Synthesis of in situ marine calcium carbonate dissolution kinetic measurements in the water column

Ben Cala1, Olivier Sulpis2, Mariëtte Wolthers3, and Matthew Paul Humphreys1

1Royal Netherlands Institute for Sea Research
2CEREGE
3Faculty of Geosciences Utrecht University

November 20, 2023
Synthesis of in situ marine calcium carbonate dissolution kinetic measurements in the water column

Ben A. Cala1,2, Olivier Sulpis3, Mariette Wolthers2, and Matthew P. Humphreys1

1NIOZ Royal Netherlands Institute for Sea Research, Department of Ocean Systems (OCS), Texel, The Netherlands
2Utrecht University, Department of Earth Sciences, Princetonlaan 8A, 3584 CB Utrecht, The Netherlands
3CEREGE, Aix Marseille Univ, CNRS, IRD, INRAE, Aix-en-Provence, France

Key Points:

\begin{itemize}
\item Published in situ carbonate mineral dissolution rate measurements in the water column are compiled and the saturation state (\(\Omega\)) is estimated.
\item Dissolution rates differ by 2 orders of magnitude at the same \(\Omega\), mainly due to differences in experimental design between the studies.
\item The compiled dataset is used to investigate dissolution above the saturation horizon and to validate laboratory observations.
\end{itemize}

Corresponding author: Ben A. Cala, ben.cala@nioz.nl
Abstract

Calcium carbonate (CaCO$_3$) dissolution is an integral part of the ocean’s carbon cycle. However, laboratory measurements and ocean alkalinity budgets disagree on the rate and loci of dissolution. In situ dissolution studies can help to bridge this gap, but so far published studies have not been utilised as a whole because they have not previously been compiled into one dataset and lack carbonate system data to compare between studies. Here, we compile all published measurements of CaCO$_3$ dissolution rates in the water column (11 studies, 752 data points). Combining World Ocean Atlas data (temperature, salinity) with the neural network CANYON-B (carbonate system variables), we estimate seawater saturation state (Ω) for each rate measurement. We find that dissolution rates at the same Ω vary by 2 orders of magnitude. Using a machine learning approach, we show that while Ω is the main driver of dissolution rate, most variability can be attributed to differences in experimental design, above all bias due to (diffusive) transport and the synthetic or biogenic nature of CaCO$_3$. The compiled dataset supports previous findings of a change in the mechanism driving dissolution at $\Omega_{\text{crit}} = 0.8$ that separates two distinct dissolution regimes:

$$r_{\text{slow}} = 0.29 \cdot (1 - \Omega)^{0.76} \text{ mass}\% \text{ day}^{-1}$$ and $$r_{\text{fast}} = 2.95 \cdot (1 - \Omega)^{2.29} \text{ mass}\% \text{ day}^{-1}.$$

Above the saturation horizon, one study shows significant dissolution that cannot solely be explained by established theories such as zooplankton grazing and organic matter degradation. This suggests that other, non-biological factors control shallow dissolution.

1 Introduction

Marine carbonate minerals such as calcium carbonate (CaCO$_3$) play an integral role in the Earth’s carbon cycle, regulating the oceanic uptake of CO$_2$ and acting as a buffer against ocean acidification (Zeebe & Wolf-Gladrow, 2001; Archer et al., 2009). The increase of atmospheric CO$_2$ lowers the ocean’s pH, which enhances the dissolution of carbonate minerals, increasing the ocean’s alkalinity. The depth of CaCO$_3$ dissolution influences the timescale on which the ocean can mitigate the drastic increase in anthropogenic CO$_2$: regeneration of alkalinity in the shallow ocean affects atmospheric CO$_2$ more immediately than in the deep sea, from where the regenerated alkalinity first needs to be transported into surface waters.
Despite its importance, marine CaCO$_3$ production and dissolution are still poorly constrained (Liang et al., 2023). Marine CaCO$_3$ most commonly occurs in the forms of calcite (e.g., foraminifera and coccolithophores) and aragonite (e.g., pteropods). While most studies focus on calcite, there is growing evidence that the more soluble aragonite makes a major contribution to CaCO$_3$ cycling, with aragonite estimated to contribute over 20% to particulate inorganic carbon (PIC) flux (Buitenhuis et al., 2019; Neukermans et al., 2023). The magnesium-rich form of calcite (high-Mg calcite), produced by some foraminifera, algae and teleosts, has also been proposed to play an important role (Wilson et al., 2009; Woosley et al., 2012), but its contribution remains unquantified.

Additionally, seawater alkalinity measurements provide evidence that the majority of CaCO$_3$ dissolution occurs in shallow waters (Feely et al., 2002; Sulpis et al., 2021) that are supersaturated with respect to both calcite and aragonite and therefore in theory dissolution should not occur. Specifically, biogeochemical budgets reveal an excess of alkalinity in these waters that can only be explained by carbonate mineral dissolution. Although this phenomenon has been known for decades (Milliman et al., 1999), a convincing explanation for apparent dissolution above the saturation horizon ($\Omega > 1$) remains elusive.

The dissolution rate depends on the water’s saturation state (Ω) for each mineral:

$$\Omega = \frac{[Ca^{2+}][CO_3^{2-}]}{K_{sp}^*}$$

(1)

where square brackets indicate the concentration of the enclosed species and with the solubility product

$$K_{sp}^* = [Ca^{2+}]_{\text{sat}}[CO_3^{2-}]_{\text{sat}},$$

(2)
a function of temperature (T), salinity (S), and pressure which is different for each mineral. The kinetics of carbonate mineral dissolution with respect to Ω have mainly been assessed in laboratory settings (Morse & Berner, 1972; Keir, 1980; Gehlen et al., 2005; Subhas et al., 2015; Naviaux, Subhas, Rollins, et al., 2019), although more recently in situ measurements have also been used (Dong et al., 2019; Naviaux, Subhas, Dong, et al., 2019; Subhas et al., 2022). Measured dissolution rates (r) are canonically fitted to the function

$$r = k(1 - \Omega)^n$$

(3)

where k is the rate constant and n is the pseudo reaction order (Morse & Arvidson, 2002). Since K_{sp}^* increases with higher pressure and lower temperature (Hawley & Pytkowicz,
1969; Mucci, 1983), Ω decreases with depth and the highest dissolution rate is therefore expected in the deep ocean.

Peterson (1966) and Berger (1967) found that dissolution of calcite particles attached to a mooring in the Pacific started high in the water column but increased only slightly with depth until approximately 4000 m, where dissolution suddenly began to increase rapidly. This was first explained through hydrodynamic influences such as current velocity (Edmond, 1974), but because this effect could also be observed in the laboratory (Morse & Berner, 1972; Keir, 1980), a change in reaction kinetics at the surface of the carbonate minerals at critical undersaturation soon became more a more accepted explanation (Milliman, 1977). While Teng (2004) observed three distinct dissolution mechanisms, from step edge retreat, through defect-assisted edge pit formation to homogeneous edge pit formation with increasing undersaturation, Naviaux, Subhas, Rollins, et al. (2019) found that at the relevant temperatures in seawater, the mechanism directly switches from step edge retreat to homogeneous etch pit formation at a critical saturation state Ω_{crit} ≈ 0.75. For Ω_{crit} < Ω < 1, dissolution is slower and less sensitive to the saturation state and for Ω < Ω_{crit} dissolution increases more rapidly with undersaturation. When Ω > 1, seawater is oversaturated, so no dissolution should occur.

One issue with applying laboratory results to the real ocean is environmental complexity. While laboratory experiments happen in known and controlled environments, the ocean is complex with many (often biological) processes happening simultaneously under wide ranges of variable hydrographic conditions that cannot be comprehensively simulated in the laboratory. In situ measurements of dissolution rates (Table 1) could help to bridge the gap between laboratory experiments and oceanographic alkalinity data by implicitly including the effects of these processes and background variability, also helping to validate and inform future laboratory studies.

Fewer than a dozen studies with in situ dissolution rate measurements have been conducted (Table 1). Due to the variety in the experimental design (Figure 1) and the rates being reported in mutually incompatible units, it is challenging to compare the results of in situ studies with each other and thus draw overall conclusions about real-world dissolution. Furthermore, much of the data in older publications is only presented in the form of depth-rate plots, with other variables describing the water chemistry (DIC, TA, pH and Ω) and environment (salinity, temperature and dissolved oxygen) around the sam-
Figure 1. Overview of how experimental design can vary between the different studies for in situ dissolution measurements. Half of the categories describe the setup of the experiment: the duration of the samples’ deployment in the water column, whether a device was employed to cycle water around the sample to avoid stagnation effects, and what method was used to determine how much dissolution took place. Mesh size refers to the size of the openings in the fine mesh the sample was placed into during deployment. The other categories describe the sample itself. The sample source refers to whether the sample was inorganic (e.g., calcite crystal) or biogenic (e.g., the shell of a pteropod). Sample pre-treatment refers to the oxidative cleaning which some experiments conducted on the biogenic samples to remove any organic coatings that might have still been intact. The material is either aragonite (e.g., pteropods) or calcite (e.g., foraminifera). The size of the sample refers to the diameter of one unit/grain of the sample.

ple either not recorded or not included. Therefore, the results of these in situ studies have mostly been considered individually and not systematically examined as a whole.

