robotic-gantry mounted
camera, which recorded 12 seconds of video for each population every three hours. We then extracted indivi-
dual and population level data from each video using the open-source ComTrack machine-learning algorithm
(Besson et al. 2021). We monitored the mean movement speed (behaviour, mm s!; Figure la), mean bo-
dy length (morphology, um; Figure 1b), and maximum video-derived abundance (number of individuals;
Figure 1c) at each time point. Daily cycles of P. caudatum abundances due to disturbance (see Methods)
were removed with seasonal decomposition by loess (Fig. S1-3). We observed some variability among the
replicates of control populations, with one undergoing collapse spontaneously, and three replicates gaining
higher densities compared to the remaining five, which were similar in their abundance trends (Figure 1).
All polluted populations underwent collapse after approximately five generations from the initial introduc-
tion of the stressor (Figure 1). In two of the predator treatment populations, the flatworm did not cause
collapse (Figure 1). These two predator replicates and the collapsing control replicate were excluded from
the analysis (final N = 27).
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Figure 1. Detrended time series of the tracked P. caudatum mean swimming speeds (a), body lengths (b)
and number of individuals (c) in the three treatments (Green-Control, Orange-Pollution, Purple-Predator).
Coloured lines represent the single replicates. The thick black line is mean between replicates. The dashed
vertical line marks the start of the stressors.

We found evidence for a timeline to collapse in the pollution treatment, which increased the forecast horizon
relative to EWS analysis (Figure 2). We assessed the presence of a sequence of signals indicating collapse
using mean generalised additive model predictions for the temporal trend in each variable, and assessed
divergence between trends using deviation in 95% confidence intervals derived using posterior simulation
(Figure 2). For the pollution treatments, mean movement speed significant reduced after 3.18 generations
from the start of the stressor (73 hours [65; 78], upper and lower confidence limits of split point based on
posterior resampling), when compared to the control treatments (Figure 2a). Then, 3.96 generations (91
hours [88; 103]) after the beginning of the pollution, and 0.8 generations (18 hours) after the behavioural
change, the mean body length displayed a detectable decline compared to the control (Figure 2b). Finally,
4.83 generations (111 hours [98; 114]) after introducing pollution, and 1.65 generations (38 hours) after the
morphology signal, the abundance trend diverged significantly from the control. The predicted abundance
trend reached the point of collapse at time point 451, that is, the pollution brought the population to
functional extinction after 5.34 generations, and the behavioural and morphological shifts preceded the
collapse of respectively 2.1 and 1.3 generations. We also assessed temporal trends in EWS metrics (coefficient
of variation - CV, standard deviation - SD, and lag-1 autocorrelation - ACF; Figure S4) of abundance,
normalising the temporal component for each replicate using the time before collapse (time before experiment



end for control treatments). The EWS analysis revealed a significant divergence in CV 1.13 generations (26
hours) before the collapse point, but after changes in both the behaviour and morphology. Critically, the
introduction of behavioural and morphological data increased the forecast horizon of population collapse
by one generation relative to the EWS analysis. Finally, the observed split points were robust to posterior
resampling of predicted temporal trends, displaying a consistent sequence of change in behaviour, morphology
and abundance (precluded by an increase in abundance CV) (Figure 2).
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mean swimming speeds (a), mean body lengths (b), abundance (c¢) and coefficient of variation (cv, zoomed
panel d) starting from the beginning of the stressor treatment (time point 330). The cv is calculated on 50%
of the abundance time series and the x axis is converted into hours before collapse to normalize the temporal
component for each replicate (i.e. all replicates time series stopping at the same time point)(d). Elements in
orange represent the pollution treatment, green elements the control treatment. Points with brackets represent
across-replicate mean and standard errors. Continuous lines and shaded areas represent each GAMMS’s
predicted mean trends with 95% confidence intervals. (a-c) For analysis, predicted timeseries of control and
pollution treatments were scaled linearly to begin at a value of 1 when the stressor was introduced. Vertical
black lines and relative shaded areas indicate the splitting time point of the confidence interval trends between
the two treatments (a significant change compared to the control) with a posterior resampling interval. Red
vertical line indicates the occurrence of EWS (significant split in the cv), also projected on the abundance
panel.

