
P
os
te
d
on

8
N
ov

20
23

—
T
h
e
co
p
y
ri
gh

t
h
ol
d
er

is
th
e
au

th
or
/f
u
n
d
er
.
A
ll
ri
gh

ts
re
se
rv
ed
.
N
o
re
u
se

w
it
h
ou

t
p
er
m
is
si
on

.
—

h
tt
p
s:
//
d
oi
.o
rg
/1
0.
22
54
1/
au

.1
69
94
52
93
.3
85
72
79
8/
v
1
—

T
h
is

is
a
p
re
p
ri
n
t
a
n
d
h
as

n
ot

b
ee
n
p
ee
r-
re
v
ie
w
ed
.
D
a
ta

m
ay

b
e
p
re
li
m
in
a
ry
.

Crustal Imaging with Noisy Teleseismic Receiver Functions Using

Sparse Radon Transform

Ziqi Zhang1,2,3 and Tolulope Olugboji4

1Department of Earth and Environmental Sciences, University of Rochester
2Department of Electrical and Computer Engineering, University of Rochester
3Georgen Institute of Data Sciences, University of Rochester
4Affiliation not available

November 8, 2023

1



manuscript submitted to Bulletin of Seismological Society of America

Crustal Imaging with Noisy Teleseismic Receiver1

Functions Using Sparse Radon Transform2

Ziqi Zhang1
3

Tolulope Olugboji1234

1Department of Earth and Environmental Sciences, University of Rochester, Rochester, NY 14627, USA5

2Department of Electrical and Computer Engineering, University of Rochester, Rochester, NY 14627, USA6

3Georgen Institute of Data Sciences, University of Rochester, Rochester, NY 14627, USA7

Key Points:8

• Sparse Radon transform is used to de-noise the Ps-RF and extract Moho-related9

phases.10

• Synthetic and data examples show that our approach can drastically reduce the am-11

biguity of H − κ stacking.12

• Our approach can be coupled with resonance filtering to improve crustal imaging in13

reverberant settings.14

Declaration of Competing Interests:15

The authors acknowledge there are no conflicts of interest recorded.16

Corresponding author: Ziqi Zhang, ziqi.zhang@rochester.edu

–1–



manuscript submitted to Bulletin of Seismological Society of America

Abstract17

The receiver function (RF) is a widely used crustal imaging technique. In principle, it18

assumes relatively noise-free traces that can be used to target receiver-side structures fol-19

lowing source deconvolution. In practice, however, mode conversions and reflections may be20

severely degraded by noisy conditions, hampering robust estimation of crustal parameters.21

In this study, we use a sparsity-promoting Radon transform to decompose the observed RF22

traces into their wavefield contributions, i.e., direct conversions, multiples, and incoherent23

noise. By applying a crustal mask on the Radon-transformed RF, we obtain noise-free RF24

traces with only Moho conversions and reflections. We demonstrate, using a synthetic ex-25

periment and a real data example from the Sierra Nevada, that our approach can effectively26

de-noise the RFs and extract the underlying Moho signals. This greatly improves the ro-27

bustness of crustal structure recovery as exemplified by subsequent H − κ stacking. We28

further demonstrate, using a station sitting on loose sediments in the Upper Mississippi29

Embayment, that a combination of our approach and frequency-domain filtering can signif-30

icantly improve crustal imaging in reverberant settings. We expect that our technique will31

enable high-resolution crustal imaging and inspire more applications of Radon transforms32

in seismic signal processing.33

1 Introduction34

The receiver function (RF) is a powerful seismic imaging technique for constraining35

crustal structure in various tectonic settings, e.g., orogenic belts (Parker et al., 2013; Yang36

et al., 2017), cratons (Thompson et al., 2010; Xia et al., 2017; Yuan, 2015), volcanoes37

(Leahy et al., 2010; Rychert et al., 2013), oceans (T. M. Olugboji et al., 2016), and even38

on other planets (Lognonné et al., 2020; Kim et al., 2021). Two ideas that are fundamen-39

tal to using the technique include source deconvolution that targets receiver-side scattering40

(Ligorŕıa & Ammon, 1999; Gurrola et al., 1995; Park & Levin, 2016) and modeling of the41

largest amplitude body-wave conversions and reflections generated from seismic discontinu-42

ities directly beneath the station (Wittlinger et al., 2009; Langston, 1979; Zandt & Ammon,43

