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Abstract

Learning and utilizing low-dimensional models for high-dimensional spatiospectral imaging problems is an active research area.

We present here a novel method for computationally efficient reconstruction from noisy high-dimensional MR spectroscopic

imaging (MRSI) data. The proposed method features (a) a novel strategy that jointly learns a nonlinear low-dimensional

representation of high-dimensional spectroscopic signals and a neural-network-based projector to recover the low-dimensional

embeddings from noisy/limited data; (b) a joint formulation that integrates the forward spatiospectral encoding model, a

constraint exploiting the learned representation, and a complementary spatial constraint; and (c) a highly efficient algorithm

enabled by a learned projector within an alternating direction method of multipliers (ADMM) framework, circumventing the

computationally expensive network inversion subproblem. The proposed method has been evaluated using simulations and

in vivo 31P-MRSI and 1H-MRSI data, demonstrating improved performance over state-of-the-art methods. Computational

complexity and algorithm convergence analysis have been performed to offer further insights into the effectiveness of the

proposed method.
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Abstract— Learning and utilizing low-dimensional mod-
els for high-dimensional spatiospectral imaging problems
is an active research area. We present here a novel method
for computationally efficient reconstruction from noisy
high-dimensional MR spectroscopic imaging (MRSI) data.
The proposed method features (a) a novel strategy that
jointly learns a nonlinear low-dimensional representation
of high-dimensional spectroscopic signals and a neural-
network-based projector to recover the low-dimensional
embeddings from noisy/limited data; (b) a joint formulation
that integrates the forward spatiospectral encoding model,
a constraint exploiting the learned representation, and a
complementary spatial constraint; and (c) a highly efficient
algorithm enabled by a learned projector within an alter-
nating direction method of multipliers (ADMM) framework,
circumventing the computationally expensive network in-
version subproblem. The proposed method has been eval-
uated using simulations and in vivo 31P-MRSI and 1H-MRSI
data, demonstrating improved performance over state-of-
the-art methods. Computational complexity and algorithm
convergence analysis have been performed to offer further
insights into the effectiveness of the proposed method.

Index Terms— MR spectroscopic imaging, representa-
tion learning, learning low-dimensional projection, neural
network, denoising, regularized reconstruction.

I. INTRODUCTION

MR spectroscopic imaging (MRSI) is a powerful molecu-
lar imaging modality that can simultaneously map the spa-
tiotemporal variations of a range of physiologically important
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endogenous metabolites noninvasively, with many potential
applications from basic sciences to clinical translations [1]–
[3]. Nevertheless, due to the inherent low abundance of the
metabolites of interest, MRSI signals are typically contami-
nated by a strong level of noise, limiting achievable resolution.
Furthermore, the high dimensionality of the imaging problem
due to the need to encode and decode both spatial and spec-
tral dimensions prefers faster acquisitions which may further
reduce the signal-to-noise ratio (SNR). In the meantime, the
multidimensional nature of the MRSI data presents unique
opportunities to develop processing methods to enable better
SNR, resolution, and speed tradeoffs, by exploiting low-
dimensional structures of the underlying signals of interest.

In particular, many constrained reconstruction methods
have been proposed to construct a low-complexity model by
utilizing MRSI signals’ unique characteristics for improved
reconstruction and quantification, e.g., spatial and/or spectral
domain sparsity [4]–[8] and low rank properties [9]–[15]. To
further take advantage of the spatial prior information from
anatomical scans readily available in most MRSI experiments,
various spatial constraints have also been introduced for MR
spatiospectral reconstruction [16]–[20]. Subspace imaging ex-
ploited the fact that high-dimensional spectroscopic signals
can be well approximated by a low-dimensional subspace
which can be prelearned from special training data [21]–
[23], which significantly reduced the degrees-of-freedom of
the imaging problem to enable fast, high-resolution MRSI,
and has been demonstrated with state-of-the-art performance
across various field strength and nuclei [23]–[29].