Here, we present a new compilation of (to the best of our knowledge) all published in situ marine carbonate dissolution measurements in the water column. For each measurement, we have estimated the set of hydrographic variables required to investigate dissolution (temperature, salinity (S), dissolved oxygen, pH\textsubscript{T}, total alkalinity (TA), dissolved inorganic carbon (DIC), and the saturation state of calcite (Ω\textsubscript{ca}) and aragonite (Ω\textsubscript{ar}) using the World Ocean Atlas 2018 (WOA18) dataset together with the neural network CANYON-B (Bittig et al., 2018). We used a machine learning (ML) regression model
to understand how much of the variability in the measured dissolution rate can be explained by each aspect of the experimental design (Figure 1) and in what way each aspect affects the dissolution rate. We use the compiled dataset to assess whether significant dissolution above the saturation horizon has been observed by in situ studies. Additionally, we validate laboratory measurements of different dissolution regimes based on the degree of undersaturation.

2 Methods

2.1 Data compilation

First, the dissolution rates from the various in situ studies (Table 1) were compiled. To find suitable studies, we used various combinations of the keywords ‘dissolution rate’ ‘calcite’, ‘aragonite’, ‘foraminifera’, ‘marine’, ‘ocean’, ‘in situ’, ‘mooring’, and ‘measurement’ (e.g., ‘dissolution rate calcite in situ’) in Google Scholar and Semantic Scholar. Since we focused on dissolution in the water column, we did not consider studies that determine dissolution rates from sediment cores (e.g., porewater measurements) or at the sediment-water interface. We also excluded studies that estimate dissolution rates from sediment trap samples. Beside the initial keyword-based searches, we identified additional studies by reviewing the references cited within the already selected papers. In studies where the dissolution rates were only reported in a figure instead of being tabulated, the data were extracted using WebPlotDigitizer (Rohatgi, 2021).

Where available, additional information such as percentage fragmentation of the sample (T81, M82), measurement uncertainty (P66, D19, N19, S22) and environmental variables (D19, N19, S22) were also retrieved, along with complementary information about the sample (material, biogenic, organic coating), experimental setup (water cycling device, particle size, mesh size), and measurement technique (for an overview in the differences of experimental design see Figure 1). As described in the accompanying paper (Metzler et al., 1982), the measurements from Station 2 in M82 were of low quality due to mechanical loss of the sample and are therefore not included in this compilation.
Table 1. Overview of the methods of all published studies measuring CaCO$_3$ dissolution rates in situ in the water column. ‘Cleaned?’ refers to whether the sample underwent an oxidative cleaning protocol to remove organic coatings.

<table>
<thead>
<tr>
<th>Source</th>
<th>Abbrev.</th>
<th>Location</th>
<th>Duration</th>
<th>Cycling device?</th>
<th>Rate determination</th>
<th>Mech size (µm)</th>
<th>Sample</th>
<th>Biogenic?</th>
<th>Cleaned?</th>
<th>Cleaned?</th>
<th>Sample size</th>
</tr>
</thead>
<tbody>
<tr>
<td>Peterson (1966)</td>
<td>P66</td>
<td>19°N, 169°W</td>
<td>4 months</td>
<td>no</td>
<td>weight loss</td>
<td></td>
<td>Calcite crystal</td>
<td></td>
<td>yes</td>
<td>yes</td>
<td>cm-sized</td>
</tr>
<tr>
<td>Berger (1967)</td>
<td>B67</td>
<td>19°N, 169°W</td>
<td>4 months</td>
<td>no</td>
<td>weight loss</td>
<td>62</td>
<td>Foraminifera assemblage</td>
<td>yes</td>
<td>yes</td>
<td>no</td>
<td>unknown</td>
</tr>
<tr>
<td>Milliman (1977)</td>
<td>M77</td>
<td>23°N, 70°W</td>
<td>4 months, 9 months</td>
<td>no</td>
<td>weight loss</td>
<td>20-40</td>
<td>Aragonite ooids</td>
<td>yes</td>
<td>no</td>
<td>unknown</td>
<td>250-500 µm (L)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>23°N, 65°W</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Mg Calcite ooids (12% Mg)</td>
<td>no</td>
<td>–</td>
<td>unknown</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>23°N, 60°W</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>unknown</td>
<td>unknown</td>
<td></td>
</tr>
<tr>
<td>Honjo and Erez (1978)</td>
<td>HE78</td>
<td>32°N, 155°W</td>
<td>79 days</td>
<td>yes (0.6 mL/min)</td>
<td>weight loss</td>
<td>0.4-0.6</td>
<td>Reagent calcite</td>
<td>no</td>
<td>–</td>
<td>10-53 µm (XXS)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Large calcite crystal</td>
<td>no</td>
<td>–</td>
<td>0.7-1 µm (XXL)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Synthetic aragonite</td>
<td>no</td>
<td>–</td>
<td>10-53 µm (XXL)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Foraminifera assemblage</td>
<td>yes</td>
<td>no</td>
<td>63-1000 µm</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Foraminifera assemblage</td>
<td>yes</td>
<td>yes</td>
<td>63-1000 µm</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Foraminifera assemblage</td>
<td>yes</td>
<td>no</td>
<td>>250 µm (L)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>G bulloides</td>
<td>yes</td>
<td>no</td>
<td>>250 µm (L)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>G pachyderma</td>
<td>yes</td>
<td>no</td>
<td>>149 µm (M)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>E huxleyi</td>
<td>yes</td>
<td>yes</td>
<td>XXXS</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>E huxleyi</td>
<td>yes</td>
<td>yes</td>
<td>XXXS</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>C neohelix</td>
<td>yes</td>
<td>yes</td>
<td>XXXS</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Pteropod assemblage</td>
<td>yes</td>
<td>no</td>
<td>>831 µm (XXL)</td>
<td></td>
</tr>
<tr>
<td>Thunell et al. (1981)</td>
<td>T81</td>
<td>4°N, 82°W</td>
<td>123 days</td>
<td>no</td>
<td>weight loss, fragmentation</td>
<td>100</td>
<td>Foraminifera assemblage</td>
<td>yes</td>
<td>no</td>
<td>>250 µm (L)</td>
<td></td>
</tr>
<tr>
<td>Metzler et al. (1982)</td>
<td>M82</td>
<td>0°N, 152°W</td>
<td>123 days</td>
<td>no</td>
<td>weight loss, fragmentation</td>
<td>44</td>
<td>Foraminifera assemblage</td>
<td>yes</td>
<td>yes</td>
<td>62-125 µm (XXS)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>125-177 µm (S)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>177-350 µm (M)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>250-420 µm (L)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>>420 µm (XL)</td>
<td></td>
</tr>
<tr>
<td>Troel et al. (1997)</td>
<td>T97</td>
<td>23°N, 158°W</td>
<td>3 days</td>
<td>no</td>
<td>Surface roughness</td>
<td>333</td>
<td>Calcite crystal</td>
<td>no</td>
<td>–</td>
<td>cm-sized</td>
<td></td>
</tr>
<tr>
<td>Fukuhara et al. (2008)</td>
<td>F08</td>
<td>30°N, 175°E</td>
<td>23 days</td>
<td>most not, only at 2 depths (5 mL/min)</td>
<td>weight loss</td>
<td>63, some 30</td>
<td>Aragonite crystal</td>
<td>no</td>
<td>–</td>
<td>3 size fractions:</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>G acicular</td>
<td>yes</td>
<td>no</td>
<td>125-250 µm (S)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>G infausta</td>
<td>yes</td>
<td>no</td>
<td>250-425 µm (L)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>G truncatulina</td>
<td>yes</td>
<td>no</td>
<td>425-500 µm (XL)</td>
<td></td>
</tr>
<tr>
<td>CDiK-IV</td>
<td>D19</td>
<td>28°N, 155°W</td>
<td>24 - 58 h</td>
<td>yes (5 mL/min)</td>
<td>d13C</td>
<td>8</td>
<td>Synthetic Aragonite</td>
<td>no</td>
<td>–</td>
<td>250-495 µm (L)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>S19</td>
<td>35°N, 151°W</td>
<td></td>
<td></td>
<td></td>
<td>8</td>
<td>Synthetic Calcite</td>
<td>no</td>
<td>–</td>
<td>20-53 µm (XXS)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>S42</td>
<td>42°N, 148°W</td>
<td></td>
<td></td>
<td></td>
<td>0.8</td>
<td>E huxleyi</td>
<td>yes</td>
<td>yes</td>
<td>XXXS</td>
<td></td>
</tr>
<tr>
<td></td>
<td>S52</td>
<td>50°N, 155°W</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Figure 2. Summary of the workflow to estimate Ω. Starting from the top (Dissolution study), each box represents a workflow step in which the outputs listed inside the box were obtained. The arrows show where outputs from a step were used as inputs to a later step.

2.2 Estimation of Ω

In most cases, the dissolution rate was reported as a function of depth but with carbonate system variables for the surrounding seawater either not measured or not recorded, making it impossible to directly calculate the seawater saturation state. Instead, we developed a method to estimate Ω using the World Ocean Atlas 2018 (WOA18) and the neural network CANYON-B (Bittig et al., 2018) (Figure 2). The validation of this method is described in the SI.

Temperature (Locarnini et al., 2018), salinity (Zweng et al., 2019), and dissolved oxygen data (Garcia et al., 2019) were taken from WOA18. For the upper 57 levels (1500 m) we took the seasonal statistics and below that the annual averages of the objectively analysed climatology (standard depth levels (102 levels, 0-5500 m) at 1° resolution, using data from all available years (‘all’ or ‘decav’ datasets)). The data at the grid point closest to the measurement site were interpolated over depth and appended to the compiled data.

This environmental data, as well as the geographic location and time of the expedition (for experiments lasting several months, we used the mid-point of the experiment),
were used as input parameters for CANYON-B (Bittig et al., 2018). CANYON-B is a Bayesian neural network trained on the GLODAPv2 dataset (Olsen et al., 2016) that calculates marine carbonate system variables (TA, DIC, pH) and nutrients (phosphate, silicate, nitrate) as a function of geographic location, time (month and year), depth, pressure, temperature, salinity, and dissolved oxygen.