1995; Zhu & Kanamori, 2000; Julia et al., 2000; Bodin et al., 2013). During the modeling44

stage, e.g., H − κ stacking and its various adaptations (Zhu & Kanamori, 2000; Wittlinger45

et al., 2009; Helffrich & Thompson, 2010; Rychert & Harmon, 2016), the RF traces are46

assumed to be relatively noise-free, permitting robust estimation of the crustal structure,47

i.e., crustal thickness (H) and P-to-S velocity ratio (κ). In practice, however, mode con-48
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versions and reflections may be severely degraded by noisy conditions. This may render49

the modeling step intractable, hampering robust estimation of the crustal parameters and50

the subsequent interpretation of crustal composition (Zandt & Ammon, 1995; Stankiewicz51

et al., 2002; Audet et al., 2009; He et al., 2013). For this reason, seismic analysts usu-52

ally employ a variety of quality control procedures to select high-quality receiver functions,53

either manually or in an automated manner, e.g., using a combination of attributes from54

deconvolution, waveform features, and stacking statistics (Yang et al., 2016), or through55

supervised machine-learning models (Gong et al., 2022). Previous studies have also made56

several modifications to grid-search algorithms in an effort to improve the constraints from57

the low-amplitude reflections, including, but not limited to, using cluster analysis and sem-58

blance weighting (Philip Crotwell & Owens, 2005; Eaton et al., 2006), varying weighting59

factors for different phases (Vanacore et al., 2013), and performing moveout corrections60

preceding the grid-search (Rivadeneyra-Vera et al., 2019). In addition, several de-noising61

frameworks have been proposed to aid with the interpretation of noisy RF data, including62

transform-based methods (Q. Zhang et al., 2022; Chen et al., 2022; Q. Zhang et al., 2021;63

Chen et al., 2019; Dalai et al., 2019), rank-reduction techniques (Dokht et al., 2016; Rubio64

et al., 2020), and machine-learning frameworks (F. Wang et al., 2022; Dalai et al., 2021).65

In this study, we de-noise the observed RF data using a modification of a recently pro-66

posed transform-based signal processing workflow, CRISP-RF (Clean Receiver Function67

Imaging using SParse Radon Filter) (T. Olugboji et al., 2023). The central idea involves68

applying a sparse Radon transform to effectively decompose the Ps-RF into direct conver-69

sions, multiples, and noise, based on the time-slowness moveout and phase coherence. In our70

implementation here, we retain the crustal multiples as well as the direct arrivals generated71

at the Moho. We note that while our approach is illustrated using the traditional H − κ72

stacking technique, it may be applied prior to data modeling using other grid search or73

waveform fitting techniques (Wittlinger et al., 2009; Helffrich & Thompson, 2010; Rychert74

& Harmon, 2016). The improvement in crustal imaging follows from noise suppression and75

enhanced detection of time-slowness arrivals of converted and reflected phases that enable76

robust back-projection during a crustal parameter search. We start by introducing the ba-77

sic principles and processing steps of CRISP-RF, and what modifications are needed to suit78

our goal of preserving Moho conversions and multiples. We provide synthetic experiments79

and a real data example to demonstrate the effectiveness of our approach and to show that80

we are able to effectively de-noise the RF and improve the robustness of crustal structure81
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estimation. We demonstrate using another data example that our approach can be coupled82

with resonance-filtering (Yu et al., 2015; Akuhara et al., 2016; Z. Zhang & Olugboji, 2021,83

2023) to improve crustal imaging in reverberant settings.84

2 Method85

2.1 Brief Overview of Receiver Function and H − κ Stacking86

P-to-S receiver function (Ps-RF) is usually obtained by deconvolving the vertical com-87

ponent from the horizontal component seismograms, and targets receiver-side structure with88

the source and path removed (Langston, 1979; Ammon, 1991; Park & Levin, 2000; Zhong89

& Zhan, 2020). Assuming a simple laterally homogenous and horizontally layered model90

with a crust and a half-space, the Ps-RF trace should contain one direct conversion from91

the Moho (PmS) and two multiples (PPmS and PSmS) (Figure 1a). The H − κ stack-92

ing method calculates the stacking amplitudes of Ps-RF traces of different slowness at the93

predicted arrival times of these phases using different pairs of H (crustal thickness) and κ94

(P-to-S velocity ratio) values and determines the optimal result by performing a grid search95