In contrast to the pollution treatment, the introduction of the flatworm predator was not followed by sequen-
tial changes in behaviour, morphology and abundance (Figure 3). Instead, the abundance of the predator
treatment began declining immediately following the introduction of the stressor, with a significant deviation
in predicted abundance after 72 hours [64;78] or 3.14 generations (Figure 3c). We found no clear trends of
deviation in mean speed and body length across the stressor experiment (Figure 3a & 3b). We do not display
any split point for mean speed or body length as the confidence intervals resulting overlapped for the entire
time series. Finally, the EWS analysis did not show clear patterns in the predator treatment; the coefficient
of variation was highly variable and displayed an increasing trend deviating significantly from the control
since the addition of predators (Figure S4).
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Figure 3. Detrended time series of mean swimming speeds (a), mean body lengths (b) and abundance (c)
starting from the beginning of the stressor treatment. Elements in purple represent the predator treatment,
green elements the control treatment. Points with brackets represent across-replicate means and standard
errors. Continuous lines and shaded areas represent the GAMM:s predicted mean trends with 95% confidence
intervals. (a-c) For analysis, predicted timeseries of control and pollution treatments were scaled linearly to
begin at a value of 1 when the stressor was introduced. Vertical black lines and relative shaded areas indicate
the splitting time point of the confidence interval trends between the two treatments (a significant change
compared to the control) with a posterior resampling interval.



Discussion

The rapid pace of change in the natural environment is altering the resilience of wild populations (Capdevila
et al. 2022), with signals of resilience loss (i.e. early warning signals) poised as a crucial tool for biodiversity
management and protection (Nijp et al. 2019; Stelzer et al. 2021). However the application of these methods
is currently hampered by their reliability and their limited forecast horizon (Baruah et al. 2020; Patterson
et al.2021). Expanding these predictive frameworks to include information at the individual level gives rise
to potentially powerful approaches to forecast population collapse (Clements et al. 2017; Clements & Ozgul
2016a). Here, using a novel autonomous, high through-put monitoring system allowing us to track individual
behaviour, morphology and population abundance over 24 generations, we find direct experimental evidence
to support the conceptual model of a timeline to population collapse (Cerini et al. 2023a). Namely, we find a
sequential shift in behaviour, then morphology, and finally abundance in response to a gradually increasing
environmental stressor. Such signals were detectable up to 1.65 generations before a significant decrease
in abundance, and crucially a whole generation before a detectible early warning signal. The successive
changes from the individual to the population level represented a growing body of evidence, strengthening
the inference of an approaching collapse. However, the occurrence of the timeline to collapse seems to be
partly dependant on the stressor nature. We highlight that integrative ecological monitoring approaches,
with an emphasis on individual behavioural and morphological data in addition to population monitoring,
may represent a crucial next step to forecast population declines more effectively.

The environmental pollution stressor generated a clear timeline of changes matching the theoretical frame-
work (Cerini et al. 2023a). Generally, changes in the behavioural spectrum are among the earliest and
commonest responses to environmental change. Stress-induced behavioural change can take the form of
shifts in activity patterns, distributional range or ecological choices (e.g. antipredatory behaviours, foraging,
nesting or reproductive preferences, Berger-Talet al. 2011; Rabaiotti & Woodroffe 2019). In our experiment,
the behavioural shift preceded the morphological shift by nearly a whole generation, indicating that the loco-
motory system of P. caudatumwas the first to be affected by the pollutant. Copper ions are known to affect
the food vacuole forming capacity and chemotaxis in ciliates (Dale 1991; Nilsson 1981). Thus, the observed
decrease in movement speed was likely due to a general energy availability reduction for theP. caudatum
cells, as their food intake system was compromised. Often behavioural traits are more plastic than other
features (e.g. life history, Refsnider & Janzen 2012), and can buffer organisms against resource reduction
(Goossens et al. 2020) or temperature change (Chen et al. 2011). After the shift in cell movement could not
avert a physiological change, there was a reduction in food intake affecting P. caudatum morphology. The
timing between shifts in individual traits will vary between species, but a behavioural change may occur up
to and over a generation before morphological change. For example, food resource reduction increases the
foraging distance in seabirds (Fayet et al. 2021). In this case, we might observe a longer time gap before the
morphology and demography are affected. Ultimately however, characterising individual phenotypic traits
can add important insights into population decline (Cerini et al. 2023a).