Using the DIC-pH$_T$ pair as inputs, the remainder of the carbonate system, including Ω, was calculated with PyCO2SYS (version 1.8.1) (Humphreys et al., 2022) with the carbonic acid dissociation constants K_1 and K_2 of Sulpis et al. (2020), the borate-chlorinity of Uppström (1974), the K_{HSO_4} of Dickson (1990), and the calcite and aragonite K_{sp} of Mucci (1983) together with the PyCO2SYS defaults for the other optional constants.

The only studies that reported hydrographic variables with their dissolution experiments were during the CDisK-IV cruise, which includes N19, D19, and S22. A comparison between CDisK-IV measurements (Berelson et al., 2022) and the values generated by our method described above can be found in the SI (Figure S9 and S10). In this study and our final data compilation, we report their measured values alongside our estimates for the other studies.

2.3 Uncertainty propagation

The uncertainty of Ω was estimated by propagating the uncertainties for each of the variables needed for its determination through each of the workflow steps (Figure 2).

The uncertainty associated with the variables obtained from WOA18 is represented by their standard deviation. We used the objectively analysed climatology, which does not include a standard deviation. Therefore, we rely on the standard deviation of the statistical mean of the measurements that were made at that grid point at a certain standard depth level. We only considered standard deviations that were determined with enough measurements (>4) to yield a meaningful value.

For temperature and salinity, the standard deviation was calculated from a combination of seasonal data for the upper 1500 m of the water column and annual data for the remaining depths. However, where the seasonal dataset contained fewer than 5 measurements at any given depth, we used the annual mean for the entire water column. For
dissolved oxygen, the number of measurements available was much lower, resulting in no valid standard deviations for most grid cells. In this case, we calculated the average of all standard deviations at grid points that had at least 5 measurements shallower than 1500 m within a 10-degree radius around the experiment site. For all variables, if fewer than 5 measurements existed at deeper depth levels, the closest shallower valid standard deviation was used. Subsequently, the standard deviations were interpolated across depth and appended to the compiled dataset.

The 90th percentile for the estimated uncertainty of TA, DIC, pH and nutrients inherent to CANYON-B, \(\sigma^2_{\text{CANYON-B}}(m) \) is given by Bittig et al. (2018). We combined this with the uncertainty stemming from WOA18 from temperature \((T)\), salinity \((S)\), and dissolved oxygen \([\text{O}_2]\):

\[
\sigma(m) = \sqrt{\left(\frac{\partial m(T)}{\partial T} \right)^2 \sigma^2(T) + \left(\frac{\partial m(S)}{\partial S} \right)^2 \sigma^2(S) + \left(\frac{\partial m([\text{O}_2])}{\partial [\text{O}_2]} \right)^2 \sigma^2([\text{O}_2]) + \sigma^2_{\text{CANYON-B}}(m)}
\]

(4)

The derivatives \(\frac{\partial m(x)}{\partial x} \) were calculated by finite forward difference, with

\[
\frac{\partial m(x)}{\partial x} = \frac{m(x + \Delta x) - m(x)}{\Delta x}
\]

(5)

for which CANYON-B was run again with \(x + \Delta x \). We chose \(\Delta T = 0.001 ^\circ C, \Delta S = 0.001 \), and \(\Delta [\text{O}_2] = 0.001 \mu\text{mol kg}^{-1} \) but the results were stable with \(\Delta x \) an order of magnitude larger or smaller.

We propagated the uncertainties in TA, DIC, temperature, salinity and nutrients through to \(\Omega \) using the in-built uncertainty propagation tool in PyCO2SYS. In this step, we also included uncertainty stemming from the equilibrium constants of the carbonate system and the solubility products of calcite and aragonite, as implemented in PyCO2SYS following Orr et al. (2018). However, by default PyCO2SYS propagates uncertainties assuming that the uncertainty in each argument is independent, which is not the case here: for instance, temperature is used to calculate DIC and pH in CANYON-B, so their uncertainties will covary. However, this covariance has a negligible contribution to the overall uncertainty in CANYON-B outputs because the majority of their uncertainty arises from the inherent uncertainty in the CANYON-B model, rather than propagated uncertainties in its input variables, and is thus independent of the input uncertainties.
2.4 Feature importance

To evaluate the contribution of different features of the experimental design to the measured dissolution rate, we used a supervised machine learning model to predict the dissolution rates of mass-normalised measurements.

The independent variables (predictors) were Ω and seven features describing the experimental design (Table 1 and Figure 1): (1) size fraction of the CaCO$_3$ samples (in eight categories, from XXXS to XXL; Table S1), (2) mesh size, (3) whether the particle was inorganic or biogenic and whether it underwent an oxidative cleaning protocol to remove organic coatings, (4) if a water cycling device was used to avoid diffusion effects, (5) the deployment time of the CaCO$_3$ sample, (6) mineral form (calcite or aragonite), and (7) the measurement method (weight loss or δ13C). Dissolution measurements with missing data for any one of these predictors were excluded from the model.

A predictive regression model was implemented with the XGBoost (Extreme Gradient Boosting) library (version 1.7.1) (Chen & Guestrin, 2016). The XGBoost regressor is an ensemble machine learning model which is made up of multiple decision trees. A decision tree is a hierarchical model where data is continuously split based on a feature at a decision node, until finally reaching one of the leaf nodes that represent the possible outcomes of the model (Breiman et al., 1984). XGBoost utilizes a gradient boosting framework, where new trees are gradually added to the ensemble in such a way that the loss gradient (difference between predicted and actual outcome) is minimised. This approach is especially suited for capturing non-linear relationships and interactions between features.

The dataset was randomly split into training and testing sets with a ratio of 80:20. To maximise model performance and avoid overfitting, the model parameters need to be tuned, for which the training set was further randomly split into five folds for cross-validation. A grid search was performed using the GridSearchCV function from the scikit-learn library (version 1.2.2) (Pedregosa et al., 2011) with R-squared (R^2) as the scoring metric. Afterwards, the XGBoost Regressor was trained on the entire training set with squared error as the learning objective using the optimal parameters (see SI) obtained in the previous step. The trained model was then evaluated on the testing set using R^2, the mean absolute error (MAE) and mean squared error (MSE) or root mean squared error (RMSE). For all steps (hyperparameter tuning, model training and evaluation) the
data were weighted such that the total weight of each study was equal so that studies with a greater number of measurements did not have a greater influence on the model. Without this weighting, the differences between the data points of one study with many data points would overshadow the variations between different studies. Categorical data were encoded by mapping each unique label to an integer value.

Machine learning models are often regarded as ‘black boxes’. Since their decision-making process is complicated with various layers, it is difficult to understand how the model arrives at certain predictions (Breiman, 2001b; Molnar, 2022). Two methods were employed here to gain insight into the importance and relationship of a specific feature to the model’s prediction of dissolution rates: Permutation Feature Importance (PFI) (Breiman, 2001a) and Partial Dependence Plots (PDPs) (Friedman, 2001). For both, we used the implementation in the scikit-learn library (version 1.2.2). PFI randomly permutes the values of each feature and measures how much this decreases the model’s performance. It gives insight into how relevant a feature is for the model to arrive at a correct prediction. PFI was calculated for the test data using mean squared error (MSE) as the scoring metric. PDPs show how changing a certain feature affects the model output by showing the relationship between each feature and the model’s predictions while holding all other features constant. Thus, PDPs can also be used to identify non-linear relationships between features and the model’s prediction.

2.5 Investigating dissolution regimes

When determining the reaction kinetics for dissolution, equation 3 is linearised to

\[\log_{10} r = \log_{10} k + n \cdot \log_{10}(1 - \Omega) \] (6)

With two dissolution regimes, the data must be fitted to two linear functions of the form of equation 6 which intercept at \(\Omega_{\text{crit}} \). If no prior assumption of \(\Omega_{\text{crit}} \) is made, a single function combining the two linear regimes with a flexible intercept is needed.

To this end, we used the error function

\[\text{erf}(x) = \frac{2}{\sqrt{\pi}} \int_0^x e^{-t^2} dt \] (7)
multiplied by two linear functions of the form \(f(x) = ax + b \) to get

\[
y = (0.5 \cdot (+\text{erf}(p \cdot (x + x_{\text{intcp}})) + 1) \cdot (a_2x + b_2)) \\
+ (0.5 \cdot (-\text{erf}(p \cdot (x + x_{\text{intcp}})) + 1) \cdot (a_1x + b_1))
\]

where \(y \equiv (\log_{10} r), b \equiv (\log_{10} k), a \equiv n, \) and \(x \equiv \log_{10}(1 - \Omega) \) from equation 6.

\(x_{\text{intcp}} = \frac{b_2 - b_1}{a_2 - a_1} \) is the intercept of the two linear functions, which is \(\Omega_{\text{crit}} \), and \(p \) is a term that determines how rounded the corner is where the two linear functions meet (here: \(p = 80 \)). \(f_1 \) represents the slower dissolution regime for \(\Omega_{\text{crit}} < \Omega < 1 \) and \(f_2 \) the faster one for \(\Omega < \Omega_{\text{crit}} \).

The fitting of the data points is achieved with SciPy’s least_squares function (SciPy version 1.7.3 (Virtanen et al., 2020)) using initial guesses of \(n_1 = 0, n_2 = -1.5, \log_{10} k_1 = -3.5, \) and \(\log_{10} k_2 = -1.5 \).