(Zhu & Kanamori, 2000):96

s(H,κ) =
∑
i

∑
j

wjG(tij)Rj(t) (1)

where s is the stacking amplitude, tij is the predicted arrival of the ith phase (i.e.,97

PmS, PPmS, and PSmS), G is a Gaussian smoothing window centered at time t, Rj is98

the jth radial Ps-RF trace, and wj is the weighting factors for different phases. In most99

implementations, the direct phase is weighted higher and the multiples are weighted lower100

due to their relative amplitudes (e.g., calculated from reflection and transmission coefficients101

in Z. Zhang and Olugboji (2021)). Here we use 0.4, 0.3, and -0.3 as the weighting factors102

for PmS, PPmS, and PSmS phases, respectively.103

The predicted arrivals of each phase given a single-layer model with thickness H, com-104

pressional velocity vp, and shear velocity vs are given by105
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Figure 1. (a) Wave propagation of the direct P wave, direct P-to-S conversion at the Moho

(PmS) and its multiples (PPmS and PSmS). (b) Synthetic Ps-RF traces of single-layer model

plotted against epicentral distance. Amplitudes at later times are attenuated and random noise

is added. (c) H − κ stacking of the synthetic Ps-RF shown in (b). Black contour lines indicate

90% and 80% of the maximum stacking amplitude, respectively. For better visualization, we set all

negative stacking amplitudes to zero.
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tPmS = H(

√
1

v2s
− p2 −

√
1

v2p
− p2) (2a)

tPPmS = H(

√
1

v2s
− p2 +

√
1

v2p
− p2) (2b)

tPSmS = 2H(

√
1

v2s
− p2) (2c)

where p is the slowness of the Ps-RF trace.106

Note that a crustal compressional velocity (vp) is usually assumed in the H−κ stacking107

so that the shear velocity (vs) in Equation 2 can be substituted by vs =
vp
κ . This a priori108

assumption is not necessary for some of the adaptations of the H−κ stacking; e.g., Rychert109

and Harmon (2016) used both Ps- and Sp-RF in their stacking algorithm so that crustal110

parameters H, vp, and vs can be determined without assuming its elastic properties. Other111

examples include Kumar and Bostock (2008) which used least-squares regression to solve112

for vp and κ and Helffrich and Thompson (2010) which improved the reliability of vp and κ113

estimates when events with small slownesses are not available. Nevertheless, for simplicity,114

we illustrate our approach using the traditional H − κ stacking technique.115

2.2 Application of CRISP-RF: Sparse Radon Transform and Crustal Mask116

2.2.1 CRISP-RF and Sparse Radon Transform117

The slowness-binned Ps-RF stacks can be viewed as a 2-D matrix with one dimension118

representing the slowness (or epicentral distance in an 1-D earth model) and the other119

representing the time axis. Applying the Radon transform to this matrix allows us to120

describe the Ps-RF data, d, by a sparse model set, m:121

d(t, p) = R†{m(τ̃ , q)} ≜
Nq∑
i=1

m(τ̃ = t− qip
2, qi) (3)

where d(t, p) is the Ps-RF data in the time-slowness domain, m(τ̃ , q) is the Radon model in122

the intercept-time-curvature domain (here intercept-time refers to the arrival time assuming123

zero slowness, and curvature refers to the extent of the moveout of the phases), and R† is124

the adjoint Radon transform. Ideally, the Radon model (m) should only have non-zero125

amplitudes at intercept-time and curvature pairs corresponding to coherent arrival phases,126
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Table 1. Detailed H − κ stacking results of synthetic experiments and real data examples

Case Figure(s) Hraw* (km) Hfiltered* (km) H Improvement* κraw* κfiltered* κ Improvement*

Synthetic 1, 2, 4 35.3+7.58
−2.12 35.0+1.53

−1.30 67% 1.73+0.079
−0.130 1.75+0.061

−0.056 44%

WCN 6 35.3+2.95
−2.43 35.9+1.45

−1.78 40% 1.72+0.090
−0.087 1.69+0.070

−0.055 29%

HENM 7 34.0+1.14
−2.26 34.0+1.49

−1.61 38% 1.85+0.125
−0.108 1.85+0.073

−0.062 42%

∗ H,κraw and H,κfiltered denotes the optimal solution and the 90% error range of the H − κ stacking results of raw Ps-RF and filtered

Ps-RF from the adjoint Radon transform, respectively. H,κ Improvement denotes the percentage decreased in the 90% error range of

