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Abstract

In this article, I/We report a novel eye-movement assessment method using a digital camera to measure eye conjugacy in

healthy individuals while performing a neurological examination. This is clinically significant because this approach overcomes

the limitations of complex and expensive setups (e.g., infrared cameras) that often make it impractical to scale up and translate

to clinical use. Moreover, this approach removes the need for a calibration procedure which has caused prior studies to exclude

participants, potentially introducing selection bias and limiting generalizability. Our study suggests that this technology could

be deployed for clinical use in the clinic or pre-hospital setting, including telemedicine or emergency medical services (EMS)

encounters to detect neurological injury or diseases that cause neuro-ocular deficits, like stroke.
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A Digital Camera-based Eye Movement Assessment
Method for NeuroEye Examination

Mohamed Abul Hassan1, Xuwang Yin2,*, Yan Zhuang2,*, Chad M. Aldridge3, Timothy McMurry,
Andrew M. Southerland3, and Gustavo K. Rohde1,2

Abstract—The ability to perform quantitative and automated
neurological assessment could enhance diagnosis and treatment
in the pre-hospital setting, such as during telemedicine or
emergency medical services (EMS) encounters. Such a tool could
be developed by adapting clinically significant information such
as symmetry of eye movement or conjugate eye movement.
Here we describe a digital camera-based eye tracking method
“NeuroGaze” to capture the symmetry of eye movement while
performing neurological eye examination. The proposed method
was developed based on detecting the center of the pupil for
both eyes from a given video and measuring eye conjugacy by
transforming the pupil center coordinates to relative gaze. The
method was tested on 18 healthy volunteers while performing
three neurological eye examinations1. We also compared our
proposed approach to state-of-the-art digital camera-based eye-
tracking methods and commercial off-the-shelf (COTS) eye track-
ers. NeuroGaze outperformed digital camera-based eye tracking
methods by reporting a mean Spearman rank-order correlation
coefficient of 0.85 for the H-test, 0.85 for the Dot-test, and 0.5
for the OKN-Test, and shows similarity in trends for the relative
gaze trajectories with a noticeable offset in the scale of the
relative gaze angle compared to COTS eye tracker (see Fig. 1).
The study demonstrates that by using a pupil-center-based eye-
tracking method, a digital camera can measure clinically relevant
information regarding eye movement.

Index Terms—Remote Health Monitoring; Conjugate Gaze;
Pupil Detection; Gaze Tracking; Posterior Circulation Stroke

I. INTRODUCTION

Abnormal eye alignment and motion can indicate the pres-
ence of neurological diseases. Abnormal eye movements are
often indicators of an underlying neurological disease, like
Alzheimer’s and stroke. Alzheimer’s disease affects about
910,000 adults aged 65 or older per year [1], and stroke is a
leading cause of death and disability globally [2]. As a result,
there is considerable interest in implementing eye-tracking
technology to evaluate these and other neurological diseases
[3]–[5].

Recent efforts [6]–[9] to deploy eye-tracking technology
show successful use of commercially available eye trackers
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Fig. 1. Relative gaze plot comparison between Tobii and NeuroGaze for the
OKN-Test

in the detection of saccades and quick-phases during eye
movement. This approach requires expensive equipment with
laboratory setups to achieve the accuracy and precision nec-
essary to track eye gaze over a screen. Unfortunately, the
significant requirements of the same approach often make it
impractical to scale up and translate to clinical use. A possible
solution to improve eye-tracking practicality and clinical use
is the application of machine learning techniques. Various
research groups have already attempted these techniques to
track eye movements with digital cameras like those in lap-
tops and smartphones [10], [11]. These attempts demonstrate
promise with relatively good predictions of gaze coordinates
in comparison to commercial eye trackers [12]–[14], but
still need more development to become equivalent or replace
commercially available eye trackers.

Given machine learning advancements in eye tracking for
neurological diseases, these newer approaches [9], [15]–[17]
attempt to replicate gaze coordinates. They often neglect to
evaluate how the eyes move in tandem, which is an important
component of a typical neurological exam. How the eyes move
in tandem together is known as conjugacy. With a few congen-
ital exceptions, humans have near-perfect eye conjugacy as a
characteristic of normal physiology. (see Fig. 1). Conversely,
a significant deviation or acquired loss of eye conjugacy is
most often considered pathological [18]. For example, when
the right eye can no longer move outward toward the temple,
the eyes lose conjugacy as the person looks to the right since

https://www.kaggle.com/datasets/mahassan8/neuroeye
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the left eye continues while the right eye remains still, unable
to move. In this scenario, the differential diagnosis for a
neurologist would include a brainstem stroke.