3 Results and discussion

3.1 Description of compiled in situ measurements

The compiled dataset consists of 752 data points. The experiments used diverse sets of samples, such as deep-sea sediments made up of foraminiferal assemblages, synthetic calcite crystals, coccolithophores, pteropods, or high-Mg calcite ooids. Nonetheless, only a fifth of the samples consist of aragonite and less than half are of biogenic origin. All measurements were made in the northern hemisphere, with the majority (551 measurements; 73%) in the Pacific (Figure 3), where the water is more corrosive and dis-
solution is expected at shallower depths. The remainder of the measurements (studies M77 and HE78) were made in the Sargasso Sea in the subtropical North Atlantic. Even though the experiments do not cover all ocean basins, the experiment sites still capture a wide range of marine environments (Figure S12).

The most frequent way to measure dissolution was determining the weight loss of a carbonate mineral sample that was placed on a mooring (surface or subsurface mooring) and exposed to seawater for a specific amount of time. A small portion of studies place their samples in devices that cycled the seawater around the sample to avoid diffusion effects (15% of samples). Apart from weight loss, two other methods have been used to determine dissolution. One, based on δ^{13}C, was developed by Subbas et al. (2015) and is used by the studies that were part of the CDisK-IV cruise (67 measurements; 9%).

The other used surface roughness as a proxy for dissolution (T97; 14 measurements; 1.8%). A couple of studies additionally record fragmentation of their samples as an indicator of dissolution (T81 and M82; 79 measurements; 11%). The dissolution rate is reported either mass-normalised (percentage weight loss per day; 668 measurements; 89%) or mass- and surface area-normalised (hereafter referred to as surface-normalised; g cm$^{-2}$ d$^{-1}$; 163 measurements; 22%), or for HE78 and the CDisK-IV studies, both are provided (80 measurements; 11%).
There is a wide range in the number of measurements each study made: T81 and T97 contain only 14 measurements each, while F08 contains 298 measurements, making up 40% of the dataset (Table 1). A large number of measurements does not necessarily mean a wide range of saturation states: for aragonite in the F08 dataset, Ω is always below 0.6 (Figure 4b). All F08 data are from deeper than 1000 m (Figure 5), so shallower CaCO$_3$ dissolution cannot be investigated with their data. Conversely, the CDisK-IV studies mostly measured dissolution in the upper 1000 m. The greatest ranges of depth and saturation states for both calcite and aragonite were achieved by the M77 experiments (162 measurements; 22%).

There is a clear trend of higher dissolution rate at lower Ω (Figure 6). Near the saturation horizon ($\Omega = 1$), greater variability in the data and uncertainty in Ω make the trends more unclear. Since dissolution under these conditions is slower, the rates are closer to the limit of detection and therefore the signal-to-noise ratio is higher. In general, the uncertainty in Ω decreases with depth (Figure S13) because at depth there is less variability in temperature, salinity and oxygen through time.

It is notable that dissolution rates at the same saturation state are spread across 2 orders of magnitude even at dissolution further from the saturation horizon. Since almost no studies report uncertainties for their dissolution rate measurements (except P66
Figure 6. (a) Mass-normalised and (b) surface-normalised dissolution rate as a function of Ω. Open markers denote aragonite, closed markers calcite. Biogenic samples are marked with a diamond and inorganic samples with a circle. Error bars show the 1σ uncertainty in Ω and, if available, the measured dissolution rate (the latter only available for P66, D19, N19 and S22). Data points with Ω > 1.5 are not shown.

who gave a constant measurement uncertainty of ±3.3×10^{-5} g cm^{-2} d^{-1} and the CDiSK-IV data with their unique δ^{13}C method), it is difficult to say how much of the variation in the rates can be attributed to measurement uncertainty. However, even studies that used two of the same kinds of samples at one depth for controls did not see such a spread in measurements as in Figure 6. Whether this can be attributed to the differences in experimental design is examined in Section 3.2.

Mass-normalised (Figure 6a) and surface-normalised dissolution rates (Figure 6b) cannot be directly compared with each other if no measurements of the surface area were reported. The different units can serve different purposes: surface-normalised in situ data is better suited for comparisons to laboratory measurements since those results are often expressed this way, while mass-normalised data works better for model comparisons because models usually only track the mass of particulate inorganic carbon (PIC) in the water column and not its surface area.

Because surface-normalised data try to account for differences in sample size, it is tempting to assume that they are superior to mass-normalised data. (In general, smaller samples have a greater surface-to-mass ratio than larger samples, so if samples of different sizes were mass-normalised then we would expect the smaller samples to dissolve faster.) However, it is questionable which (if any) method of measuring surface area can
capture the reactive surface area that is actually available for dissolution (Cubillas et al., 2005). For example, Brunauer-Emmett-Teller (BET) analysis determine the specific surface area (SSA) through gas-adsorption, but it has been argued that preparation of biogenic samples forms micropores which are captured by BET measurements but are unreactive and unavailable for dissolution (Walter & Morse, 1985; Jeschke & Dreybrodt, 2002). Additionally, complex surface shapes can lead to decreased dissolution due to mass-transport limitations (Sulpis et al., 2022; Batchelor-McAuley et al., 2022; Fan et al., 2022). Because the reactive surface area is not captured, surface area measurements can be an additional source of uncertainty. This is demonstrated by HE78: the dissolution of 13 different sample types was measured and the rates were expressed as both mass-normalised and surface-normalised. For all samples containing calcite at 5518 m depth, the spread of measured dissolution rates was just over one order of magnitude when normalised to mass but over two orders of magnitude when normalised to mass and surface area.

Additionally, if the surface area was not determined with the same method then the data will not be comparable between studies. In the studies presented here, P66 approximates the surface area geometrically, assuming the calcite spheres used were smooth, ignoring potential pits and fractures, Milliman (1977) later notes that the surface area might have been underestimated by a factor of 5. (Milliman (1977) is a correction to nowadays more widely cited Milliman (1975), with the earlier paper expressing dissolution in surface-normalised terms that the same author later recognises as erroneous.) More recent studies suggest that the difference in crystal surface area (roughness) might result in variability in dissolution rates of up to two orders of magnitude (Wolthers et al., 2012; Lüttge et al., 2013; Agrawal et al., 2021). The P66 rates in Figure 6 can therefore be regarded as an upper bound for the dissolution rate. On the other hand, HE78, N19, D19 and S22 determine the specific surface area (SSA) by BET measurements (HE78 with helium gas and N19, D19, and S22 with krypton gas) which results in higher surface areas than the geometric approximations and therefore it is expected that on average they obtain lower dissolution rates in their experiments, representing a lower bound for the dissolution rate.

Another issue with surface areas becomes apparent in T97: the surface area changes throughout the dissolution process, depending on which dissolution mechanism is prevalent. In that study, the dissolution rate was determined by measuring surface area roughness with Atomic Force Microscopy (AFM). They first assumed a smooth surface and
then equated any increase in roughness with dissolution taking place. However, close to
equilibrium ($Ω = 1$), dissolution happens through step edge retreat which can instead
smoothen the surface. Dissolution is therefore limited by the number of existing steps
on the reactive surface. This mechanism also offers a possible explanation for why the
dissolution rate in T97 unexpectedly decreases with $Ω$: if more dissolution actually de-
creases the number of edges instead of forming new etch pits, then surface roughness will
not be able to capture the amount of dissolution that actually took place.

The change of surface area with ongoing dissolution introduces another problem,
especially for studies that last several months. HE78 measured the SSA before and af-
after their experiment and found that the surface area changes were sample-dependent:
while for the foraminiferal assemblage the SSA doubled or even tripled, for the coccol-
iths it increased by only 10%. The surface-normalised dissolution rate therefore also changes
throughout experiments to varying degrees, complicating comparisons between studies
or even between samples within a study.

To circumvent these issues with surface-normalised dissolution rates, we use only
the mass-normalised rates in the following analysis and discussion.

3.2 What drives dissolution and how big is the effect of differing experimental design?

To investigate the reason for the large spread in the rate measurements for a given
saturation state, a machine learning model was trained to predict the mass-normalised
dissolution rate from $Ω$ and various features of the experimental design (Section 2.4).

The model achieved an R^2 of 0.824 on the test set, so the majority of the variance
in dissolution rate was explained. The RMSE and MAE are 0.079 % day$^{-1}$ and 0.049
% day$^{-1}$. The model predicts faster dissolution rates reasonably well but the lower the
dissolution rate, the higher the relative error becomes, especially for dissolution rates be-
low 0.01 % day$^{-1}$ (Figure 7). This is due to using squared error as the learning objec-
tive for the model, meaning, small absolute errors (which would be large relative errors
for low dissolution rates) are ‘punished’ less when the model is trained, leading to worse
predictions for the very low rates. However, those rates have higher inherent uncertainty
due to being close to the level of detection, so we prioritised good model performance
for the higher rates. The worse performance for low dissolution rates could also point
to underfitting, meaning that the model was too simple or lacked the flexibility to capture the underlying patterns in the data, resulting in higher prediction errors. But due to the small number of measurements, increasing the model complexity would likely lead to overfitting, where the model captures noise and random variability in the data at the expense of the meaningful underlying patterns. We therefore consider the model used to be the best trade-off between complexity and accuracy.

In Figure 8, the model has been used to predict dissolution rates for a range of different saturation states with all possible combinations of the different experimental design choices that have been made in the in situ studies. The spread in predicted dissolution rates for each Ω matches the spread in the actual data. This demonstrates that the different experimental designs used in the various studies can explain the range of variation in measured dissolution rates at any given Ω.

Permutation Feature Importance gives insight into the relevance of each feature for the model prediction by measuring the increase in the model’s prediction error (here, MSE) when permutating one feature. Features with permutated (random) values cannot meaningfully contribute to the prediction. In a PFI analysis, this enables us to assess how much worse the model performs if one feature is not present. Our PFI analysis shows that by far the most important feature is Ω. All other features in the model have a contribution that is at most almost an order of magnitude smaller. For the measurement method of dissolution and the material of the sample, the contributions are completely insignificant (Figure S14).