With the significant developments in deep-learning-based
MRI reconstruction, efforts have been made to develop
learning-based reconstruction and processing methods for
MRSI and demonstrate improved performance. One approach
is to train end-to-end networks that directly map noisy, artifact-
corrupted data to higher-SNR, artifact-reduced data via super-
vised learning [30]–[34]. As high-SNR, high-resolution MRSI
data are rather difficult to acquire, simulated single-voxel
spectroscopy or MRSI data have been used in training such
networks [33]. But simulated data often do not fully capture
the variations observed in experimental data, especially the
spatial patterns of different metabolites, which can lead to
significant bias for complete data-driven learning. Moreover,
end-to-end mapping provides less flexibility for changes in ac-
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quisition parameters during inference. An alternative approach
is to learn low-dimensional representations of the desired spec-
troscopic signals using deep networks, which generalize the
linear subspace models to provide better model accuracy. The
learned representations in the form of a trained network can
then be integrated with the physical forward encoding model
in an overall optimization formulation [27], [35]–[37]. While
this approach simplified the learning problem and allowed
for flexible adaptation for different acquisition parameters and
SNRs, it resulted in a high-dimensional, nonconvex problem
that required inverting the trained network in each iteration,
which is computationally demanding.

Here, we propose a new method that leverages deep
learning techniques for efficient MRSI reconstruction exploit-
ing learned low-dimensional models, called RAIISE (joint
leaRning of nonlineAr representatIon and projectIon for faSt
constrained MRSI rEconstruction). RAIISE is characterized
by three key features: (a) a novel strategy to jointly learn
low-dimensional representations of desired high-dimensional
spectroscopic signals and a network-based projector that can
recover the low-dimensional embeddings (or latent variables)
from noisy data; (b) a new constrained optimization for-
mulation that jointly solves for the unknown spatiotemporal
function of interest and the latent variables, integrating the
forward encoding model, a constraint enforced through the
learned representation, and a complementary spatial constraint;
and (c) a highly efficient algorithm enabled by the learned
projector to circumvent network backpropagation during one
of the subproblems in an ADMM framework. We have eval-
uated RAIISE using simulations as well as in vivo 31P-
MRSI and 1H-MRSI data. RAIISE achieved impressive SNR-
enhancing reconstruction and produced similar or slightly bet-
ter results than a previously published state-of-the-art network-
constrained MRSI reconstruction method but with two orders
of magnitude faster processing speed.

The remaining of the paper is organized as follows: Section
II provides background on the MRSI reconstruction problem.
Section III presents details of the proposed method, including
the projector learning strategy, reconstruction formulation, and
optimization algorithm. Section IV describes the simulation
and experimental settings for evaluations, and Section V
presents representative results followed by a discussion and
conclusion in Sections VI and VII.

II. BACKGROUND

The MRSI data acquisition process can be described as:

d(k, t) =

∫
ρ(r, t)ei2πδf(r)te−i2πkrdr+ n(k, t), (1)

where d(k, t) denotes the corresponding (k, t)-space mea-
surements, ρ(r, t) represents the unknown high-dimensional
spatiotemporal function (Fourier counterpart of the desired
spatiospectral function), t indexes the free induction decay
(FID) time dimension, δf(r) denotes the B0 field inhomogene-
ity, k the k-space coordinates, and n(k, t) the measurement
noise (commonly assumed to be complex white Gaussian). The
overall imaging problem here is defined as recovering ρ(r, t)

from a set of extremely noisy measurements d(k, t), for which
effective constraints are critical.

A generic constrained MRSI reconstruction formulation can
be written as (after proper discretization):

ρ̂ = argmin
ρ

∥d−FΩ{B⊙ ρ}∥22+λR(ρ). (2)

The first term imposes data consistency where B captures
the B0 field inhomogeneity, FΩ represents the encoding op-
erator with a (k, t)-space sampling pattern Ω, and ⊙ is an
element-wise multiplication. The second term R(.) imposes
the constraints based on specific prior information, e.g., the
unknown ρ resides on a learned low-dimensional manifold
R(ρ;Nθ(ρ)) with Nθ being the trained network parameterized
by θ, and λ is the regularization parameter. This formulation
offers great flexibility with different acquisition designs, but
solving the associated optimization problem can be compu-
tationally demanding. For example, with the neural network
term, a very time-consuming Jacobian matrix calculation (i.e.,
∂R(ρ;Nθ(ρ))

∂ρ ) is needed for each voxel FID in each iteration.
Therefore in this work, we proposed a novel method for com-
putationally efficient reconstruction of MRSI data leveraging
the learned low-dimensional representation prior via a learned-
projection-based ADMM algorithm, and a novel strategy to
jointly learn the nonlinear low-dimensional representation and
its associated projector. Details can be found below.

