Seven Things to Know about Exercise Monitoring with Inertial Sensing Wearables

Vu Phan 1, Ke Song 2, Rodrigo Scattone Silva 2, Karin G. Silbernagel 2, Josh R. Baxter 2, and Eni Halilaj 2

1Carnegie Mellon University
2Affiliation not available

October 31, 2023

Abstract

Objective: Exercise monitoring with low-cost wearables could improve the efficacy of remote physical-therapy prescriptions by tracking compliance and informing the delivery of tailored feedback. While a multitude of commercial wearables can detect activities of daily life, such as walking and running, they cannot accurately detect physical-therapy exercises. The goal of this study was to build open-source classifiers for remote physical therapy monitoring and provide insight on how data collection choices may impact classifier performance.

Methods: We trained and evaluated multi-class classifiers using data from 19 healthy adults who performed 37 exercises while wearing 10 inertial measurement units on the wrist, pelvis, thighs, shanks, and feet. We investigated the effect of sensor density, location, type, sampling frequency, output granularity, feature engineering, and training-data size on exercise-classification performance.

Results: Exercise groups (n=10) could be classified with 96% accuracy using a set of 10 inertial measurement units (IMUs) and with 89% accuracy using a single pelvis-worn IMU. Multiple sensor modalities (i.e., accelerometers and gyroscopes), high sampling frequencies, and more data from the same population did not improve model performance, but in the future data from diverse populations and better feature engineering could.

Conclusions: Given the growing demand for exercise monitoring systems, our sensitivity analyses, along with open-source tools and data, should reduce barriers for product developers, who are balancing accuracy with product formfactor, and increase transparency and trust in clinicians and patients.
Seven Things to Know about Exercise Monitoring with Inertial Sensing Wearables

Vu Phan, Ke Song, Rodrigo Scattone Silva, Karin G. Silbernagel, Josh R. Baxter, and Eni Halilaj*

Abstract—Objective: Exercise monitoring with low-cost wearables could improve the efficacy of remote physical-therapy prescriptions by tracking compliance and informing the delivery of tailored feedback. While a multitude of commercial wearables can detect activities of daily life, such as walking and running, they cannot accurately detect physical-therapy exercises. The goal of this study was to build open-source classifiers for remote physical therapy monitoring and provide insight on how data collection choices may impact classifier performance. Methods: We trained and evaluated multi-class classifiers using data from 19 healthy adults who performed 37 exercises while wearing 10 inertial measurement units on the wrist, pelvis, thighs, shanks, and feet. We investigated the effect of sensor density, location, type, sampling frequency, output granularity, feature engineering, and training-data size on exercise-classification performance. Results: Exercise groups (n=10) could be classified with 96% accuracy using a set of 10 inertial measurement units (IMUs) and with 89% accuracy using a single pelvis-worn IMU. Multiple sensor modalities (i.e., accelerometers and gyroscopes), high sampling frequencies, and more data from the same population did not improve model performance, but in the future data from diverse populations and better feature engineering could. Conclusions: Given the growing demand for exercise monitoring systems, our sensitivity analyses, along with open-source tools and data, should reduce barriers for product developers, who are balancing accuracy with product formfactor, and increase transparency and trust in clinicians and patients.

Index Terms—Wearable sensors, inertial measurement units (IMUs), deep learning, exercise classification, remote rehabilitation.

I. INTRODUCTION

Lightweight wearable sensors and the quantified-self movement they awakened in the past decade continue to inspire reflection on how to turn self-tracking from a cultural phenomenon into a healthcare revolution. Similar to glucose, temperature, heart rate, and electrical activity monitors being adopted in clinical care, remote tracking of rehabilitation exercises with motion sensors should also be feasible [1-3]. By tracking adherence, inertial sensors could inform the delivery of precision rehabilitation and lower overall healthcare costs. Yet, while the formfactors characterizing commercial products continue to improve, the modeling required to turn the data into meaningful feedback remains opaque, limiting the practical use of motion sensors. Physical activity monitors, including those embedded in consumer-grade wearables, are generally accurate but limited to recognition of basic activities of daily living, such as walking and running [4, 5].