The next observed signal in the timeline was the shift in morphology. Change in morphological features is
a general physiological response to energy intake reduction (e.g. mass reduction), but also to other kinds of
stressors (e.g. environmental warming, Sheridan & Bickford 2011), including predator presence (Chiba 2007).
The mean P. caudatumlength declined strongly before the trend nearly plateaued over an approximate two-
generation time interval (Figure 2). At that point, most individuals were not able to reproduce and function
anymore, and the population abundance started to decrease. Generally, the observation of a morphological
shift after a behaviour change should be considered as a pivotal moment in view of management of vulnerable
populations, as it is the last signal observable before stressors act directly on the survival of individuals (i.e.
affecting the population dynamics, Cerini et al. 2023a). Indeed, for larger organisms such as vertebrates,
the capacity of body size to change for long periods of time (e.g. polar bears weight loss, Stirling & Derocher
2012) as reaction to stressors provides an opportunity to perform conservation actions.

After the morphological change, the populations showed a rapid decline to collapse in little more than
one generation. Before collapse, we observed a potential EWS: an increase in the coefficient of variation



of abundance, diverging from the control approximately one generation before collapse. Thus, it might
represent a final measurable signal in the timeline before the decline in abundance, becoming visible after
the behavioural and morphological change. The coefficient of variation proved to be a useful EWS forecasting
abrupt changes in other systems (Clements & Ozgul 2018). However, the coefficient of variation was one
indicator out of three tested (see Supplementary Material), and EWS metrics are prone to indicate false
positives (Boettiger & Hastings 2012; Patterson et al. 2021), and thus solely relying on EWS metrics may
not be a reliable. Indeed, the forecast horizon of the EWS (“one generation) is a half compared to the first
behavioural signal and is likely not sufficient for meaningful action in a real-world conservation scenario.
Hence, the observation of the timeline signals before the EWS builds not only a wider forecast horizon,
but also acts as a quality check for classic resilience loss indicators. By confirming that they are actually
representing the systematic loss of resilience as a tipping point is approached, the timeline framework can
help in reducing the false positive rates of classic EWS.

In contrast to the pollution treatment, the predator introduction, a press disturbance scenario, did not
result in the predicted sequence of observable signals prior to a populations collapse. Whilst ciliates, and
the Paramecium genus in particular, are known to display antipredatory behavioural and morphological
responses(Cerini et al. 2023b; Fyda et al. 2005), neither behavioural nor morphological traits showed a clear
pattern of change compared to the control in the predator treatment. Exposure to predatory Stenostomum
cues induced a swimming speed reduction in Paramecium , and a cell shape change towards a ball-shape
morph (to decrease likelihood of being engulfed by the predator, Hammillet al. 2010b). Our lack of obser-
vation of similar response may be a function of the predation pressure being too high, and the size of the
habitats too small, for the P. caudatum individuals to escape or implement antipredatory responses. Thus,
predation had an immediate impact on the abundances of the ciliate populations, potentially reducing the
opportunity to elicit measurable behavioural or morphological change. Such contrast between responses to
predators and pollution supports previous work suggesting that rapid onset of high intensity stressors (e.g.
extreme events) can prevent meaningful forecasting in wildlife populations (Clements & Ozgul 2016b), and
suggests that ramp disturbances (environmental pollution, temperature increase, habitat loss) as the best
suited scenario for the timeline application. Additionally, this suggests that the observation of the timeline
to collapse will depend on the mechanisms by which the stressor acts on the population.