III. PROPOSED METHOD

A. Jointly Learning Nonlinear Representation and
Projection for MRSI Data

As demonstrated in [35], [36], learned nonlinear repre-
sentations can serve as effective constraints for high-SNR
MRSI reconstruction. And the expressiveness and flexibility of
neural networks make them a powerful tool for learning such
representations, e.g., using a deep autoencoder (as illustrated
in Fig. 1 top branch) [35]. Specifically, let E(.; θe) and
D(.; θd) denote the learned encoder and decoder, and θe and
θd containing the corresponding network parameters, low-
dimensional modeling of the spectroscopic signals can be
enforced by a penalty term ∥D(E(x; θe); θd) − x∥22. How-
ever, solving an optimization problem with this term can be
computationally challenging due to the need of inverting the
network. With RAIISE, we sought to reformulate this problem
using a projection network. Specifically, we first adapted the
learning strategy in [35], [36] for pretraining a representation
model (E(.; θe) and D(.; θd)). Then, a set of noisy training
samples x̃m were generated by combining the same training
data used for representation learning with Gaussian noise at
various SNRs (Fig. 1, bottom branch). A projector was trained
to recover the low-dimensional embeddings (captured by the
pre-trained encoder) from the noisy data as follows:

θ̂p = argmin
θp

1

M

M∑
m=1

ϵ1(E(xm;θe), P (x̃m;θp))

+ γϵ2(xm, D(P (x̃m;θp);θd)),

(3)

where P (.;θp) is the projector with parameters θp, x̃m are
the noisy input, ϵ1 and ϵ2 compute the “projection” errors
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Fig. 1. The proposed strategy to jointly learn a nonlinear low-dimensional representation of spectroscopic signals (top branch) and a projector for
recovering the low-dimensional features/embeddings from the corresponding noisy measurements (bottom branch). The representation model was
a (complex) deep autoencoder with either fully-connected or convolutional layers (for single- or multi-TE data, respectively) [35], [36]. The projector
was trained using the same data (with noise at different SNRs added) and the prelearned decoder from the representation network, aiming to
recover low-dimensional embeddings of the spectroscopy signals captured by the representation encoder from their noisy counterparts and to
reconstruct the decoded signals accurately (see the long arrow on the right from the top to bottom branch).

for the low-dimensional features and the full signals, respec-
tively, and γ balances the two losses. The encoder E(.; θe)
and decoder D(.; θd) are from the representation network
(Fig. 1 top branch). The first term is used to minimize the
difference between the hidden representation of the noiseless
signal captured by the encoder and its counterparts recovered
by the learned projector. The second term minimizes the
difference between the reconstructed signal by the decoder
from the projected embedding and the true noiseless signal.
The projector can be realized using the same architecture as
the representation encoder with different layer designs adapted
to the data characteristics (single- or multi-TE FIDs), and ϵ1
and ϵ2 can be chosen separately. In this study, mean squared
error (MSE) was used for both ϵ1 and ϵ2.

B. Reconstruction Using the Learned Projector

With the learned projector, RAIISE reformulates the con-
strained MRSI reconstruction problem as follows:

X̂, Ẑ = argmin
X,Z

∥d−FΩ{B⊙X}∥22+λR(X)

s.t. X = D(Z),
(4)

Fig. 2. Network design: X denotes the collection of training data
(single- or multi-TE FIDs) with Dj being the data dimension in each
layer. For multi-TE data, convolutional layers were included for exploiting
multi-dimensional correlation (TE dimension treated as separate input
channels Kj ), and fully connected middle layers were used for further
low-dimensional feature extraction. Complex-valued units and activation
functions were used (as defined in the figure) [38], [39].
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where X = D(Z) (D being the decoder) enforces the prior
that the underlying spectroscopic signal X should yield a low-
dimensional representation Z (residing on a low-dimensional
manifold). B models the B0 inhomogeneity, FΩ is an encod-
ing operator with sampling pattern Ω, d contains the noisy
(k, t)-space measurements, and R(.) imposes a complemen-
tary constraint with regularization parameter λ, e.g., a spatial
regularization R(X) = ∥DwX∥2F in this work, where Dw is a
weighted finite-difference operator with weights derived from
a reference image.