Figure 7. Model predictions of the dissolution rate plotted against the actual measurements.
A drawback of PFI is that the importance of correlated features is shared between them and some features of the experimental design do covary. For instance, the deployment time was always very short when dissolution was measured via the δ^{13}C method. The importance of the measurement method might therefore be underestimated and that of the deployment time overestimated, or vice versa, by our PFI analysis. However, since the design of the experiment and the water chemistry are mostly independent, our conclusion that the measured dissolution rates are mainly determined by Ω should still hold.

Partial Dependence Plots show how the predicted dissolution rate varies with each predictor, revealing the form of the relationship, which could be linear, logarithmic, logistic, or more complex. If we have some mechanistic understanding of the real-world system (i.e., we know at least qualitatively what the relationships between predictors and the model output should be), then PDPs can help to check whether the model makes sense.

Figure 9 shows the PDPs for all features that were used to train the model. For most of the features, the relationships shown are intuitive and expected: for stronger undersaturation (lower Ω), the model predicts higher dissolution rates (Figure 9a). The jaggedness of the line probably results from the datapoints not being evenly distributed along the Ω range or could be a sign of overfitting, where the PDP is trying to fit the noise in the data. The bigger the size of the sample, the lower the mass-normalised dissolution
Figure 9. Partial Dependence Plots for all features used in the regression model for the prediction of dissolution rates. Continuous features are represented as a line graph and categorical features as bar graphs. The black lines on the x-axis for continuous features indicate the deciles (10% quantiles). The y-axis is the average predicted dissolution rate.

rate, since less surface area is available for dissolution (Figure 9b). Biogenic samples are predicted to have higher dissolution rates than inorganic samples (Figure 9f), which matches our understanding that biogenic samples have a higher defect density and therefore should dissolve faster (e.g., as seen by Busenberg & Niel Plummer, 1989). However, whether the biogenic samples underwent an oxidative cleaning protocol (bleaching) to remove organic coatings does not affect the model outcome significantly. This is only directly compared in B67 and HE78 where bleaching the samples increased the dissolution rate. The presence of a cycling device also leads to higher predictions of dissolution rates (Figure 9e). This could be due to dissolution not being transport-limited (Batchelor-McAuley et al., 2022; Fan et al., 2022) or because the water flow could break off small pieces of CaCO₃ which leads to increased weight loss and therefore erroneous rate observations (as in Metzler et al., 1982).
For mesh size, the relationship is more complex. We expected that coarser meshes would lead to higher dissolution rates for two reasons: (i) finer mesh might restrict water flow around the sample, leading to a pool of water with elevated Ω being trapped around the sample, thus inhibiting dissolution, and (ii) coarser mesh might lead to mechanical loss of the sample which would result in falsely high dissolution rates. However, the model predicts the lowest dissolution rates at intermediate mesh sizes (Figure 9g). One possible reason for this is the lack of training data for mesh sizes above 80 µm. Another issue is the assumption of independence of the features in PDPs (Molnar, 2022). When PDPs are calculated, new data points are generated by averaging over marginal distributions of other features. These new data points might be unlikely (i.e. very small meshes have only been chosen in combination with water cycling devices when stationary water is not a problem) or completely unrealistic (i.e. a mesh size that is larger than the size of the sample), which in turn distorts the apparent dependence of the prediction on this feature.

There are several ways in which deployment duration can affect the dissolution rate. If the dissolution mechanism leads to increased surface area (as seen in HE78, where SSA was measured both before and after deployment) through etch pit formation, then mass-normalised dissolution should reflect that with increased rates for experiments with longer durations. The opposite seems to be the case here (Figure 9c). One reason could be that the prevalent dissolution mechanism actually decreases the surface area as mentioned in the previous section. Additionally, sample preparation often involved crushing the samples which might have created a greater reactive surface area at the beginning of the deployment. Dissolution is then expected to slow down once the initial freshly exposed layer has been dissolved.

The gradient of the PDP curves can also indicate feature importance. The results in Figure 9 show similar patterns as the PFI results in Figure S14: the partial dependence of predicted dissolution rate changes rapidly with respect to Ω (Figure 9a), indicating its relatively high importance as a predictor, whereas for the material of the sample (Figure 9d) and the measurement method (Figure 9h) there is almost no difference in the partial dependence for the different possible predictions, suggesting lower importance.
In summary, this machine learning approach is a useful tool that helps us analyse quantitatively how different features can influence a measured variable by training a model to predict said variable based on those features. Even though complex tree-based models often cannot be interpreted directly, several methods exist to help us make sense of them. Here, the model was able to capture much of the underlying patterns of the data, which for the most part matched our real-world qualitative understanding of how design choices should affect the dissolution rate and additionally showed which features affect it at the most. In practice, this means that only studies designed similarly can be compared directly, with the most important design choices for inter-compatibility being the particle sizes, inorganic versus biogenic samples, and the presence or absence of a device that cycles the water around the samples.

3.3 What can in situ measurements tell us despite differences in the experimental design?

While our analysis indicated that the majority of the variance in the dissolution rate was driven by Ω, the differences in experimental design were still significant. Therefore, while absolute rates might be less meaningful, the patterns of variation with depth, Ω, and other environmental variables can still give useful insights.

As examples, we explore two phenomena in more detail: (i) dissolution above the saturation horizon and (ii) existence and variability of a critical saturation state Ω_{crit}.

3.3.1 Dissolution above the saturation horizon

While laboratory experiments measure dissolution only when the bulk water is undersaturated, alkalinity measurements in the ocean indicate that a substantial amount of carbonate mineral dissolution happens close to the surface where the seawater is oversaturated. With our new Ω estimates we can now examine whether in situ studies have also measured dissolution in such conditions.

Most studies do not include a significant number of measurements far above the saturation horizon. Most experiments have been conducted in the Pacific, where Ω values are on average lower than in other ocean basins and experiments have generally been focused on depths where water was known or assumed to be close to equilibrium or undersaturated. The only exception is M77 (Figure 4). Below the saturation horizon, dis-
Figure 10. Dissolution rate measurements at the four stations of the M77 experiments for the calcite and aragonite samples as a function of Ω. The error bars represent the uncertainty in Ω. The fit was produced by binning the calcite dissolution rates in Ω-bins of 0.05 and interpolating over the bin-averaged rates.

Solution follows the expected pattern of increasing non-linearly with lower saturation states (Figure 10). However, at 3 out of 4 stations where dissolution experiments were conducted, M77 also observed significant dissolution of their samples at 1.7 > Ω_{calc} > 1.4. This local maximum occurs at 2000 - 2500 m depth (Figure S16), which is far above the local saturation horizon for calcite, at approximately 4300 m. This pattern of dissolution with depth does not match the patterns that are found when estimating dissolution from alkalinity budgets (Feely et al., 2002; Sulpis et al., 2021) - there, dissolution is highest closest to the surface, reaching a minimum at around 1000 m, before gradually increasing again. So, what else could this local dissolution maximum?

Usually, three possible explanations are given for dissolution in apparently oversaturated waters: (i) the presence of a more soluble form of carbonate mineral, such as Mg calcite (Feely et al., 2002; Wilson et al., 2009; Woosley et al., 2012), (ii) dissolution in the more acidic environment of zooplankton guts (Pond et al., 1995; Milliman et al., 1999; Jansen & Wolf-Gladrow, 2001), and (iii) other micro-environments, such as marine snow aggregates, where bacterial oxidation of organic matter can enhance the dissolution process (Alldredge & Cohen, 1987; Jansen & Wolf-Gladrow, 2001; Subhas et al., 2022).
Figure 11. Dissolution rate measurements at the four stations of the M77 experiments for the calcite samples as a function of Ω_{metab}, which was calculated following Subhas et al. (2022). The error bars show the same uncertainty as the original Ω values. The fit was produced by binning the calcite dissolution rates in Ω_{metab}-bins of 0.05 and interpolating over the bin-averaged rates.

Hypothsis (i) does not apply in this case because we know that the calcite samples primarily consisted of *Orbulina universa* and *Globigerinoides sacculifer* which contain little magnesium ($<2\%$) (Nürnberg et al., 1996). Hypothesis (ii) is equally unlikely: zooplankton live mainly in the epipelagic and mesopelagic layer (<1000 m) (Fernández de Puelles et al., 2019), and the samples were in bags of fine mesh ($<40\ \mu\text{m}$), so they could not have been consumed by other organisms.

Organic coatings were left intact in M77 and several hundred foraminifera made up one sample, which could be similar to the marine snow aggregate in hypothesis (iii). This leaves open the possibility that organic matter degradation could have led to a more acidic micro-environment. To evaluate the influence of (iii), we calculated Ω_{metab} which was proposed by Subhas et al. (2022) to account for the degradation and consumption of organic matter in aggregates where organic carbon and CaCO_3 are closely packed together. Ω_{metab} is calculated from revised ambient DIC and TA values, which are determined assuming that all dissolved oxygen in the bulk seawater is metabolised (upper limit for aerobic metabolic activity). The resulting Ω_{metab} is therefore the lower limit for the saturation state inside the sample. While the metabolic saturation horizon of calcite is
indeed shallower than the minimum sample depth, so the dissolution no longer appears
to have occurred in undersaturated waters, the pattern with Ω_{metab} does not follow Equation 6 (i.e., monotonically increasing) but still has a local maximum (Figure 11) that re-
quires a different explanation. To explain this peak, more is needed. One possibility is
the presence of a catalyst that increased the rate of dissolution, such as carbonic anhy-
drase, as observed by Subhas et al. (2017). Another possibility is that the continued res-
piration and dissolution proceeded together in a ratio such that the waters stay under-
saturated. However, these hypotheses cannot be further examined due to the lack of rel-
evant data. Ultimately, an undersaturated micro-environment due to metabolic activ-
ity could explain why dissolution is possible at this depth, but on its own it is insuffi-
cient to explain the localised peak at 2000 - 2500 m.