H,κfiltered compared to H,κraw. In the case of station HENM, H,κraw corresponds to the H − κ stacking on the Ps-RF after resonance

filtering (Figure 7d).

i.e., PmS, PPmS, and PSmS in the single-layer scenario. The adjoint Radon transform,127

R†, reconstructs the Ps-RF data (d) by summing the amplitudes of the Radon model at all128

curvature (qi) along each slowness (p).129

The CRISP-RF workflow starts by applying a sparsity-promoting Radon transform that130

effectively decomposes the input Ps-RF data into direct conversions, multiple reflections,131

and incoherent noise (T. Olugboji et al., 2023). Here, we demonstrate the performance132

of the sparsity-promoting Radon transform for noise suppression using a synthetic Ps-RF133

generated for a single-layer model with a crustal thickness of 35 km, a compressional velocity134

of 6.3 km/s, and a shear velocity of 3.6 km/s. To mimic the behavior of noisy realistic data,135

we attenuate the amplitudes (100% to 10%) of the late arriving multiples (0 < t < 12 s)136

and then add realistic noise with a signal-to-noise ratio (SNR) of 2.0 to all the traces. We137

then add noise with a significantly lower SNR of 0.5 to 10 randomly chosen traces, resulting138

in a noisy dataset with low amplitude multiples whose arrivals are hard to visually identify139

(Figure 1b). Applying the H − κ stacking on this Ps-RF resolves a Moho depth of 35.3140

km and a P-to-S velocity ratio of 1.73 (Figure 1c; see Table 1 for the 90% error range).141

The sparse Radon model calculated from the CRISP-RF workflow shows a clear separation142

of the three Moho-related phases, with the direct conversion being the strongest positive143

phase mapped into the positive curvature domain, the first multiple (PPmS) mapped into144

the negative curvature domain with a positive amplitude, and the second multiple (PSmS)145

also in the negative curvature domain but with a negative amplitude (Figure 2).146
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Figure 2. Sparse Radon model of the synthetic Ps-RF shown in Figure 1b obtained from the

CRISP-RF workflow. Stars denote the theoretical (τ̃ , q) locations of the Moho phases calculated

from Equation 4(b, d, f).

2.2.2 Keeping Moho Phases: Crustal Mask147

Following the sparsity-promoting Radon transform that maps different arrivals into148

their corresponding intercept-time-curvature locations in the Radon image, a masking filter149

is applied to only retain the Moho-related phases (it is here that CRISP-RF differs from150

its initial goal of being used to filter out crustal multiples). The Radon-transformed and151

filtered RFs are effectively de-noised due to the sparsity-promoting step.152

The key to designing this masking filter is to determine a plausible 2-D window for153

the intercept-time-curvature parameters that contain the phases of interest. As introduced154

earlier, intercept-time (τ̃) refers to the phase arrival assuming zero slowness, i.e., by sub-155

stituting p = 0 in Equation 2, and the curvature (q) is the degree-two coefficient of the156

quadratic polynomial of the Taylor expansion of Equation 2 (Ryberg & Weber, 2000; J. Shi157

et al., 2020; T. Olugboji et al., 2023):158
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tPmS = τ̃PmS + qPmSp
2 (4a)

τ̃PmS = H

(
1

vs
− 1

vp

)
qPmS ≈ +

H(vp − vs)

2
(4b)

tPPmS = τ̃PPmS + qPPmSp
2 (4c)

τ̃PPmS = H

(
1

vs
+

1

vp

)
qPPmS ≈ −H(vp + vs)

2
(4d)

tPSmS = τ̃PSmS + qPSmSp
2 (4e)

τ̃PSmS = 2H
1

vs
qPSmS ≈ −Hvs (4f)

The crustal masking filter for the intercept-time (τ̃) and curvature (q) is obtained by159

substituting the grid-search parameter bounds into Equation 4(b, d, f), e.g., for a generic160

crustal velocity model, H = 25 - 55 km, vp = 6.3 km/s and vs = 3.6 km/s. This results161

in three distinct line segments in the intercept-time-curvature domain, one in the positive-162

curvature half (PmS) and two in the negative-curvature half (PPmS and PSmS). To account163

for the numeric errors along the curvature axis during the Radon transform, we further add164

a tolerance width to the line segments, resulting in a crustal mask that passes through both165

direct and multiple phases for a given range of depth (Figure 3). The rectangular areas of166