An ADMM-based method was used to solve this optimiza-
tion problem, i.e., with an augmented Lagrangian function:

L(X,Z,Y) = ∥d−FΩ{B⊙X}∥22+λ∥DwX∥2F

+
µ

2
∥ X−D(Z) +

Y

µ
∥2F ,

(5)

where Y is the Lagrangian multiplier. Then, the following
three subproblems were solved in an iterative fashion to solve
the overall problem (with i being the iteration index):
Subproblem (I): Update Z with fixed X(i) and Y(i)

Z(i+1) = argmin
Z

µ

2
∥X(i) −D(Z) +

Y(i)

µ
∥2F . (6)

Solving this problem requires backpropagation through the
decoder network D (i.e., computing ∂D(Z)

∂Z ) for each voxel FID
in each iteration, which is highly time-consuming, especially
for 3D data. To this end, we leveraged the learned projector
and reformulated the problem into

Z(i+1) = argmin
Z

µ

2
∥P

(
X(i) +

Y(i)

µ
; θ̂p

)
− Z∥2F , (7)

with P being the learned projector and P (D(Z)) = Z, and
the solution can be obtained via a one-step forward pass:

Z(i+1) = P

(
X(i) +

Y(i)

µ
; θ̂p

)
. (8)

Subproblem (II): Update X with fixed Z(i+1) and Y(i)

X(i+1) = argmin
X

∥d−FΩ{X}∥22+λ∥DwX∥2F

+
µ

2
∥X−D(Z(i+1)) +

Y(i)

µ
∥2F .

(9)

Subproblem (III): Update Y with fixed Z(i+1) and X(i+1)

Y(i+1) = Y(i) + µ
(
X(i+1) −D(Z(i+1))

)
. (10)

Subproblem (II) is equivalent to a linear least-squares problem
with two quadratic regularization terms which is easy to solve.
The stopping criteria for the overall ADMM algorithm can
be either a specific iteration number (e.g., 15) or the relative
changes between X(i+1) and X(i) falling below a threshold
(e.g., 10−3), whichever reached first.

C. Computational Complexity Analysis

To further analyze the gain in computational efficiency
offered by the proposed method, we compared the computa-
tional complexity of our algorithm against the NN-constrained

reconstruction in [35]. Both methods utilized an ADMM-
based algorithm skeleton. For the subproblems with quadratic
regularization, Eq. (9) here and Eq. (10) in [35], both were
solved by the same conjugate gradient algorithm, thus the
computational complexities are almost identical at this step.
Therefore, the main differences lie in the other subproblems.
Specifically, the NN-constrained reconstruction solved the
following overall problem [35]:

X̂ = argmin
X

∥d−FΩ{S}∥22+λ2∥DwB̄⊙ S∥2F
+ λ1∥D(E(X))−X∥2F

s.t. B⊙X = S,

(11)

where S is an auxiliary variable (S = B ⊙ X) to decouple
the linear least-squares and the nonlinear regularization terms,
B̄ represents the element-wise conjugation of B, and D(.)
and E(.) are the corresponding decoder and encoder networks
from the learned representation model. λ1 and λ2 are the
regularization parameters for the NN-based and spatial regular-
ization terms, respectively. A BFGS-based algorithm was used
to solve the corresponding network-constrained subproblem:

X(i+1) = argmin
X

λ1∥D(E(X))−X∥2F

+
µ′

2

∥∥∥∥∥B⊙X− S(i) +
Y(i)′

µ′

∥∥∥∥∥
2

F

,
(12)

Without loss of generality, we assume that X ∈ RN×T with
N being the number of voxels and T the number of FID
points, and the network has l fully-connected layers with
weights Wl ∈ RT×T for each layer. With some element-
wise activation functions, the computational complexity for
the forward and backward propagation was then O(NlT 2).
Accordingly, the computational complexity for evaluating the
cost function in Eq. (12) was O(NlT 2), and O(N(l+ 1)T 2)
for the gradient. Thus, the overall complexity for a K-iteration
BFGS algorithm was [40]:

O((l + 1)KNT 2)

= O(KNT 2) +O(KNlT 2) +O(KN(l + 1)T 2)
(13)

Meanwhile, RAIISE solves the NN-constrained subproblem
with only one forward pass (Eq. (8)), i.e., O(NlT 2), which is
much lower than the original algorithm in [35].