While remote rehabilitation would benefit from accurate identification of activities that have clinical implications, the feasibility of doing so using wearable sensors remains unclear. Prior classifiers have reported high accuracy based on a small number of exercises, such as lunges, squats, and heel raises [6-9]. The training data have included a small number of both upper- and lower-extremity exercises that are highly distinctive [6, 8-14], which facilitates classification. Grouping upper and lower extremity exercises into a single classifier may be helpful for general fitness tracking but falls short of informing the delivery of tailored physical therapy. Clinicians often prescribe a multitude of exercises targeting specific lower or upper extremity conditions. The large number of exercises and narrower movement variability pose challenges for classifier accuracy, but provide the opportunity to cluster similar exercises that we expect will increase classifier accuracy while maximizing clinical impact.

As wearable sensor systems are developed to address this clinical need, they must not only be accurate in exercise detection but also be practical to use in patient populations. For example, sensors that require frequent patient interactions to log data or charge the battery of multiple sensors increase patient burden and decrease the large-scale implementability of wearable sensors in healthcare. However, little is known about the influence of sensor density, location, type, and optimal frequency to help balance classifier accuracy with device usability (e.g., battery life, user experience). While each study uses different sensor densities, locations, and exercises, it is difficult to understand if a wrist-worn sensor is as good as a

Ke Song (email: Ke.Song@pennmedicine.upenn.edu) and Josh R. Baxter (email: josh.baxter@pennmedicine.upenn.edu) are with the Orthopaedic Surgery Department, University of Pennsylvania, Philadelphia, PA, USA.

Rodrigo Scattone Silva (email: r.scattone@outlook.com) is with the Postgraduate Program in Rehabilitation Sciences, Federal University of Rio Grande do Norte, Santa Cruz, Brazil.

Karin G. Silbernagel (email: kgs@udel.edu) is with Physical Therapy Department, University of Delaware, Newark, DE, USA.

Manuscript received on XXX. This study was funded by awards from the National Science Foundation (CBET 2145473) and National Institutes of Health (R01AR078898, R01AR072034, P50AR080581, and NICHD R37HD037985).

*Corresponding author: Eni Halilaj, PhD (ehalilaj@andrew.cmu.edu).
Vu Phan (email: vuphan@andrew.cmu.edu) and Eni Halilaj (email: ehalilaj@andrew.cmu.edu) are with the Mechanical Engineering Department, Carnegie Mellon University Pittsburgh, PA, USA.
pelvis-worn one, or if a pelvis-worn one is as good as multiple segment-specific sensors. Recent work considered single-sensor placements at the wrist [6, 17], forearm [14, 15], upper arm [18], lower back [19, 20], and shank [21], but it is difficult to draw conclusions on which sensor location is optimal due to differences in the exercises these studies included. Further, as most studies focused on performance metrics, few translatable insights have been provided to help researchers, clinicians, and product developers choose parameters that are most practical when implementing a monitoring system. For example, it is unclear if power-hungry gyroscopes are essential for classifier performance over accelerometry alone. It is also unknown if sampling frequency can be lowered to extend battery life without sacrificing performance. Another question is if the models could be enhanced with more data and better feature engineering, or if they have reached theoretical limits of performance. One large focus in movement biomechanics is kinematics estimation with inertial measurement units (IMUs) [22, 23]. However, exercise classification models have in the past been trained using accelerometer and gyroscope data extracted directly from the sensors, instead of estimated kinematics, which can be interpreted as domain-informed feature engineering. In many applications, feature engineering is a laborious step that can ultimately improve classifier accuracy, but it remains unclear if this applies to exercise classification.