With the clinician’s perspective in mind, we aim to deter-
mine the feasibility of digital camera-based eye trackers to
measure eye conjugacy in healthy individuals by comparing
the performance to COTS eye tracking equipment [19]. The
details of our study arrange themselves in the following order:
Section II discusses the related work in eye tracking. Section
III presents the proposed method for digital camera-based eye
movement assessment. Section IV presents the experimental
setup used to perform the analysis. Section V and VI present
the results and discussion of the digital camera-based eye
movement assessment for NeuroEye. Section VII discusses
the conclusive remarks of the study.

II. RELATED WORK

In general, video-based eye tracking systems can be cat-
egorized into model-based approaches and appearance-based
approaches [20].

A. Model-based tracking systems

Model-based approaches often use one or more digital
cameras to perform gaze estimation by using specific eye
characteristics such as iris or pupil parameters to construct
the 3D eye geometry model and determine the gaze points
[21]. The most popular model-based methods use infrared
sensors for imaging, including several available COTS [6],
[22]. For example, medical research has used model-based eye
trackers in several fields, such as ophthalmology [23], [24],
psychiatry [25], psychology [26], psychopharmacology [27],
and neurology [9], [15]–[17].

The COTS eye trackers have demonstrated use in analyzing
pathological nystagmus [28], investigating gaze characteristics
associated with autism [29], and classifying various visual
field defects [24]. However, model-based methods are complex
and expensive to set up (e.g., infrared cameras). A common
element of these setups is a dedicated calibration procedure
that must be performed prior to gaze tracking and estimation
for each study participant. Multiple studies utilizing model-
based methods in neurological disease research [9], [24],
[30]–[35] had to exclude patients that cannot complete the
calibration procedure. Excluding these patients leads to severe
issues in the clinical generalizability of results and greatly
reduces the practical use of these setups in clinical care.

B. Appearance-based tracking systems

Appearance-based methods often perform gaze estimation
using a single digital camera. These methods directly model a
mapping relationship between pupil positions from eye images
and gaze points on the screen using learning-based techniques,
such as linear regression [36] and neural networks [13],
[37]. MPIIGaze is among the state-of-the-art gaze estimation
methods [13], [38]. It is based on learning eye images and
head orientation to predict gaze angles. The model is trained

on the MPIIGaze dataset that learns from annotated screen
coordinates.

Krafka et al. [14] proposed a different estimation method
that uses a mobile phone/tablet camera. The process was based
on a convolutional neural network (CNN) learning method
using eye and face images and annotated screen coordinates
to predict the screen coordinates at which the eyes focus.
Huang et al. [39] proposed a regression-based learning method
that used hand-crafted features from eye images. The features
are input data for training and annotated screen coordinates.
Park et al. [40] suggested a two-step learning process that
learns from eye images to map gaze and its direction using
a regression-based CNN. This method uses the eye images
and the annotated screen coordinates as learning parameters
to perform gaze direction predictions.

Detecting the pupil center to estimate screen coordinates is
an alternative method that uses annotated screen coordinates;
we have listed such recent implementations. Ahmed et al. [41]
implemented an iris center localization approach by combining
the circular gradient intensity with a CNN. This resulted in
gaze estimation from the center of the iris. George et al.
[42] implemented a geometrical eye center localization method
dependent on fast convolution and ellipse fitting. Fabbian et
al. [43] applied an eye center detection method by fitting a
bounding box over the eyes. The localization of the gradient
vector detected the pupil center within the bounding box.
Similarly, Pauly et al. [44] used a bounding box extracted
from the Haar cascade classifier and eye localization from
histogram-oriented gradient features.