PmS and PPmS phases only pass through positive amplitudes, and that of PSmS phases167

only passes through negative amplitudes, in accordance with the phase polarities of each168

respective phase.169

We apply this crustal mask to the previously calculated sparse Radon model and per-170

form the adjoint Radon transform to obtain a noise-free filtered Ps-RF, which shows signif-171

icantly enhanced detections of the Moho multiples (Figure 4a). Consequently, the H − κ172

stacking shows a better constraint on the crustal structure, resolving a Moho depth of 35.0173

km and a velocity ratio of 1.75 (Figure 4b; see Table 1 for the 90% error range). This result174

matches the input model perfectly, and shows a 67% narrower error range on H and 44%175

on κ, respectively, compared to the H − κ stacking directly on the raw synthetic Ps-RF176

(compare Figure 4b with Figure 1c; see also Table 1). The 80% error range of the H − κ177

stacking on the filtered Ps-RF is from 32.43 to 37.48 km for H and from 1.670 to 1.841178

for κ, which is even narrower than the 90% error range of the H − κ stacking on the raw179

Ps-RF, while the 80% error range of the H − κ stacking on the raw Ps-RF is outside the180

search range (compare Figures 1c and 4b). This improvement largely comes from the better181
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Figure 3. Masking filter designed to only pass through Moho-related phases in the Radon

image. Dashed lines indicate the predicted intercept-time-curvature curves for each given phase;

colored rectangles indicate the final pass-through areas in the mask obtained by limiting the Moho

depth and adding a tolerance width. Red and blue colors indicate positive and negative arrivals,

respectively.

constraint from the multiples (PPmS and PSmS), which is made possible by the de-noising182

effect provided by the CRISP-RF.183

2.3 H-k Stacking on Radon Image184

The Radon image is an intercept-time-curvature domain representation of the Ps-RF185

data, therefore the H − κ stacking can also be applied to the Radon image directly before186

transforming it back to the time-slowness domain. Similar to the traditional H−κ stacking,187

given a pair of (H, κ) values, one can calculate the corresponding (τ̃ , q) values for the three188

phases (PmS, PPmS, and PSmS) from the middle and right columns of Equation 4. A189

2-D weighting matrix can then be constructed with only non-zero elements being the 2-D190

elliptical Gaussians centered at these three calculated (τ̃ , q) locations (e.g., Figure 5). The191

H − κ stacking on the Radon image is thus conducted by a grid search of the (H, κ) pairs192

to maximize the stacking amplitude obtained by the element-wise product of the weighting193

matrix and the Radon image. This also resolves the crustal structure perfectly, and shows194

a similar stacking image as the one applied to the time-epicentral-distance domain Ps-RF,195

although with a slightly larger 90% error range (33.01 to 36.79 km for H and 1.687 to 1.817196

for κ) (Figure 5b).197
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Figure 4. (a) Filtered Ps-RF obtained from the adjoint Radon transform of the Radon image

shown in Figure 2 after applying the crustal mask shown in Figure 3. (b) H − κ stacking of the

filtered Ps-RF shown in (a). Black contour lines indicate 90% and 80% of the maximum stacking

amplitude, respectively.
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Figure 5. (a) Example of a 2-D weighting matrix constructed using H = 40 km and κ = 1.7.

(b) H − κ stacking of the Radon image shown in Figure 2. Black contour lines indicate 90% and

80% of the maximum stacking amplitude, respectively.
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Figure 6. (a) Location and geological settings of station WCN. Red triangle indicates the station

location. the bottom-left inset map shows the location of the study area relative to the contiguous

US. (b) Location of the teleseismic events used in the receiver function calculation. (c) Raw Ps-RF

traces calculated at station WCN plotted against epicentral distance. Black vertical lines indicate

the predicted arrival times of the PmS, PPmS, and PSmS phases calculated from the optimal H−κ

solution. (d) H − κ stacking of the raw Ps-RF shown in (c). Black contour lines are 90% and 80%

of the maximum stacking amplitude as indicated. (d) Sparse Radon model of the raw Ps-RF shown

in (c) obtained from the CRISP-RF workflow. (f) Filtered Ps-RF traces obtained from the adjoint

Radon transform of the Radon image shown in (e) after applying the crustal mask shown in Figure

3. (g) H − κ stacking of the filtered Ps-RF shown in (f).