The primary goal of this work was to build open-source exercise classification models and perform sensitivity analyses that would inform the development of remote physical therapy monitoring systems and data collection protocols, democratizing the process for all researchers, clinicians, and product-development entities. We first report classifier performance across 37 lower-extremity load-bearing exercises and use a data-driven approach to cluster similar exercises. We then systematically investigate the impact of sensor density, location, type, and sampling rate. Last, we investigate if more data and better feature engineering would move these classifiers toward theoretical limits of performance. In addition to the code, we make all the data publicly available.

II. METHODS

Nineteen healthy subjects (9 males:10 females; age: 25 ± 5 years; body-mass index: 24.1 ± 2.4 kg/m2) were recruited to participate in this study after we obtained approval from the Institutional Review Board at the University of Pennsylvania and informed consents [24]. None of the participants had self-reported injuries in the past 6 months. They were instructed to perform 37 lower-extremity exercises while following visual demonstrations by a physical therapist. At least three successful repetitions were recorded for each exercise. Based on the intensity of exercises, we divided data collection into 4 modules, each containing 7 to 10 exercises (Fig. 1 and Table I).
Subjects took breaks of 3 – 5 minutes after each module to prevent any possible confounding effects of physical exhaustion.

We tracked movement with both inertial sensors (Opal, APDM Wearable Technologies, USA) and marker-based motion capture (Raptor Series, Motion Analysis Corporation, USA), with the latter used to obtain ground-truth movement. Ten IMUs were attached to the subject’s chest, pelvis, wrists, thighs, shanks, and feet (Fig. 4) to measure three-dimensional linear accelerations via accelerometry and angular velocities via gyroscopes. These data were used as input to train the deep learning models, with the labels indicating exercise type recorded by the research team. The 12-camera marker-based motion capture system recorded the motion of 31 retro-reflective markers placed on the lower body. The purpose of using marker-based motion capture was to obtain idealized joint kinematics and determine whether they can help improve classifier performance. IMU and motion capture data were sampled at 100 Hz. Three in-floor force platforms (BP600900, AMTI Force and Motion, USA) concurrently recorded ground reaction forces at 1000 Hz. Data from different modalities were synchronized by a syncing device (V2 Sync Box, APDM Wearable Technologies, USA). Marker-based motion capture data were filtered with a low-pass 4th order Butterworth filter with a cut-off frequency of 6 Hz before being used to perform inverse kinematics. To segment exercise repetitions in the linear acceleration, angular velocity, and marker-based motion capture data, we used the force plate data.

We first built convolutional neural network (CNN) models with different architectures to classify 37 exercises, before performing a cluster analysis to determine if the exercises could be further simplified into fewer groups. Building blocks consisted of rectified linear activated convolutional layers, batch normalization layers, and maximum pooling layers (Fig. 2). The number of building blocks (1 – 3) was a hyperparameter, along with batch size (16 – 128), convolutional outputs (32 – 256), and pool size (2 – 8), which were fine-tuned though a grid search. The convolutional kernel size and stride grid did not affect performance and were kept constant at 4 and 1, respectively. We used leave-one-subject-out cross validation (LOSOCV) for both hyperparameter tuning and performance evaluation, splitting the data into train, validation, and test sets.

We carried out a cluster analysis to determine which exercises could be grouped together for lighter-weight models. Since exercise with similar movements could result in similar clinical outcomes (e.g., joint load), this grouping of exercises practically helps reduce patient burden, while optimizing classifier performance. K-means was used to cluster exercises...
into groups. We used the elbow method on a curve of scaled inertia to determine the optimal number of clusters, with the k ranging from 1 to 19. Once the exercise groups were determined, we re-trained and re-evaluated the models for classification of these groups. Here we report model performance in terms of accuracy, precision, recall, and F1 score. For generalizability and rigor in model evaluation, we ensured that all the data from a subject were included solely in the training, validation, or test set.