There are more possibilities beyond the three usual explanations discussed above.
For instance, (iv) dissolved organic carbon (DOC) binding calcium (Ca) through a chelate
effect and thereby lowering the saturation state. Ca has a high affinity to form complexes
with organic matter (Raspor et al., 1980), leading to a lower amount of Ca$_{\text{free}}$ than what
has been calculated from salinity. However, while the DOC concentration is ~ 50 µmol kg$^{-1}$
(Hansell et al., 2021), the Ca concentration is several orders of magnitude larger at \sim
10 mmol kg$^{-1}$. The effect of Ca dilution would therefore be negligible. Another hypoth-
esis is that (v) the Ca:CO$_3$ ratio can affect dissolution, which could also be influenced
by complexation of Ca. Stack and Grantham (2010) observed features of dissolution on
calcite crystals in oversaturated water at a Ca:CO$_3$ ratio of 22:1 (highest ratio tested).
At the locations and depths of the M77 stations, Ca:CO3 ratio increases with depth from
110:1 to 190:1. If high Ca:CO$_3$ ratios allowed dissolution in oversaturated water, then
this effect would be true for all samples in the experiment, not just at certain depths,
making (v) highly unlikely.

Finding the main driver of this local peak in dissolution would allow us to under-
stand whether it was a consequence of the experiment design, whether it is geograph-
ically constrained, and whether it also applies to sinking or suspended particles in the
water column. If no explanation is found that describes how dissolution was thermody-
namically possible, then (vi) measurement errors would need to be invoked. However,
since the duplicates at each depth and at stations separated both temporally (by sev-
eral months) and spatially (by hundreds of kilometers) showed the same pattern, this
seems unlikely. Ultimately, we are unable to explain the dissolution pattern with Ω in
M77 with the data available, but if similar features are seen in future studies, measurement of a broader set of auxiliary variables could provide a resolution.

3.3.2 Dissolution regimes

Many in situ studies observe that dissolution starts to rapidly increase at a certain depth (seen most clearly in P66) at a critical amount of undersaturation. The surface-normalised data in our compilation also show a faster increase in dissolution rate with declining Ω at saturation states lower than $\Omega = 0.8$ (Figure 6b). The same is not immediately obvious for the mass-normalised data (Figure 6a) due to the greater scatter in measured rates. However, the PDP for Ω (based on the model trained on mass-normalised data only) supports the existence of a change in dissolution rate at a certain Ω value. When Ω is close to equilibrium, the dissolution rate is barely affected by Ω, but for $\Omega \lesssim 0.75$ the curve becomes much steeper, demonstrating a stronger influence of Ω on the measured dissolution rate (Figure 9a).

Based on the laboratory measurements of Naviaux, Subhas, Rollins, et al. (2019), N19 and S22 divided their rate measurements into two dissolution regimes, with the boundary at $\Omega_{\text{crit}} = 0.80$ and $\Omega_{\text{crit}} = 0.78$ respectively. However, it is unclear whether these Ω_{crit} values also produce the best fit for dissolution in the water column where other properties (e.g., pressure and dissolution inhibitors) could affect Ω_{crit}. Here, we fit the dissolution rates in the compilation to two dissolution regimes with a flexible Ω_{crit} (Section 2.5). This works best for studies that have a high Ω resolution over the relevant Ω range from 0.65 to 0.95.

For P66 and M82, the best fit was achieved with Ω_{crit} between 0.80 and 0.87, with $R^2 > 0.7$ (Figure 12). For comparison, assuming only one dissolution regime with no Ω_{crit} gave $R^2 < 0.5$ for the same data, a less good fit. The reaction order for the dissolution regime where $\Omega < \Omega_{\text{crit}}$, n_2, was 3.2 for P66 and for M82 it varied between 1.7 (Sample size XS) and 5.0 (Sample size L). This large difference in n_2 for the size fractions in M82 is mainly explained by the different values of Ω_{crit}: the further from equilibrium Ω_{crit}, the larger n_2. Contrary to our expectations, dissolution slightly decreases with decreasing saturation for the three smallest size fractions. Several other studies showed similar patterns (Figure S17; M77, T81, F08). This may be due to the uncertainty in the Ω estimation or to measurement errors (not reported in those studies) but we do not
Figure 12. Ω_{crit} for dissolution rates (a) for the calcite pieces in P66 and (b)-(f) foraminifera in different size fractions in M82, determined by fitting to Equation 8. The grey vertical lines mark the saturation state at $\Omega = 0.9, 0.8$ and 0.7 from left to right. The Ω_{crit} value producing the best fit and its corresponding R^2 value are given above each panel.

have the necessary information to investigate this further. Examining more studies, it shows that for this kind of analysis a wide range of Ω with a high resolution of measurements is needed for the most plausible results. The results vary widely if the study has either few samples or covers a small Ω range: the best fitting Ω_{crit} value is sometimes as low as 0.6 or as high as 0.95, whereas sometimes none is found at all and n_2 varies from 0.9 to 15 (Figure S17).

Combining all studies with biogenic CaCO$_3$ samples (the difference in solubility for calcite and aragonite is already accounted for in the mineral-specific Ω value and assuming that the dissolution rate is the same for each mineral at the same Ω (supported by Figure 9d)), the best fit for mass-normalised dissolution rates was achieved at $\Omega_{\text{crit}} = 0.8$ (Figure 13) with

$$r_{\text{slow}} = 0.29 \cdot (1 - \Omega)^{0.76}$$

(9)

$$r_{\text{fast}} = 2.95 \cdot (1 - \Omega)^{2.29}$$

(10)

$n_2 = 2.29$ is slightly higher than what was found by S22 ($n_2 = 2.1$) and D19 ($n_2 = 1.76$) but lower than N19 ($n_2 = 4.7$). The effects of the different experimental designs lead to a large spread in the data, resulting in a worse fit than in Figure 12, where individual studies were examined separately. Since the dissolution rate is greatly affected by the origin of the sample (biogenic or inorganic, Figure 9f), only biogenic samples were in-
Figure 13. Dissolution rate as a function of Ω_{crit} for all mass-normalised biogenic samples in the compilation. The grey vertical lines mark the saturation state at $\Omega = 0.9, 0.8$ and 0.7 from left to right. The Ω_{crit} value producing the best fit and its corresponding R^2 value are given above the graph.

The Ω_{crit} chosen when fitting measurements to equation 6 significantly affects n_2 (reaction order of the fast dissolution regime): with $\Omega_{\text{crit}} = 0.75$, $n_2 = 2.8$ but with $\Omega_{\text{crit}} = 0.85$, n_2 is just 1.9. For calcite, the effect is minimal in the ocean, since Ω rarely reaches below 0.6 and at $\Omega = 0.6$, the dissolution rate with $\Omega_{\text{crit}} = 0.75$ is only 10% faster than with $\Omega_{\text{crit}} = 0.85$. Furthermore, the dissolution rate for calcite at $\Omega = 0.6$ is only increased by 35% when using two dissolution regimes with an intermediate $\Omega_{\text{crit}} = 0.80$ instead of only one with no Ω_{crit} (Figure 14). However, for aragonite, Ω can be around 0.4 at depth. Pteropod shells can sink several hundred meters per day (Noji et al., 1997), hence they can reach depths with such low saturation states, possibly with further implications such as reducing calcite dissolution by dissolving deeper than expected thus raising Ω (Sulpis et al., 2022). At $\Omega = 0.4$, the shifting of Ω_{crit} closer or further away from equilibrium when fitting the data also has more substantial effects: the dissolution rate with $\Omega_{\text{crit}} = 0.75$ is 25% faster than with $\Omega_{\text{crit}} = 0.80$ and 55% faster than with
Figure 14. Dissolution rate as a function of Ω, where the rate measurements of biogenic samples were fitted to different Ω_{crit} values or no Ω_{crit} (no change in dissolution mechanism) at all. The fits published in Subhas et al. (2022) for the S22 and D19 data are plotted in grey for comparison.

Ω_{crit} = 0.85. Most notably, the dissolution rate for aragonite at Ω = 0.4 more than doubles (+106%) when using two dissolution regimes with an intermediate Ω_{crit} = 0.80 instead of only one with no Ω_{crit} (Figure 14).

Overall, the in situ studies suggest that Ω_{crit} is slightly closer to equilibrium in the water column than the results of the lab experiments by Naviaux, Subhas, Rollins, et al. (2019) (Ω_{crit} = 0.80 instead of Ω_{crit} = 0.75). As a consequence, our compilation of in situ data suggest that dissolution rates at depth may be slightly lower for calcite (up to ~ 3%) and significantly lower for aragonite (up to ~ 20%) in the real ocean than would be expected from laboratory experiments.

4 Conclusion

In situ experiments account for more real-world complexities than laboratory experiments can. However, published data have not been fully utilised because of missing hydrographic variables which would make experiments conducted at different study locations and/or decades apart comparable. Our approach of combining WOA data together with CANYON-B to estimate a set of carbonate system and other ancillary variables helps to overcome this issue, adding value to the published data by allowing us to
more directly compare them with each other. Our approach could also be applied to other
types of experiments and published datasets that do not include a complete set of an-
cillary hydrographic variables.