Adapting the observed timeline to collapse for wildlife conservation is non-trivial, mostly given the lack of
standard controls with which compare the observed trends and thus to infer the occurrence of sequential
signal (as we did using the GAMM predictions). The use of historical thresholds (Donadio Linares 2022) or
comparisons with non-stressed population (space-per-time substitution, Fayet et al. 2021) can help in pin-
pointing deviations in the behavioural or morphological traits. However, concurrent monitoring of individual
traits and abundance has the potential to increase the time window available to implement management ac-
tions, and thus developing frameworks to leverage multidimensional data remains a priority. Following our
experimental example, after the observation of the first behavioural signal one could have stopped the pol-
lution (i.e. cutting a chemical waste from an ecosystem, Vorobeichik 2022) avoiding critical levels. More
experiments are needed to both increase the spectrum of tested stressors and the complexity of the taxa, and
mesocosm experiments with multicellular organism are the obvious next step to improve the generalizability
of the framework. Nevertheless, we urge ecologists to take advantage of autonomous monitoring tools for
biodiversity monitoring (Besson et al. 2022; Cavender-Bareset al. 2022), which can collect multidimensional
data to more effectively predict population change (Cerini et al. 2023a).

In conclusion, our results demonstrate a timeline of signals preceding population collapse (Cerini et al.
2023a), which can improve the forecast horizon of early warning signals. A pollution stressor represents a clear
case where the individual traits displayed shifts more than two generations before a decline in abundance.
Additionally, the observation of the sequence of signals indicates that as the stressor is increasing, different
dimensions of a population are being engaged, thus highlighting the adaptability of the population to new
conditions.

Methods
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Ezxperimental protocol

A stock of Paramecium caudatum, kept at Bristol University and originally purchased from Sciento (Manch-
ester, UK), was raised in a temperature-controlled room for two weeks at 18°C and 80% humidity in constant
light environment. The growth medium consisted of crushed protozoa pellets (Blades Biological LTD) dis-
solved in Chalkley’s solution at a concentration of 0.3 g.L !, then autoclaved (Clements et al. 2013). The
medium was then filtered through Whatman no.1 filter paper to improve media clarity and autoclaved again.
This medium was inoculated with two species of bacteria, Bacillus subtilis and Pseudomonas fluorescens .
At this conditions P. caudatum showed a generation time of ~ 23 hours.

The experiment was performed in experimental microcosms consisting of rectangular patches (5.6 x 3.6 x
1.6 cm), custom designed using FreeCAD 3D-design software (https://www.freecad.org/) and 3D-printed in
clear PLA filament (Lulzbot TAZ 6). The base of each microcosm was painted with black acrylic paint and
coated in transparent epoxy resin to smooth the patch surface and prevent potential paint leaching. Each
microcosm was filled with 6 ml of the same medium described above, which was inoculated 48h before the
start of the experiment. ~ 60 P. caudatum individuals was put in each microcosm and left to grow and reach a
stable phase for two weeks. Microcosm were topped up to replace evaporation with autoclaved distilled water
every day. At the start of the third week, the stressor treatments were implemented. We had 10 replicates for
each treatment for a total of 30 patches. The treatments consisted of: 1) Control treatment: no stressor was
applied to the population; 2) Pollution treatment: an increasing quantity of a copper sulphate solution was
added everyday over a 10-day period. Copper ions are very toxic for aquatic ciliates (Madoni & Romeo 2006)
and have been previously used for experimental extinction tests (Sommer et al. 2017). The initial pollution
quantity was calculated to reach in the experimental patch 5% of a pre-tested copper concentration (0.6
mgL!), lethal to a dense population of P.caudatum. Every day the quantity was increased, adding the same
amount (the initial quantity, 1.5 ul of the copper sulphate solution) to the previous day quantity (i.e. 1.5
ul, 3 ul, 4.5 pl ete); 3) Predator treatment: five individuals of the flatworm Stenostomum virginianum were
added to each patch. S. virginianum is a voracious generalist predator known to prey on most ciliates species
(Hammill et al. 2010a; Nuifiez-Ortiz et al. 2022). Preliminary tests showed that five individuals were enough
to bring a population to extinction over a week.