In addition to training models with the full set of data from 10 IMUs, we also trained sparser models with data from 7, 5, 4, 3, 2, and 1 IMUs. For the single-sensor models, the IMUs placed on right wrist, chest, pelvis, and right thigh were tested due to their convenience for consumer products (Fig. 5a and 9a). For double-sensor settings, the sensors attached to chest and right thigh, both thighs, right wrist and right thigh, and right thigh and right shank (Fig. 5b and 9b) were tested.

To address questions around battery life, we compared...
models built with different sensor types and data sampling frequencies. Specifically, for the full-, single-, and double-sensor configurations, the models were trained and tested with data from the accelerometer only and gyroscope only, in addition to the original model that included both. To test model sensitivity to sampling frequency, the IMU data were downsampled to 50, 25, 20, 10, and 5 Hz and full-sensor models were retrained.

Last, we explored whether these models could be further improved via feature engineering and additional training data. To show that domain knowledge can boost model performance, we obtained kinematics from the marker-based motion capture data and trained models using only kinematics as the input feature. Marker-based kinematics represent idealized kinematics, which could theoretically be derived from IMU data via feature engineering. To gauge how model performance changes with the number of subjects included in the training dataset, learning curves were generated using 2 to 19 subjects. An inverse power law curve fitting approach [32, 33] was applied to predict how performance would increase with hypothetical sample sizes and what the theoretical limits of these models are.

All data and codes of this work will be available on https://simtk.org/projects/imu-exercise (currently in private mode for updates).

III. Results

A classifier built to predict exercise groups (i.e., clusters) was more accurate than one built to predict individual exercises. The optimal number of exercise clusters was 10 (Fig. 3b), and similar exercises were grouped together (Fig. 3a). For example, all the squats were grouped into the first group. Using linear acceleration and angular velocity data from 10 IMUs, exercise group could be predicted with nearly 96% accuracy (Fig. 3c and 4), while the 37 individual exercise with 81% accuracy (Fig. 2c, 3a, and 8). Most exercises misclassified by the individual exercise model had similar movements and were typically clustered under the same group. Examples include forward jump versus forward jump fast and lateral hop versus lateral hop fast (Fig. 3a).

Classification of exercise clusters was less sensitive to sensor number and location than classification of individual exercises. Reducing the sensor set reduced cluster-specific model performance only minimally, from 96% to 93%, 91%, 93%, 89% for the 5-, 4-, 3-, 2-IMU systems, respectively (Fig. 4). Single-IMU models achieved accuracies of 89% for the pelvis and 75% for the wrist (Fig. 5). Sensor density and location, however, had a major impact on classification of individual exercises, with accuracy dropping by more than 20%, from 81% to 61%, when a single pelvis-worn IMU was used compared to 10 IMUs (Fig. 8 and 9).

Accelerometry-based models were as accurate as those using both accelerometer and gyroscope data, and sampling frequency could be reduced to 20 Hz without affecting model accuracy (Fig. 6). With the full 10-IMU sensor set, a model using accelerometer data achieved similar performance to that using both accelerometer and gyroscope data sources (Fig. 6a). In addition, models trained with data that were downsampled to 50 or 25 Hz performed as well as the model trained with the original data recorded at 100 Hz. Further reducing the sampling frequency to 20 Hz reduced performance by less than 3% (Fig. 6b). These trends were similar for the exercise-specific models (Fig. 10).

Classification of exercise clusters was also less sensitive to training sample size and feature engineering than classification of individual exercises (Fig. 7). Our sample size analysis indicated that adding 132 subjects would increase the accuracy of identifying exercise clusters from 96% to 99%. Kinematics data increased accuracy from 96% to 98% (Fig. 7a). On the
other hand, more subjects (n = 2322) would improve the accuracy of exercise-specific models from 81% to 95%, when using accelerometry and gyroscope data (Fig. 7b). Kinematics would help improve the performance from 81% to 88% when data from only 19 subjects are available. To reach 95% accuracy, a kinematics-based model would require only 237 subjects. Generally, the accuracy of these models is theoretically bound at 98%.