3 Application to Data198

In this section, we apply the CRISP-RF signal de-noising approach to station WCN199

located in the mid-northern section of Sierra Nevada, to the northeast of Lake Tahoe (Figure200

6a). Located in the Great Valley forearc basin, this station sits on complicated crustal201

structures including metamorphosed ophiolites, Mesozoic-age arc-related plutons, Cenozoic-202

age volcanic deposits, and extensional grabens associated with sedimentation along the Basin203

and Range boundary(Frassetto et al., 2010). This diversity of crustal composition could204

likely lead to a complex teleseismic wavefield and hard-to-detect Moho multiples, making it205

an ideal location to test the effectiveness of our approach on real seismic data.206
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We obtain 235 high-quality (SNR > 2.0) teleseismic events (Mw > 6.0, 30◦ < ∆ <207

90◦; Figure 6b) and calculate the Ps-RF traces at the cut-off frequency of 1.0 Hz using the208

extended-time multi-taper approach (Park & Levin, 2000; Helffrich, 2006; Shibutani et al.,209

2008). We stack the Ps-RFs every 1◦ with 8 ◦ overlapping epicentral distance bins (Figure210

6c). We use a P wave velocity of 6.3 km/s in the H − κ stacking at this station following211

K. Wang et al. (2022). The raw Ps-RF image shows a clear direct conversion from the Moho212

just before 5 s, and various other pulses, some of which exhibit coherence across different213

epicentral distances while others do not. Upon further visual inspection, a positive phase214

with a negative moveout can be roughly observed at around 15 s as the PPmS multiple;215

the arrival of the PSmS multiple is harder to determine as there are several negative phases216

between 15 and 20 s. Applying H−κ stacking on the raw Ps-RF resolves a crustal thickness217

of 35.3 km and a P-to-S velocity ratio of 1.72 (Figure 6d). This H − κ image displays two218

local maxima (as defined by the 90% error range contours), indicating ambiguous stacking219

results due to noisy Ps-RF traces and poor constraints from multiple phases. For the local220

maxima at the optimal solution, the 90% error range is from 32.87 to 38.25 km for H and221

from 1.633 to 1.810 for κ, while the 80% error contour is outside the search range.222

We then apply the CRISP-RF workflow on the raw Ps-RF to obtain its sparse Radon223

model (Figure 6e). Although the Radon image shows more phases and is more complex224

compared to the synthetic one (Figure 2) due to the complicated crustal structure detected225

in real seismic data, the adjoint Radon transform after applying the crustal mask gives a226

clean Ps-RF image with clearly identified direct conversion (PmS at ∼ 5 s) and multiple227

reflections (PPmS at ∼ 15 s and PSmS at ∼ 18 s) from the Moho (Figure 6f). Consequently,228

the H − κ stacking of the filtered Ps-RF traces resolves the crustal structure with far less229

ambiguity, with a crustal thickness of 35.9 km and a P-to-S velocity ratio of 1.69 (Figure230

6g). This H − κ image shows only one maxima, with the 90% error range of H and κ 40%231

and 29% narrower, respectively, compared to the H − κ stacking directly on the raw Ps-RF232

(compare Figures 6d and 6e; see also Table 1). The 80% error range of the H − κ stacking233

on the filtered Ps-RF is from 33.17 to 38.05 km for H and from 1.610 to 1.798 for κ, which234

is at least 59% and 37% narrower than that on the raw Ps-RF, and is comparable to the235

90% error range of the H − κ stacking on the raw Ps-RF.236
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4 Discussion237

4.1 Crustal Imaging Through Complicated Structures: Promises and Lim-238

itations239

In this study, we introduce modifications to the CRISP-RF workflow introduced by240

T. Olugboji et al. (2023) to extract Moho phases and suppress background noise using spare241

Radon transforms, and show that this improves the quality of crustal imaging through H−κ242

stacking. While our proposed approach is proven effective by both a synthetic experiment243

and a real data example, it is based on the assumption that the Ps-RF traces are not contam-244

inated by any significant signal-generated noise, i.e., reverberations. Reverberations coming245

from sedimentary, oceanic, or glacial layers could generate high-amplitude resonant noise in246

the Ps-RF traces due to their low seismic velocity, completely masking conversion and reflec-247

tion phases from the Moho and even deeper discontinuities (Yeck et al., 2013; Yu et al., 2015;248