In the case of carbonate mineral dissolution we were able to show a wide spread
of dissolution rates at the same Ω. While this is partly explained by the choice of sam-
ple material, other decisions regarding the experimental design, such as a water cycling
device (that removes diffusive transport limitations) and the duration of the deployment,
also play a non-negligible role. As a result, the absolute values of measured dissolution
rates still cannot be directly compared, but the more qualitative patterns of dissolution
rate and its relationship with Ω in the water column still can be. Our analysis confirms
that dissolution starts to increase more rapidly at Ω_{crit} ≈ 0.8, confirming that the re-
sults of laboratory experiments are applicable in the ocean. To better constrain Ω_{crit},
future in situ studies should consider measuring dissolution rates with a higher resolu-
tion over a wider range of saturation states, as well as performing crystallographic in-
vestigations (e.g., AFM) to assess which mechanisms contributed primarily to dissolu-
tion at different Ω values.

We also found that the only experiment that was conducted in significantly over-
saturated water did observe dissolution above the saturation horizon, although no sat-
isfactory explanation for this could be found. Due to the lack of ancillary variables, the
large scatter in the existing data and the uncertainty of the estimated variables, it was
not possible to investigate inhibitors to dissolution or other drivers of dissolution, apart
from Ω. Conducting more in situ experiments in a range of different marine environments
(e.g., Pacific and Atlantic) but with the same experimental design and sample types could
help to disentangle the effects of other variables and close the major gaps in our funda-
mental understanding of marine carbonate mineral dissolution.

Open Research

The compiled data set with all the added ancillary information can be found in https://
doi.org/10.25850/nioz/7b.b.bg. The Python and MATLAB scripts to compile the
data and estimate Ω as well as the python script to generate all the figures in the main
text and the SI is available at https://github.com/bcala1/in-situ-dissolution-compilation.
Acknowledgments

The authors would like to thank all the scientists and crews who over the last six decades collected and published the in situ dissolution rates on which this analysis is based on. This research was funded by the UU-NIOZ collaboration project, “BEYOND the known drivers of marine carbonate mineral dissolution: closing the gap in the alkalinity budget” (project number NZ4543.25). This project has received funding from the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (grant agreement No. [819588]). OS was supported by the Netherlands Organisation for Scientific Research (NWO-VENI Grant VI.Veni.212.086).

References

https://www.sciencedirect.com/science/article/pii/0016703789900562
doi: 10.1016/0016-7037(89)90056-2

doi: 10.1145/2939672.2939785

doi: 10.1016/j.chemgeo.2004.11.009

Dickson, A. G. (1990, February). Standard potential of the reaction: AgCl(s) + 12H2(g) = Ag(s) + HCl(aq), and and the standard acidity constant of the ion HSO4- in synthetic sea water from 273.15 to 318.15 k. The Journal of Chemical Thermodynamics, 22(2), 113–127. Retrieved 2023-07-06, from https://www.sciencedirect.com/science/article/pii/002196149090074Z
doi: 10.1016/0021-9614(90)90074-Z

doi: 10.1016/j.epsl.2019.03.016

doi: 10.26008/1912/BCO-DMO.836954.2

Patsavas, M. C., Byrne, R. H., Wanninkhof, R., Feely, R. A., & Cai, W.-J. (2015,

Supporting Information for ”Synthesis of in situ marine calcium carbonate dissolution kinetic measurements in the water column”

B. A. Cala1,2, O. Sulpis3, M. Wolthers2, and M. P. Humphreys1

1NIOZ Royal Netherlands Institute for Sea Research, Department of Ocean Systems (OCS), Texel, The Netherlands

2Utrecht University, Department of Earth Sciences, Princetonlaan 8A, 3584 CB Utrecht, The Netherlands

3CEREGE, Aix Marseille Univ, CNRS, IRD, INRAE, Aix-en-Provence, France

Contents of this file

1. Text S1 to S7
2. Figures S1 to S17
3. Tables S1 to S2

Introduction

This document contains supporting information and figures for the main text. In particular, we validate the our approach to estimate Ω and compare our results to those of the CDisK-IV cruise. We also provide several other figures relevant to the discussion in the main text.
Text S1: Method validation

CANYON-B was validated against 20% of GLODAPv2 data that was not used for training the model and additionally on data from GO-SHIP cruises that have not been included in GLODAPv2 training data (Bittig et al., 2018).

We used more recent GLODAP bottle data to re-evaluate the method’s performance in accurately estimating environmental variables and carbonate system parameters. CANYON-B was trained on GLODAPv2 data (Olsen et al., 2016), therefore the validation dataset consists of cruises that were added since then in GLODAPv2.2022 (Lauvset et al., 2022). However, it is important to note that data from new cruises added to successive GLODAP versions are still assessed and, if necessary, adjusted for consistency with the existing GLODAP dataset before being added to each new version, so they are not truly independent. We therefore excluded any datasets that had received adjustments from the validation. Only stations with a maximum sample depth of at least 1000 m were included, because most in situ experiments were conducted deeper in the water column and we didn’t want to focus on surface measurements for the validation. Data from the Sea of Japan was excluded because CANYON-B performed significantly worse there (Figure S1) and none of the dissolution experiments took place in or near that particular region (Figure S2). Overall, the validation dataset contained 31670 data points. When only data points below 1000 m depth were considered, the validation set still contained 14536 data points. Following the method described earlier (Section 2.2), hydrographic variables were predicted with WOA18 and CANYON-B only based on the geographic location, depth season, and year of the measurement.
Evaluation of all estimated variables from WOA18 and CANYON-B was performed using three metrics: mean absolute error (MAE), root mean squared error (RMSE), and R-squared (R^2). Additionally, Ω was calculated using all three possible parameter pair combinations of TA, DC and pH to assess whether one pair performed significantly better or worse.

The results are shown in Table S1. Over the entire dataset, the MAE for $\Omega_{\text{DIC}, \text{pH}}$ is 0.11 and the RMSE is 0.21. However, the method performs much better below 1000 m with an MAE of 0.02 and an RMSE of 0.03. The errors are mainly at the surface, where the WOA18 climatology cannot capture the natural (e.g., seasonal) variation of temperature, salinity, and dissolved oxygen in time and space. Here, the RMSE for the CANYON-B output is much larger than the uncertainty of CANYON-B (Bittig et al., 2018). Below 1000 m, where over 85% of dissolution measurements were made, the errors are much more acceptable and for the carbonate system parameters comparable to the estimates of inter-cruise consistency in GLODAP (4 μmol kg$^{-1}$ for TA and DIC, and 0.01 for pH) (Lauvset et al., 2022).

The choice of parameter pair affects the calculated Ω value, as discussed by Patsavas, Byrne, Wanninkhof, Feely, and Cai (2015) and Naviaux et al. (2019). Using the (TA, DIC) pair results in higher saturation states than (TA, pH) or (DIC, pH). Naviaux et al. (2019) found that $\Omega_{\text{TA}, \text{pH}}$ explains the occurrence of dissolution better than $\Omega_{\text{TA}, \text{DIC}}$. Using the (TA, DIC) pair instead of (DIC, pH) results on average in 6% higher Ω_{ca}. The offset between (TA, pH) and (DIC, pH) is much smaller, with a difference of 0.4% (Figure S6). We therefore decided to use the (DIC, pH) pair as it was very consistent with (TA, pH), which was recommended by Naviaux et al. (2019), but has the advantage

November 14, 2023, 11:53am
that [CO$_3^{2-}$] and therefore Ω calculated from DIC and pH is independent both of the nutrient values and of all the other non-carbonate components of TA (Humphreys et al., 2022) and therefore would not be influenced by any missing terms in the TA equation or biases in non-carbonate equilibrium constants and total salt concentrations.

Text S2: Expocodes of considered cruises

All considered: 49NZ20170208, 29HE20190406, 45CE20170427, 49UF20170110, 49UF20170228, 49UF20170408, 49UF20170502, 49UF20170612, 49UF20170719, 49UF20180129, 49UF20180406, 49UF20180518, 49UF20180709, 49UP20170107, 49UP20170201, 49UP20170425, 49UP20170623, 49UP20170815, 49UP20171125, 49UP20180110, 49UP20180228, 49UP20180501, 49UP20180614, 740H20180228, 91AA20171209, 18DD20170205, 18DD20170604, 18DD20190205, 18DD20190602, 320620170602, 320620170820, 325020180403, 33RO20180423, 49NZ20191229, 58JH20190515, 74JC20181103, 33HQ20170826, 33HQ20180807, 33HQ20190806, 33RO20170718, 49NZ20191205, 49UF20190207, 49UF20190716, 49UF20200108, 49UF20200201, 49UF20200605, 49UF20200619, 49UF20200730, 49UF20210202, 49UF20210407, 49UF20210515, 49UP20181206, 49UP20190110, 49UP20190228, 49UP20190408, 49UP20190516, 49UP20190612, 49UP20190811, 49UP20191125, 49UP20200227, 49UP20200605, 49UP20200730, 49UP20201019, 49UP20210113, 49UP20210301, 49UP20210425

Excluded (Sea of Japan): 49UF20171107, 49UF20180927, 49UF20190916, 49UF20201021

Excluded because of adjusted values: 33RO20161119, 096U20180111, 320620180309, 18DL20200722
Text S3: Comparison to CDisK-IV measurements

Figure S9 shows the comparison of the Ω values obtained through estimates of other hydrographic variables, as described in Section 2.2 with the Ω calculated from real cruise measurements (Berelson et al., 2022). While the method estimates Ω well at depths below approximately 500 m, at shallower depths the method can overestimate Ω by up to 0.25 which is larger than the uncertainty assigned to Ω. The CDisK-IV dataset does not include the uncertainty for Ω. This was calculated by propagating the uncertainties given in Naviaux et al. (2019) in PyCO2SYS. The resulting uncertainty for Ω are so small that they are not visible in the plot.