IV. DISCUSSION

The goal of this study was to develop open-source models for exercise classification and carry out detailed sensitivity analyses on sensor density, location, type, sampling frequency, feature engineering, and training data size. We found that deep learning classifiers could predict 10 exercise groups with an accuracy of 96% and 37 individual exercises with an accuracy of 81%. Ten full-body sensors and three placed on the lower body led to comparable performance (i.e., less than 3% difference). Of single-sensor systems, one worn on the pelvis led to the best performance. Accelerometry data alone performed as well as gyroscope and acceleration together, and when these modalities are jointly used to derive kinematics, model performance improved only marginally. Our sample size analysis indicated that more data from the same population improves classification of individual exercises, but not exercise groups.

Our work suggests that grouping exercises by similarity is not only practically beneficial, but also clinically relevant. The clustering approach, which increased model performance from 81% to 96%, automatically grouped exercises into 10 categories with considerable affinity in terms of how they load joints of interest. For example, a prior analysis has shown that the patellofemoral joint is loaded similarly by a two-leg countermovement jump (i.e., CMJDL) and one-leg countermovement hop (i.e., CMJS) [24] and our clustering analysis grouped these activities together. The goal of remote exercise prescription and monitoring programs is to track how joints, ligaments, tendons, and muscles are loaded, and if a few...
exercises bear similar clinical significance in this context, then distinguishing among them at the expense of accuracy is not

Fig. 6. Model Performance by Sensor Type and Sampling Frequency: Exercise Groups. (a) The model trained with accelerometer data provided equivalent performance as that trained with gyroscope data or both. (b) Overall, reducing the rate at which the sensor data are sampled by the factor of up to 5 (i.e., 20 Hz) barely altered the performance (i.e., less than 3% in difference). The performance decreased more noticeably as the sampling rate was reduced to 10 Hz and 5 Hz.

Fig. 7. Model Performance with Sample Size and Feature Engineering. A learning curve was derived after training and evaluating models with 2 to 19 subjects (i.e., dots in the figures). An inverse power law [32, 33] estimated how the models could improve with more data (i.e., solid lines), akin to sample size calculations in inferential statistics. (a) This sample size analysis predicted that group-specific models can theoretically reach accuracies of 100%. (b) Exercise-specific models can reach accuracies of 97% and 98% for the baseline and kinematics model, respectively, but data from thousands of subjects would be required.
This grouping has the added advantage of generating equally accurate models with sparser sensor sets, making it a more viable solution for translation. A pelvis-worn sensor, which tracks the body’s center of mass, stands out among single-sensor configurations with an accuracy of 86% in predicting exercise clusters—a decrease of only 9% from the model that uses the full set of 10 segment-specific sensors.

Our estimations also indicate that by cutting sampling frequency and gyroscope data, we can prolong battery life without sacrificing accuracy. The gyroscope consumes at least 6 times more energy than the accelerometer [25, 26] but does not substantially improve accuracy. Typically, gyroscope data are more informative in highly dynamic movements, which is not the case in rehabilitation exercises to avoid injuries for patients. However, the complementary nature of these two sensors can be harnessed by using domain knowledge to further improve classifier performance, as noted below. As movement frequency for physical therapy exercises is likely below 10 Hz, a sampling frequency of 20 Hz should be the lowest sampling frequency that guarantees good performance based on the Nyquist theorem [27-30]. At the cost of less than 3% reduction in performance, this sampling rate theoretically improves battery life by 5 times, which is significant for out-of-clinic monitoring applications [31].