D. Other Implementation Details
We adapted the network structure and training data gen-

eration pipelines described in [35]–[37]. Specifically, fully-
connected or convolutional autoencoder with a ”bottle-neck”
design and complex unit and activation function [38], [39]
were used for single-TE and multi-TE data, respectively. The
projector was designed to have the same architecture as the
encoder in the representation network. Well-defined spectral
parametric fitting models were used to synthesize all the
training and testing data with model parameters randomly
sampled from experimentally estimated distributions. More
details can be found in [35]–[37]. A total of 100,000 spectra
were simulated for each scenario with 80,000 for training and
20,000 for testing. Each of the simulated FID was added to



5

Fig. 3. Monte-Carlo analysis of the denoising effects on metabolite quantification: statistics for the estimated PCr, α-APT, and Pi from the noisy
data (Noisy), NN-constrained reconstruction (NN Constraint), and the proposed method (RAIISE) are compared. The true values are shown as
dashed lines in the box plots (True Value) and the standard deviations as error bars. Although slight biases were introduced for both NN constraint
and RAIISE, significant variance reduction was achieved with denoising, especially for low-concentration metabolites and/or at lower SNRs.

Fig. 4. Spatiospectral reconstruction from the numerical MRSI phantom: The gold standard (Gold Standard), noisy data (Noisy), and results from
a subspace-constrained reconstruction (SubSpa) [22], the NN-constrained reconstruction (NN Constraint) [35], and the proposed method (RAIISE)
are shown in different rows. MSEs are shown under each method label. The left panel shows metabolite maps of PCr, α-ATP, and Pi, and the right
panel compares representative spectra from gray matter (GM), white matter (WM), and the lesion (Lesion) with their corresponding error spectra
(in black). All denoising reconstruction methods produced significantly better maps and spectra than noisy data. RAIISE performed slightly better
than the NN Constraint method but is dramatically faster, i.e., ∼5 mins (RAIISE) vs. ∼4.5 hrs of processing time.

different noise realizations with SNR varied between 10 to 100
(SNR defined w.r.t. the highest peak in each spectrum) for the
projector training. All network training was performed on a
Windows 10 machine with Intel(R) Core(TM) i9-9820X CPU
and NVIDIA(R) TITAN RTX(TM) GPU and implemented in
PyTorch with Adam optimizer [41]. The batch size was set to
500, and the initial learning rate was 0.001, with 300 epochs,
while other parameters remained as default. The same machine
was used for the reconstruction.

IV. SIMULATION AND EXPERIMENTAL SETTINGS

A. Simulation
A 31P-MRSI numerical phantom was generated with com-

monly observed 31P-containing compounds to evaluate the

reconstruction performance of the proposed method, where
phantom construction details can be found in [35]. In short,
brain tissue fractions maps with gray matter (GM), white
matter (WM), and cerebrospinal fluid (CSF) and spectral
parameters were assigned based on experimental data and
literature values [42], [43]. Random frequency shifts were
simulated to mimic practical conditions. A lesion-like feature
was also included. Finally, complex white Gaussian noise was
added to the (r, t)-space data to simulate noisy acquisitions.

For the reconstruction comparison, the proposed method,
the NN constraint method, as well as a state-of-the-art
subspace-constrained reconstruction [22] (with the same spa-
tial constraint) were conducted, where both the nonlinear
and linear subspace models were learned with the same



6

Fig. 5. Spatiospectral reconstructions from in vivo 3D 31P-MRSI data. Results from different methods are shown in different rows. Metabolite maps
of PCr, α-ATP, and Pi for selected slices are shown on the first three columns (in institutional unit; left panel), while spatially-resolved spectra from
selected voxels (locations marked in the anatomical image inserts) are shown in the subsequent columns (right panel). The SNR improvement is
apparent for both the NN Constraint and RAIISE methods, while RAIISE enjoyed a dramatically faster speed, i.e., ∼20 mins vs. ∼2 days, making
it more practically useful for high-resolution volumetric MRSI data.