Using annotated screen coordinates as a learning parameter
is a possible fit for fixation-based eye movement tasks. Neuro-
physiological studies [45], [46] reported involuntary triggering
of eye movements from healthy individuals, such as catch
up saccades of low gain while performing smooth pursuit
eye movement tasks. These involuntary eye movements could
affect the consistency of the screen coordinates annotation.
Furthermore, annotating screen coordinates to capture the gaze
depends on user feedback and, ultimately, the best effort of the
participant. This is a potential limitation since multiple studies
[47]–[49] indicate that participants may have varying attention
spans to focus on the screen stimuli. Therefore, participants
may not follow the stimuli consistently. To address some
of these discussed issues, we aim to investigate further the
impact of pupil detection methods using annotated pupil center
coordinates and screen coordinates for gaze estimation in the
clinical context.

III. METHODS

The development of the proposed method has three main
components described under the following subsections: 1)
RoADIE, the apparatus used to acquire the data, 2) NeuroEye,
a computer adaption of standard bedside clinical tests; and 3)
NeuroGaze, the proposed method to quantify the conjugate
eye movements. We hypothesized that a method developed
for digital camera-based gaze estimation could demonstrate
similar performance to a COTS eye-tracking device. Our



Fig. 2. Illustration of the proposed method: NeuroGaze

Fig. 3. Rolling Apparatus to Detect Impairment of the Eyes - RoADIE. (a)
side view of the RoADIE mobile rig, (b) Illustration screen view including
the hardware components for RoADIE

proposed method uses a pupil detector to detect the center
of the pupil for both eyes for a given video, then determine
the conjugacy of the eye movement.

A. RoADIE

RoADIE (Rolling Apparatus for the Detection and Identifi-
cation of Eye Movements) is a mobile rig we constructed to
acquire data with the NeuroEye examination. The examination
consists of three digitally adapted clinical neuro-ocular bedside
tests. The RoADIE has a HIPPA-compliant computer to run
our custom-built data acquisition software and to store the
data. RoADIE has two digital cameras RealSense camera
[50] embedded with RGB and infrared sensors. The RoADIE
captures the gaze coordinates of the eyes using the “Tobii”
Pro Fusion Eye Tracker [19]. The NeuroEye examination is
displayed on the screen 0.6 meters from the participants. The
sensor modalities’ data acquisition is triggered globally with
the activation of the examination session.

B. NeuroEye

The NeuroEye examination comprises three tests to examine
various motor functionalities of the eye. The three tests are the

Fig. 4. Illustration of the NeuroEye examination. (a) represents the Dot-
Test for the Neuro-eye examination. The red dot with the higher contrast
represents the current position of the dot, and the red dot with the lower
contrast represents the past, or future position of the dot (b) represents the
H-Test for the Neuro-eye examination. The red dot with the higher contrast
represents the current position of the dot, and the red dot with the lower
contrast represents the past or future position of the dot (c) Illustration of the
OKN-Test

“Dot-Test”, “H-Test”, and “OKN-Test”, which are computer
adaptions of standard bedside clinical tests [51]. The Dot Test
is designed to assess the quality of eye coordination for each
saccade. A clinician observes the movement of both eyes as the
patient shifts their gaze from target to target (see Fig. 4 (a)).
The clinician looks for the eyes to suddenly move to the next
visual target and stop accurately at its destination. Abnormal
signs include the eyes stopping short or too far away from the
target, known as under or over-shooting, respectively, or the
eyes do not initiate a saccade.

The H Test is designed to assess the quality of eye move-
ment at a constant slow pace as the eyes track a visual target,
smooth pursuit in all directions. The “H” pattern (see Fig. 4
(b)) ensures that both eyes track the target in all directions to
their end ranges. Abnormal signs consist of the eyes lacking
motion, or its initiation, in any direction or the eyes utilizing
saccades to catch up to the moving visual target.

The optokinetic nystagmus (OKN) test measures an indi-
vidual’s ability to perform smooth pursuit, similar to the H
test, and their ability to initiate a saccade to fixate on the
following visual target after the first target disappears. The
visual stimulus is typically vertical bars with high contrast



to the background. The bars move at a quick and constant
pace from right to left (see Fig. 4 (c)). This is repeated in
the opposite direction. OKN typically remains preserved in
individuals with occipital lobe infarcts, with limited amplitude
if there is a hemifield defect. Asymmetry in the performance
of the eyes or poor ability to generate saccades may suggest
damage to the optic, brainstem, or cerebellar nuclei or tracts.

C. NeuroGaze

NeuroGaze is our proposed method to quantify eye move-
ments during the NeuroEye examination (see Fig. 2). The
purpose of NeuroGaze is to provide physicians and health-
care workers with easy-to-interpret information regarding the
patient’s ability to perform conjugate eye movement. Our
proposed method contains three main components (1) pre-
processing, (2) pupil detection, and (3) conjugate gaze esti-
mation.