Audet, 2016; Chai et al., 2017; Cunningham & Lekic, 2019; Z. Zhang & Gao, 2019). Since249

the Ps-RF traces calculated at stations above such reverberant environments are dominated250

by a resonance that resembles a decaying sinusoid, the proposed approach in this study will251

likely fail because the distinct, time-separated, and coherent arrivals are no longer present.252

A systematic data-driven approach, FADER (FAst Detection and Elimination of Echoes253

and Reverberations), has recently been proposed by Z. Zhang and Olugboji (2023) to solve254

the twin problem of detection and elimination of reverberations without a priori knowledge255

of the elastic structure of the reverberant layers. This approach uses autocorrelation and256

cepstral analysis to extract the signature of reverberation and then uses a frequency domain257

filter to remove it and obtain reverberation-free Ps-RF. Therefore, it is natural to combine258

both techniques to achieve a better crustal image in reverberant settings.259

To demonstrate the possibility of applying our proposed approach after filtering out260

reverberation, we select station HENM located in the Upper Mississippi Embayment, where261

loose sediments are widely present (Figure 7a). We obtain 192 high-quality (SNR > 2.0)262

teleseismic events (Mw > 6.0, 30◦ < ∆ < 90◦; Figure 7b) and calculate the Ps-RF traces263

using the same method and parameters described earlier. We use a P wave velocity of 6.1264

km/s in the H − κ stacking at this station following Liu et al. (2017). The raw Ps-RF265

traces show strong reverberant behavior, with no clearly identified phases (Figure 7c), and266

therefore lead to a poorly constrained H − κ stacking image with multiple local maxima267

and an optimal stacking solution at the boundary of the search range (Figure 7g). Applying268
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FADER effectively eliminates the resonant noise in the Ps-RF traces, making the direct269

conversion from the Moho clearly visible at around 5 s, along with the two multiple phases270

at around 14 s and 17 s, respectively, although not as coherent (Figure 7d). This results in271

a much better constrained H − κ stacking image, with an optimal solution of 34.0 km for272

H and 1.85 for κ (Figure 7h; see Table 1 for the 90% error range). Applying the proposed273

approach in this study further eliminates all phases and background noise except for the274

Moho phases, resulting in a clean, noise-free Ps-RF image (Figure 7e). The consequent275

H − κ stacking gives the same solution of H = 34.0 km and κ = 1.85, with an even narrow276

90% error range (38% narrower for H and 42% narrower for κ) (compare Figures 7h and 7i;277

see also Table 1).278

We note that shallow layer reverberations commonly observed in geological settings like279

sediments, oceans, and glaciers are a special complicating case where near-surface crustal280

structure hampers the reliability of Ps-RF imaging results. Other cases include a crust-281

to-mantle transition that is gradational or a complex crustal structure, e.g., dipping Moho,282

intra-crustal layers, and crustal anisotropy (Frederiksen & Bostock, 2000; Ogden et al., 2019;283

Y. Shi et al., 2023). In all these cases, the crustal properties deviate from the simple case284

considered in our synthetic experiments (a single layer with a sharp Moho), and therefore285

the H − κ stacking may give unreliable results. Under these circumstances, we recommend286

caution when applying our proposed approach due to the difficulty of interpreting a more287

complicated Radon image.288

4.2 Improving Constraints on Crustal Composition and Evolution289

P-to-S velocity ratio (κ) can be directly converted to Poisson’s ratio (σ) (Christensen290

& Fountain, 1975):291

σ = 0.5

[
1− 1

κ2 − 1

]
(5)

Improved resolution of κ following denoising provides much tighter constraints on the in-292

ferred crustal composition, providing important information on the geological evolution of293

the Earth’s crust (Zandt & Ammon, 1995; Stankiewicz et al., 2002; Guo et al., 2019). For294

instance, an increase in plagioclase content and a decrease in quartz can increase the Pois-295

son’s ratio from 0.24 for a granitic rock to 0.27 for a diorite, and to 0.30 for a gabbro (Tarkov296

& Vavakin, 1982).297
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Figure 7. (a) Location and geological settings of station HENM. Red triangle indicates the

station location. the bottom-right inset map shows the location of the study area relative to the

contiguous US. (b) Location of the teleseismic events used in the receiver function calculation. (c)

Raw Ps-RF traces calculated at station WCN plotted against epicentral distance. (d) Ps-RF traces

after reverberation removal. (e) Ps-RF traces after reverberation removal and applying the modified

CRISP-RF workflow. (f) Sparse Radon model of the raw Ps-RF shown in (d) obtained from the