Fig. 6. Bland-Altman analysis of the reconstructions from two repeated experiments. The metabolites were quantified from the reconstruction
using a QUEST-based method. Improved consistency between the measurements can be clearly seen for both NN-constrained reconstruction
(NN Constraint; second column) and RAIISE (third column), compared to the original noisy data (first column). RAIISE slightly outperformed the
NN-constrained reconstruction, particularly for PCr and Pi, as shown by the scatter plots and reproducibility coefficient (RPC in each plot).

training data. The model orders were chosen with the same
representation accuracy, 15 for the nonlinear and 32 for the
subspace model, respectively (with testing data approximation
error around 7%). The regularization parameters for all three

methods were fine-tuned to reach the maximum reconstruction
accuracy (in terms of MSE) compared to the gold standard.

We also performed a Monte Carlo (MC) simulation to
assess the proposed method quantitatively. As performing the
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Fig. 7. In vivo 1H-MRSI results from a healthy volunteer: The top panel compares metabolite maps of NAA, Cr, Cho, and Glx from noisy data (left
section) and RAIISE (right section). The bottom panel compares spatially-resolved noisy (red curves; left) and reconstructed (black curves; right)
spectra, with voxel locations marked by the colored symbols shown in the T1-weighted anatomical image inserts. Significant SNR enhancement
and better tissue contrasts can be observed in our reconstruction.

MC study by reconstructing the whole MRSI phantom using
the NN-constrained reconstruction in [35] takes too long, we
randomly selected a noiseless FID (gold standard) from the
numerical phantom and generated 100 noisy realizations at
peak SNRs of 5, 15, 30, and 50. Using this single-voxel data,
we compared the effects of denoising from different methods
on metabolite quantification. A QUEST-based method was
used for the quantification here [44].

B. In Vivo Experiments

All in vivo data were acquired with approval from local
Institutional Review Boards. 31P-MRSI data were acquired
from a healthy volunteer on a Siemens Magnetom 9.4T whole-
body imaging system using a double-tuned phased array
coil with 8 transceivers/2Rx channels for phosphorus. The
acquisition parameters were: TR/TE = 250/1.3 ms, FOV =
180×200×180 mm3, matrix size = 28×30×13, 16 averages
with Hanning weighted k-space averaging, spectral bandwidth
= 5000 Hz and 512 FID points [45]. The total acquisition
time was about 74 min. Here both the simulation and in vivo
31P-MRSI data shared the same learned nonlinear model (as
well as the corresponding projector). For the reconstruction
parameters selection, the penalty parameter for the ADMM
algorithm µ was kept the same with the simulation, and a very
mild spatial regularization parameter was used (λ = 0.03).

1H-MRSI data were acquired from both healthy volunteers
and post-traumatic epilepsy (PTE) patients on a Siemens
Prisma 3T system using a multi-TE 3D-EPSI sequence [46]
with a 20-channel head coil: TR/TE = 1000/(65, 80) ms,
FOV = 220×220×64 mm3, matrix size = 42×42×8, spectral
BW = 1087 Hz and 200 FID points. Total acquisition time
was about 14.4 mins. A 60 Hz weak water suppression and
outer volume suppression were used for all scans. Before

Fig. 8. 1H-MRSI results from a PTE patient: The top panel shows
the anatomical images (FLAIR) for different slices across the imaging
volume, with a hyperintensity region indicated by the red arrows. The
spatially-resolved spectra from RAIISE (black plots; right) exhibit sig-
nificant SNR enhancements and better differentiate normal-appearing
tissues from the lesions than the noisy data (red plots; left). Lesion-
specific metabolic profile abnormality buried under noise was better
revealed by the proposed reconstruction. The voxel locations were
marked by colored symbols.

the denoising reconstruction, nuisance water/lipid signals were
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Fig. 9. Metabolite maps, i.e., NAA, Cr, Cho, and Glx produced from the same data in Fig. 8: Results from the noisy data and the proposed method
are shown on the left and right panels, respectively. The proposed method obtained Higher-quality metabolite maps better delineating the lesion
(red circles), i.e., reduced NAA, reduced Cr, and increased Glx to Cr ratio.

removed using the method in [47]. The same representation
model and projector were used here for both healthy and
PTE patients. A very mild spatial prior was also introduced
(λ = 0.03) for the reconstruction. All the noisy and denoised
data were quantified with a QUEST- and a ProFit-based [48]
method for single- and multi-TE data, respectively.