The microcosms were monitored once every three hours (~ eight times per generation) for four weeks. The
monitoring was performed by means of an automated system consisting of a camera (GXCAM HighChrome-
HR4 HI RES) connected to a stereomicroscope (Nikon SMZ1270) attached to a robotic gantry (igus drylin
Gantry) programmed to record 12-second videos of each microcosm every three hours. All recorded videos
were processed using ComTrack, an open-source machine learning-based software designed to extract indi-
vidual morphological and behavioural information, as well as species abundances and spatial distributions
of individuals from videos(Besson et al. 2021).

Data processing

The software outputs were processed using R (version 4.3.1, R Core Team 2022) to extract information on the
speed and body length of every tracked individual of P. caudatum (Supplementary Material), and the total
number of individuals tracked (abundance) at every time point. From our raw dataset we calculated the mean
speed — as an indicator of behaviour (Hammill et al. 2010a) — and mean length — as a plastic morphological
feature subject to variation in response to stressors (Uiterwaal et al. 2020) — of every individual in each of
the 12 second videos. Thus, across all the treatments and replicates, each tracked ciliate had a mean value
of speed and length for each sampling point. For analysis, we averaged speed and body length values across
all individuals and frames in each time point, resulting in a single feature value for each population per time
point (Supplementary Material Fig. S1). On visual inspection, we found that the data were displaying a
regular daily cycle of values, most evident in the abundance time series (Supplementary Material Fig. S1A).
This occurred due to the daily topping up of each population with distilled water to maintain the initial
volume: the perturbation of the microcosm (addition of the water) induced a sudden increase in movement
and activity, and many of the non-moving protists (not tracked in stable conditions) would become trackable,
thus increasing the abundance counts. Due to the daily regularity of these spikes, we removed daily cycles
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in raw data using the additive seasonal decomposition by loess (STL, Cleveland et al. 1990). In the STL
decomposition, we extracted seasonal components with a cycle of 8 observations, and a trend resolution of
20 observations. We subtracted the resulting seasonal time-series from the raw data, resulting in a de-cycled
timeseries with trend and anomaly components.

Time series analysis

We captured the temporal change in speed, length and abundance using the de-cycled data (Fig. 1) and
focused the analysis on the interval between the onset of the stressors (330 hours after the beginning of the
experiment) and the endpoint of the experiment (550 hours, Fig.1). One replicate of the control treatment
collapsed for unknown reasons and thus was not considered, as well as the two replicates of the predator
treatment that did not undergo collapse. Each time series in the stressor treatments was defined as collapsed
at the time point when the abundance fell below 10% (Aagaard et al. 2016) of the abundance after 10 days
of growth and acclimation. We then fitted generalized additive mixed models (GAMM) on the resulting time
series with the response variables of mean speed, mean length, and abundance of the populations across the
three treatments (control, pollution, predator), resulting in nine statistical models. GAMMs were fit using
themgev package (Wood 2011). The general form of the model was as follows, where the mean timeline
response variable, 7, for row? and replicate r,

Tir = 50+ ft (Ti)+ fR(Ti,v")+ fe (Rr)+ fa (Gz)v

Where 3° is the global intercept. The termf; (T3) is the key overall predictor of time point (T°), for which the
smoothing function f; was fit with a thin plate regression spline (Wood 2003). The basis dimension off; (T5)
for each response variable was determined using AIC model selection for a range of k values (Supplementary
Material). We also included fg (7T;,,), which gives individual time-point smoothing terms for each replicate
population, to account for the variability in temporal patterns between replicates following(Pedersen et al.
2019). We fit a general random effect term, f. (R,), for replicate population (R), to account for intercept
differences between replicates(Wood 2017). Separately, we explored patterns of temporal autocorrelation in
each of the time-series using partial autocorrelation, and determined that lag-1 autocorrelation terms were
sufficient in each of the three response variables (Supplementary Material). Therefore, we also included the
term f, (G;), where G gives the time point expressed as a categorical factor, and the function f, gives a lag-1
autocorrelation structure fit using the nlme package in R(Pinheiro et al. 2017). All models were fit with a
Gaussian distribution.