In Figure S10 it becomes clear that the problem lies mainly with the estimation of pH in CANYON-B. Temperature and Salinity are captured well in the estimates, and so is TA. pH appears to be overestimated by CANYON-B. This dataset does not include measured dissolved oxygen concentrations to evaluate whether that is the cause of the apparent overestimation of pH in CANYON-B. However, using CTD bottle data (Dong et al., 2022) from the same cruise and stations and comparing those to the values interpolated from WOA18 following the method described in Section 2.2, we see that oxygen concentration is indeed overestimated (Figure S11c). Higher dissolved oxygen is generally linked to greater primary productivity and/or lower remineralisation, both of which processes that raise pH, presumably leading CANYON-B to give a higher pH estimate.

Text S4: Are the experiment conditions representative of the open ocean?

Figure S12 shows that the chemical/physical environments where dissolution experiments have been conducted, capture a wide range of marine environments. The main
regions that are underrepresented are temperatures above 8°C, which occur in the shallow ocean where seawater is usually oversaturated with respect to calcite, and DIC values less than \(2100 \mu \text{mol kg}^{-1}\).

Text S5: Uncertainty of Ω

The uncertainty of Ω decreases exponentially with depth (Figure S13). These results are comparable to the RMSE values obtained during the validation of the method in Text S1. In the upper hundreds of meters, there are large fluctuations in temperature, salinity, and dissolved oxygen with time which increase the uncertainty of Ω. For most of the samples, the uncertainty is less than 0.05 for Ω at depths below the saturation horizons. The absolute uncertainty for Ω is higher in Atlantic (experiments M77, HE78). However, Ω there is usually higher than in the Pacific and overall the relative uncertainties are the same in both ocean basins.

Text S6: Multiple Linear Regression

We attempted to predict the dissolution rate with multiple linear regression (MLR), using the same predictors as in the XGBoost method. We performed MLR with Ordinary Least Squares (OLS) using the statsmodels package (version 0.13.5) for Python. The fit of the model was assessed with adjusted \(R^2\) which adjusts for the number of predictors used in the model. An adjusted \(R^2\) of only 0.247 was achieved, meaning that the model did not account for around 75% of the variance in the data.

While linear regressions are often preferred due to their straightforward interpretability, they cannot capture non-linear and complex relationships between the predictors and the dependent variables which are likely to occur in the real world. This is the case here and
therefore a supervised machine learning approach is used for our analysis described here in the main paper.

Text S7: Hyperparameters for the XGBoost Regressor

n_estimators: 70
max_depth: 6
min_child_weight: 6
colsample_bytree: 0.75
gamma: 0
learning_rate: 0.11
reg_alpha: 1
reg_lambda: 10

References

November 14, 2023, 11:53am

November 14, 2023, 11:53am

Figure S1. Comparison of (a) TA, (b) DIC, (c) pH, and (d) phosphate, (e) silicate data obtained through the method using WOA18 and CANYON-B to the GLODAPv2.2022 validation set. This figure also shows that CANYON-B performs significantly worse the subset of the data in the Sea of Japan (marked black; above the dotted line at 0.08 in (c)). Those stations were subsequently excluded from the validation set.
Figure S2. Stations of the validation set (blue) which is bottle data from GLODAPv2.2022 cruises after 2016 (excluding adjusted cruises). Also shown are the stations in the Sea of Japan that were excluded from the validation set (black) and the sites of the dissolution experiments (red crosses).
Figure S3. Comparison of the obtained WOA18 data to the GLODAP validation set, showing (a),(d) temperature, (b),(e) salinity and (c),(f) dissolved oxygen concentration. The top row shows all data, while the bottom row only shows data from deeper than 1000 m.
Figure S4. Comparison of the obtained CANYON-B data to the GLODAP validation set, showing (a),(f) TA, (b),(g) DIC, (c),(h) in situ pH, (d),(i) phosphate concentration and (e),(j) silicate concentration. The bottom row only shows data points below 1000 m depth.
Figure S5. Comparison of Ω the obtained CANYON-B data to the GLODAP validation set, using the (a),(d) TA-DIC (b),(e) TA-pH, and (c),(f) DIC-pH parameter pair. The top row shows all data, while the bottom row only shows data from deeper than 1000 m.

Figure S6. Relative offset of Ω_{cal} depending on which parameter pair was used to calculate it. Difference between (a) TA-DIC and DIC-pH and (b) TA-pH and DIC-pH are shown. Note the difference in scale on the y-axis.
Figure S7. Comparison of (a) phosphate and (b) silicate concentration interpolated from the WOA18 dataset as described in Section 2.2 and from CANYON-B.

Figure S8. Difference in Ω, depending on whether the nutrients used to calculate Ω stem from WOA18 or CANYON-B.
Figure S9. Comparison of Ω estimated through the method using WOA18 and CANYON-B to the values that were calculated using TA and pH values measured at the dissolution experiment on the CDisK-IV cruise (described by (Naviaux et al., 2019)).

Figure S10. Comparison of (a) temperature, (b) salinity, (c) TA, and (d) pH (in situ) obtained through the method using WOA18 and CANYON-B to the CDisK-IV cruise measurements for the dissolution experiments.
Figure S11. Comparison of (a) temperature, (b) salinity, (c) dissolved oxygen, (d) phosphate and (e) silicate concentration obtained from WOA18 to the CDisK-IV CTD bottle data.

Figure S12. Environmental variables of the locations where in situ measurements were conducted plotted on top of the WOA18 field and the carbonate parameters derived from that field with CANYON-B to assess how representative the dissolution experiments are. (a) TA against DIC, (b) Temperature against Salinity, (c) Ω_{ca} against dissolved oxygen concentration, and (d) phosphate concentration against in situ pH.
Figure S13. Uncertainty of Ω with depth for the different studies, assessed as described in Section 2.3.

Figure S14. Permutation Feature Importance for the prediction of dissolution rates. The greater the increase of the model’s prediction error if a feature is not contributing to the prediction, the larger that feature’s importance. The scoring metric here is MSE (the average increase is plotted with the standard deviations).
Figure S15. Learning curve for trained XGBoost model with MSE as scoring metric.

Figure S16. Dissolution rate of calcite as a function of depth for all 4 stations in M77. The approximate location of the saturation horizon is shown as a dashed line. Significant dissolution is observed at 2000 and 2500 m.
Figure S17. Ω_{crit} for dissolution rates determined with the Error Function (Equation 8). Each panel shows a different sample set. Each study was further divided by sample material, whether organic coatings were left intact and the size of the sample, as indicated by the text above each panel. The grey vertical lines mark the saturation state at $\Omega = 0.9, 0.8,$ and 0.7 from left to right. Grey data points are other data points in the data compilation that were not part of this study. The Ω_{crit} values producing the best fit are given above each panel. $\Omega_{\text{crit}} = 1$ or negative values mean that the best fit is produced if only one dissolution regime with no Ω_{crit} is assumed.
Table S1. Performance of WOA + CANYON-B method, compared against bottle data in the GLODAPv2.2022 data set that were not used to train or test CANYON-B (not part of GLODAPv2) and excluding data from the Sea of Japan as well as already adjusted data sets.

<table>
<thead>
<tr>
<th></th>
<th>complete dataset</th>
<th>>1000 m depth</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>MAE</td>
<td>RMSE</td>
</tr>
<tr>
<td>WOA18 Temperature (°C)</td>
<td>0.48</td>
<td>0.98</td>
</tr>
<tr>
<td>Salinity</td>
<td>0.06</td>
<td>0.13</td>
</tr>
<tr>
<td>Doxy (µmol kg$^{-1}$)</td>
<td>7.50</td>
<td>13.64</td>
</tr>
<tr>
<td>CANYON-B TA (µmol kg$^{-1}$)</td>
<td>5.03</td>
<td>7.78</td>
</tr>
<tr>
<td>DIC (µmol kg$^{-1}$)</td>
<td>8.91</td>
<td>15.18</td>
</tr>
<tr>
<td>pH (in situ)</td>
<td>0.02</td>
<td>0.03</td>
</tr>
<tr>
<td>PO4 (µmol kg$^{-1}$)</td>
<td>0.07</td>
<td>0.14</td>
</tr>
<tr>
<td>SiOH4 (µmol kg$^{-1}$)</td>
<td>2.83</td>
<td>4.94</td>
</tr>
<tr>
<td>Ω_{calcite}</td>
<td>$\Omega_{\text{TA,DIC}}$</td>
<td>0.10</td>
</tr>
<tr>
<td>$\Omega_{\text{TA,pH}}$</td>
<td>0.11</td>
<td>0.21</td>
</tr>
<tr>
<td>$\Omega_{\text{DIC,pH}}$</td>
<td>0.11</td>
<td>0.21</td>
</tr>
</tbody>
</table>

Table S2. Size fractions of samples.

<table>
<thead>
<tr>
<th>Size category</th>
<th>XXXS</th>
<th>XXS</th>
<th>XS</th>
<th>S</th>
<th>M</th>
<th>L</th>
<th>XL</th>
<th>XXL</th>
</tr>
</thead>
<tbody>
<tr>
<td>Size fraction (µm)</td>
<td><10</td>
<td>10 - 53</td>
<td>62 - 125</td>
<td>125 - 177</td>
<td>177 - 250</td>
<td>250 - 420</td>
<td>>420</td>
<td>700 - 1000, >831</td>
</tr>
<tr>
<td># of samples</td>
<td>21</td>
<td>32</td>
<td>13</td>
<td>96</td>
<td>16</td>
<td>261</td>
<td>182</td>
<td>6</td>
</tr>
</tbody>
</table>