V. RESULTS

A. Simulation Results

Figure. 3 shows MC simulation results, i.e., comparing the
means and variances of the estimated metabolite coefficients
(PCr, α-ATP, and Pi) from the noisy data, NN-constrained
reconstruction using the same representation model, and the
proposed method. As can be seen, high fitting accuracy can
be achieved with low variance for the noisy measurements
when SNR is high, while both NN-constrained reconstruction
and the proposed method introduced a small amount of bias.
Note that the reconstruction altered the inherent statistics of
the noise, making the least-squares estimation biased. This
indicates that denoising is not necessarily needed when the
SNR is sufficiently high. However, in the low-SNR cases and
for lower-concentration metabolites (e.g., ATP and Pi), the
two denoising methods achieved significant variance reduction
with a small bias compared to the noisy Fourier reconstruc-
tion. Similar levels of variance reduction were observed for
both NN-constrained reconstruction and the proposed method,
while the proposed method attained a dramatically higher
reconstruction speed. Figure. 4 shows a set of reconstructions
from the 31P-MRSI phantom at SNR = 20 (defined w.r.t. the
PCr peak). We compared RAIISE with the reconstruction from
the NN constraint method as well as the subspace-constrained
reconstruction. As can be seen, significant SNR improve-
ment and higher reconstruction accuracy were achieved by
the subspace-based method and both nonlinear-model-based

methods compared to noisy data (bottom three rows). But the
two nonlinear-model-based methods produced better results
compared to the subspace reconstruction, as shown by the
MSE, metabolite maps (left panel), and spectral error plots
(right panel, fourth and fifth rows). RAIISE obtained slightly
better accuracy (fifth row). More importantly, RAIISE is
dramatically faster than the previous NN-constrained method
on the same machine, i.e., ∼5 mins vs. ∼4.5 hrs.

B. In Vivo Results
Reconstructions from an in vivo 3D 31P-MRSI dataset are

shown in Fig. 5. It is evident that both the NN-constrained
reconstruction (second row) and RAIISE (third row) exhibited
substantial SNR improvements compared to the noisy data
(first row). This enhancement is particularly pronounced for
low-abundance metabolites, such as Pi. Notably, the proposed
method achieved significantly faster reconstruction, taking
approximately 20 mins compared to approximately 2 days for
the original NN-constrained method (which required network
inversion), an acceleration of about 100×.

Fig. 10. Reconstruction performance’s dependence (in terms of MSE)
on the spatial regularization parameter (λ), evaluated using the simu-
lated 31P-MRSI phantom shown in Fig. 4.
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Fig. 11. Convergence analysis: a) Loss function values versus iterations for the MRSI phantom; b) Relative ℓ2 differences in X between iterations
(i.e., ∥X(i+1) − X(i)∥F /∥X(i)∥F ); c) Empirical evidence of the σ-strong convexity (σ = 0.1) for the first 20 iterations.

The quantitative performance of the proposed method was
further evaluated via a test-retest experiment, and the re-
peatability of the metabolite quantification (PCr, α-APT, and
Pi) from two repeated 31P-MRSI scans was demonstrated in
Fig. 6. The results demonstrate a significant improvement
in the consistency of metabolite estimations from two re-
peated measurements for both the NN constraint and proposed
methods. Particularly, the proposed method yielded slightly
better consistency, as indicated by the reduced reproducibility
coefficient (RPC) values shown in each subplot.

Spatiospectral reconstruction results from the multi-TE 1H
MRSI experiments were shown in Figs. 7 (healthy volun-
teer), 8, and 9 (PTE patients). Figure 7 compares the metabo-
lite maps for different slices across the imaging volume (top
panel) and spatially localized spectra (bottom panel), for the
noisy Fourier (left section) and denoised RAIISE reconstruc-
tions (right section). As can be seen, the proposed method
produced significantly improved SNR with well-preserved
spatiospectral features and high-quality metabolite maps, e.g.,
better GM/WM/CSF contrast. Figures 8 and 9 compare the
reconstructions from a PTE patient. Specifically, Figure 8
shows spatially localized spectra of one voxel from anterior
gray matter (red circle), two from lesion regions (green star
and purple square; selected from the hyper-intensity regions
shown in the FLAIR image), and the fourth from a CSF-filled
no-tissue region (blue pentagon). Quantified metabolite maps
are shown in Fig. 9. Again, the proposed method produced
significant SNR improvement with less spectra distortion and
overfitting, revealing tissue-specific biochemical features. It
also enhanced the quality of metabolite maps with better lesion
delineation (see red circles in Fig. 9). Note that this metabolic
information can have great potential as additional biomarkers
for lesion subtyping, e.g., epileptogenic or not.