Moving forward, we have identified two areas for further investigation to improve exercise classification models: having more diverse data and better feature engineering. While more data from the same population do not seem to be beneficial, diverse data, from older adults or those with musculoskeletal diseases, could further improve model generalizability. Good feature engineering is a more judicious and cost-efficient way to improve performance compared to obtaining more data. Models trained on kinematics, as opposed to accelerations and angular velocities measured directly by the sensors, could improve classification of individual exercises and exercise groups by small margins. Two points are important to consider in this context. First, to build the kinematics-based classifier,
instead of estimating kinematics from IMU data, we used ground-truth kinematics from the marker-based motion capture system. This model represents a best-case scenario for how accurately kinematics can be estimated in natural environments. In reality, estimation of kinematics with IMUs is an ongoing technical challenge, albeit one that is receiving considerable attention. Second, it is important to note that a heuristics-guided approach could be better than a purely data-driven one at training deep learning models when the kinematics data are available. For example, an exercise can be detected based on joint- or segment-specific heuristics. While such an approach is not feasible with accelerometry and angular velocity data, it is the most intuitive and likely the most accurate when kinematics data are available. The improvement in accuracy we report with a deep learning approach therefore represents a worst-case scenario. These factors that contribute to classification performance should be carefully considered in the broader context of implementing wearable sensors in clinical populations. For example, using a kinematics-based classifier is likely to marginally improve performance but at the expense of additional sensors and data streams that increase the patient burden beyond the performance benefit. This cost-benefit analysis should be considered for each application and likely will differ based on the patient cohort.

A few limitations are important to consider when interpreting these results. First, we used only data from healthy adults to train the models. However, we expect differences across individuals to be smaller than differences across exercises, which makes the classifier highly likely to generalize to patient populations, although this remains to be

Fig. 9. Model Performance by Sensor Location: Individual Exercises. (a) Among single-sensor configurations, a sensor placed on the pelvis achieved the highest performance overall (i.e., 61% in accuracy and 0.54 in F1-score). (b) A combination of sensors placed on both thighs achieved the highest performance across two-sensor configurations (i.e., 69% in accuracy and 0.64 in F1-score). (c) The optimal sensor placement varied by specific exercise, as illustrated in the bottom panel, where “+” represents the best performance per exercise.
demonstrated. Second, the data were collected in a controlled laboratory environment and may be cleaner than natural-environment data. Future efforts may address this potential limitation through the use of transfer learning, where a small set of natural-environment data can be used to fine-tune the models. Last, exercise segmentation was carried out by experts here since creating an end-to-end system is an engineering task that was beyond the scientific scope of this work.

V. CONCLUSION

We summarize our findings in the following seven lessons and hope that would help fuel progress and more informed translation.

1) We should aim for clinical relevance over inconsequential granularity. Understanding how much time each patient spends in each of the 10 exercise clusters gives clinicians sufficient insight on joint loading.

2) Exercise group classification can be performed with a single sensor, while detection of individual exercises needs up to five sensors on the lower body.

3) A pelvis, chest, and thigh-worn sensors are the most informative for lower-extremity exercise monitoring, while a wrist-worn sensor is the worst.

4) The gyroscope can be removed without sacrificing performance. We recommend leaving out the power-hungry gyroscope.

5) Sampling frequency can be reduced to 20 Hz to prolong battery life and preserve sensor memory that will extend monitoring capabilities and decrease patient burdens in out-of-clinic environments.

6) More data from the same population may not be beneficial. Instead, we suggest diversifying the training data to include a diverse sense of patients and possibly employ transfer learning.

7) Better feature engineering could improve classifier accuracy, but that improvement should be weighted against the added burden to patients resulting from multi-sensor system requirements.

The open-source data and code should help verify our conclusions on additional datasets, increase product transparency, and build trust in patients.

APPENDIX

A. Lower-extremity Exercises

Exercises included in the dataset and their abbreviations can be found in Table I.

B. Performance of Exercise-Specific Models

In addition to outcomes of the group-specific models reported in the main content, here, we present performance of models when classifying 37 individual exercises, see Fig. 8, 9, and 10.

ACKNOWLEDGMENT

The authors would like to thank Todd Hullfish, Audrey Lehnies, and Liliann Zou at University of Pennsylvania for their assistance with data collection and processing and Neel Joshi at Carnegie Mellon University for helping with data processing.
REFERENCES