CRISP-RF workflow. (g) H − κ stacking of the raw Ps-RF shown in (c). (h) H − κ stacking of the

processed Ps-RF shown in (d). (i) H − κ stacking of the processed Ps-RF shown in (e).
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Receiver function imaging studies have routinely used this sensitivity of crustal com-298

position to Poisson’s ratio to study how bulk composition varies for different geological299

terranes. For example, thanks to the massive high-quality seismic data from USArray and300

EARS (Philip Crotwell & Owens, 2005), Lowry and Pérez-Gussinyé (2011) proposed a301

feedback mechanism where ductile strain first localizes quartz-rich, weak crust, leading to302

processes that promote advective warming, hydration, and further weakening, based on the303

correlation between low Poisson’s ratios, higher lithospheric temperatures, and deformation304

in the Cordillera region. Similarly, Ma and Lowry (2017) estimated the seismic velocity305

ratios across the continent U.S. and suggested Cordilleran high heat flow may partly reflect306

crustal hydration enthalpy. Other examples include Audet et al. (2009) which implied high307

pore-fluid pressures and thus an overpressured subducted oceanic crust at northern Casca-308

dia indicated by anomalously high Poisson’s ratio and He et al. (2013) which suggested a309

dominantly felsic lower crust and the presence of lower crustal delamination in the Cathaysia310

Block in Southern China from the low Poisson’s ratio.311

The reliability of these interpretations depends heavily on the accuracy of the P-to-312

S velocity ratio (κ) estimation. We have shown that by de-noising the Ps-RF using our313

proposed approach, the measurement error for κ in the traditional H − κ stacking can be314

greatly reduced (Table 1), enabling more robust estimation of crustal structures.315

4.3 Application of Radon Transform in Seismic Signal Processing316

We have applied a sparse Radon transform in high-resolution Ps-RF imaging of sharp317

discontinuities. As we have demonstrated above, this data processing technique can be318

beneficial not only when imaging upper mantle discontinuities as suggested by T. Olugboji319

et al. (2023), but also for improved detection of multiple reflected phases when imaging the320

crust. The Radon transform maps the coherent phases in the time-domain Ps-RF traces321

onto the Radon model based on their moveout and amplitudes. The same philosophy is also322

applicable to other seismic imaging techniques, e.g., top- and bottom-side reflections, since323

each arriving phase also follows a distinct moveout (Gu et al., 2009; Gu & Sacchi, 2009).324

In these cases, modifications to Equations 2, 3, 4 are needed as the theoretical arrivals in325

these observations are different and their relationship with slowness or epicentral distance326

may be different (e.g., linear instead of parabolic).327
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5 Conclusion328

In this study, we use a sparsity-promoting Radon transform to decompose the Ps-329

RF into its scattered wave contributions, i.e., direct conversions, multiples, and incoherent330

noise. By applying a specially designed crustal mask to the Radon model and transforming331

the now filtered Ps-RFs into the time domain using an adjoint Radon transform, a set of332

clean, noise-free Ps-RF traces is obtained. This leads to robust interpretations of crustal333

structure. This technique for crustal imaging using Ps-RFs is a modification to the CRISP-334

RF workflow proposed by T. Olugboji et al. (2023), which originally targets upper mantle335

discontinuities. We demonstrate, using both synthetic experiments and real data examples,336

that our approach can effectively de-noise the Ps-RF traces and extract all Moho phases,337

and therefore greatly reduce the error range in the grid search for crustal parameters. We338

also demonstrate the CRISP-RF de-noising with a simultaneous de-reverberation technique339

proposed by Z. Zhang and Olugboji (2021, 2023), which improves crustal imaging beneath340

reverberant layers. We anticipate our approach will enable high-resolution crustal imaging341

with noisy teleseismic receiver functions and inspire more applications of the sparse Radon342

transform for seismic imaging.343

6 Data and Resources344

All seismic data used in this study can be obtained from the IRIS Data Manage-345

ment Center (https://ds.iris.edu/ds) under the network codes NN (station WCN) and346

NM (station HENM). Synthetic receiver functions were computed using the Telewavesim347

open-source Python library provided by (Audet et al., 2019). The extended-time multi-348

taper deconvolution program and the CRISP-RF data processing workflow are provided349

by (T. Olugboji et al., 2023) and can be retrieved from the open-source repository at350

https://doi.org/10.5281/zenodo.7996504.351
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