VI. DISCUSSION

Our proposed method inherits similar advantages from the
previously reported NN-constrained reconstruction method.
First, unlike the direct end-to-end network approaches, the
learned model aims to capture the inherent variations of the
true MRSI signals, thus one trained network can be flexibly
used for data acquired at different settings, e.g., resolutions and
(k, t)-space sampling patterns (accounted for by the forward
model) without re-training. Second, our formulation has the
capability to incorporate additional constraints like the spatial
regularization introduced in Eq. (4) or even other NN-based

priors, e.g., deep image prior [49], which can be an interesting
direction to explore in future work. Finally, the complex
convolutional autoencoder network design enables a scalable
adaption for multi-TE/multi-dimensional MRSI signals than
standard fully-connected networks [35].

For the selection of the regularization parameter, Fig. 10
shows the reconstruction performance w.r.t. the value of λ,
evaluated using MSE on the numerical 31P-MRSI phantom.
The results indicate that the denoising performance remains
robust across a relatively large range of parameter values.
However, it is worth exploring alternative strategies for param-
eter selection, including those optimized for metrics beyond
MSE and learning-based approaches. Additionally, we used
an ℓ2 regularization for a consistent comparison of algorithms
and their complexities. But other forms of regularization, e.g.,
ℓ1 or other non-quadratic penalties, can be exploited. We
noticed similar performances between our weighted-ℓ2 and ℓ1
regularization if the parameter was well chosen.

For theoretical analysis of our algorithm, global conver-
gence of a general ADMM algorithm with nonlinear equality
constraints was recently established [50]. Specifically, with
some basic assumptions (i.e., [50]; Section 2), the authors laid
out three technical conditions for convergence, i.e., Eqs. (6.7)
and (6.8) in [50], and an additional σ-strong convexity as-
sumption. In our case, these three conditions are:

L(X(i+1),Z(i),Y(i)) ≤ L(X(i),Z(i),Y(i)), (14)

∇ZL(X
(i+1),Z(i+1),Y(i)) = 0, (15)

and the σ-strong convexity assumption being expressed as:

L(X(i+1),Z(i+1),Y(i)) +
σ

2
∥Z(i+1) − Z(i)∥2F

≤ L(X(i+1),Z(i),Y(i)).
(16)

Eq. (14) is automatically satisfied as the X-subproblem
is solved with a conjugate gradient method. For the Z-
subproblem, assuming that the neural network we used has a
sufficient representation power so that we can learn a projector
P such that P(X(i) + Y(i)

µ ) ∈ argminZ
µ
2 ∥X

(i) + Y(i)

µ −
D(Z)∥2F , Eq. (15) can be readily satisfied. Proving the σ-
strong convexity condition analytically with the deep network
is difficult, thus we showed some empirical evidence for
Eq. (16) in Fig. 11c using our MRSI phantom with σ = 0.1.
Additionally, we showed empirical convergence using the loss
function curve (Fig. 11a) as well as the relative changes in X
(Fig. 11b) throughout the iterations.
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VII. CONCLUSION

We proposed a novel MRSI reconstruction method that
features a strategy to jointly learn a nonlinear low-dimensional
representation of high-dimensional spectroscopic signals and
a projector to recover the low-dimensional embeddings, a
formulation combining the forward physical model and the
spectral constraint enforced via the learned representation, a
complementary spatial constraint, and an efficient ADMM-
based algorithm facilitated by the learned projector. SNR and
quantification improvements with highly efficient computation
were demonstrated by both simulations and in vivo MRSI
data acquired at different experimental settings. We expect
the proposed method to provide a widely applicable processing
tool to enhance the quality of MRSI or other high-dimensional
spatiospectral imaging data.
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