Early warning signals

To assess if the collapse of the populations could be preceded by generic early warning signals, we used the
R package EWSmethods (O’Brien et al. 2022) to extract time series of the standard deviation, coefficient of
variation, and autocorrelation for each replicate of each treatment, calculated with a rolling window approach
using 50% of each replicate time series. We then fitted GAMMSs on the time series of such indicators. The
GAMMSs had the same structure described above. However, to improve comparability among replicates for
EWS metrics, we modified the independent variable of time point to represent the hours before collapse,
thus every replicate EWS would end in the same time point (0).

Pinpointing the timeline signals

We assessed the time-points at which control and treatments diverged for each of the multi-dimensional
timeseries, and thus the presence of the timeline to collapse signals, using a predictive simulation framework.
We calculated predictions using posterior simulations of each model, using 500 unique time-point values
between the start of the stressors and the end of the experiment. Posterior predictions included only the
overall time-point smoothing term, averaging all additional variation between replicates. Thus, predictions
are for the mean temporal trend effect. For analysis, control and treatment predicted timeseries were scaled
linearly so that predicted values were 1 at the introduction of the stressor. We assessed the 95% confidence
intervals, which we used to determine the divergence points, using posterior simulation. We sampled 1000
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unique values of each model coefficient under parameter uncertainty using a multivariate normal distribution
(implemented in the MASS package ,Venables & Ripley 2002). We combined simulated model coefficients
with the linear prediction matrix to retrieve 1000 sets of predicted values, from which we ascertained the
upper and lower 95% confidence limits of the temporal trend. Then, the divergence point between control
and treatment predictions was the last point at which the confidence limit of the control overlapped with the
treatment prediction, that is, the time point where the difference between the upper and lower confidence
intervals of control and treatment reached 0. Finally, we assessed the sensitivity of the divergence points to
the posterior resampling, in which we re-sampled 10% of the prediction data and recalculated 100 divergence
points, to give confidence limits in divergence.
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Supplementary Material
Supplementary Figures

Figure S1. Raw time series (column A) and detrended time series (column B) of the Paramecium caudatum
mean swimming speed, mean body length and abundance of each replicate (N = 10) in the Control treatment.

Hosted file

image4.emf available at https://authorea.com/users/495424/articles/687702-multivariate-
signals—-of-population-collapse-in-a-high-throughput-ecological-experiment

Figure S2. Raw time series (column A) and detrended time series (column B) of the Paramecium cauda-
tum mean swimming speed, mean body length and abundance of each replicate (N = 10) in the Pollution
treatment. The red dashed line marks the beginning of the stressor (daily addition of a growing Cu?*
quantity).

Hosted file

imageb.emf available at https://authorea.com/users/495424/articles/687702-multivariate-
signals-of-population-collapse-in-a-high-throughput-ecological-experiment

Figure S3. Raw time series (column A) and detrended time series (column B) of the Paramecium cauda-
tum mean swimming speed, mean body length and abundance of each replicate (N = 10) in the Predator
treatment. The red dashed line marks the beginning of the stressor (arrival of 5 individuals of the predator
flatworm Stenostomum virginianum ).

Hosted file
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image6.emf available at https://authorea.com/users/495424/articles/687702-multivariate-
signals-of-population-collapse-in-a-high-throughput-ecological-experiment

Figure S4. GAMMSs predicted temporal trends (continuous lines) with 95% confidence interval (shaded
areas) in EWSs metrics (coefficient of variation - CV, standard deviation - SD, and lag-1 autocorrelation
- ACF) for abundance time series, comparing pollution vs control treatment (a) and predator vs control
treatment (b). Note that the x axis (the temporal component) is normalised for each replicate using the
time before collapse (time before experiment end for control treatments).
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