1) Pre-processing: The RGB video stream from the Re-
alSense camera was configured to capture the video of 1280×
720 resolution at 30 fps. The stimuli of the H-test last for 24
seconds. Hence capturing 720 uncompressed frames during
the examination. We used the ”dlib” face detector [52] to
extract facial landmarks to perform landmarks and intensity
normalization that removes translation, rotation, and scale
variations. Upon normalization, the left and right eyes were
cropped from the face as separate images of 40×20 resolution
using the facial landmark. The facial landmarks were also used
to remove eye blink images. Blinking results in the movement
of the eyelid that occludes the pupil. The vertical length ratio
to the horizontal length is used to determine the blink.

2) Pupil Detection: Clinicians often follow the eye’s iris
and pupil center to assess the eye’s ability to perform the
conjugate movement. To mimic a clinician’s perspective, we
developed our pupil detector to locate the center of the pupil.
The pupil center detector is parameterized by a convolutional
neural network (CNN) and trained by minimizing the mean
square error (MSE) between predicted pupil centers and
ground truth pupil centers. The network consists (see Fig. 5)
of two convolution layers (with kernel size 3 × 3) followed
by two fully-connected layers. The last fully connected layer
has two output nodes that are used for predicting the pupil
center’s x coordinate and y coordinate. We use the normalized
coordinates to compute the MSE loss. The normalization is
performed by dividing the original coordinate in the 20 × 40
coordinate system by 40 so that the normalized value falls
in the [0, 1] range. The network uses ReLU as the activation
function.

We annotated 5400 pupil centers from here onwards, re-
ferred to as the “NeuroEye dataset” (see Figure 6(a) for
examples). The NeuroEye dataset is made available at the
project website1. The annotated pupil center images were ac-
cumulated by randomly selecting the left and right eye images
for each participant for all three NeuroEye examinations. An
Adam optimizer [53] of a learning rate of 5e − 4 is used

1https://www.kaggle.com/datasets/mahassan8/neuroeye

Fig. 5. Architecture of the CNN pupil center detector, comprised of two
(Conv), Convolution layers, three (ReLU), ReLU activation functions, (FC)
fully connected layers along with the output (PCC) pupil center coordinates.

for optimizing the model. To validate the effectiveness of the
proposed pupil detection, we conducted a leave-one-out cross-
validation (leave one patient’s data for validation. and used
other patients’ data for training) and computed the l1 distance
between predicted and ground truth pupil center to quantify
the prediction error, using 1

N

∑N
i=1 |sigth − sipred|1, where N

is the total number of test eye images, sigth is the ground
truth pupil center location and sipred is the predicted pupil
center location. The mean error for 18 subjects is 0.805, with
a standard deviation of 0.128. Fig. 6 shows pupil center ground
truth annotations and test predictions.

3) Conjugate Gaze Estimation: We estimated the ability to
perform conjugate eye movement by calculating the Spearman
correlation coefficient r between the relative eye position of
the left eye gl and the right eye gr using Eq. 1. The relative eye
position is estimated from the “x”, “y” coordinates of the pupil
detector. We calculated the relative position of the eye using
Eq. 2 to 4. Where θx and θy are the relative eye orientation
on the x and y-axis. px and py are the normalized pupil center
coordinates in the x and y-axis. a and b is the horizontal and
vertical pixel range in the display screen (see Fig. 3 (b)). κ is
the size of the pixel in the screen, d is the distance from the
screen, and g is the relative eye position.

r =

∑n
i=1(gl − ḡl)(gr − ḡr))∑n

i=1(gl − ḡl)2
∑n

i=1(gr − ḡr)2
(1)

θx = atan(
a× px × κ

d
) (2)

θy = atan(
b× py × κ

d
) (3)

g =
√
θ2x + θ2y (4)

IV. EXPERIMENT SETUP

We designed the experiment to capture calibrated and non-
calibrated gaze data using the Tobii eye tracker during separate
sessions (please refer to [18] for details of the main exper-
iment). University of Virginia’s Institutional Review Board
approved the study protocol. As such, the protocol complies

https://www.kaggle.com/datasets/mahassan8/neuroeye


(a) Groundtruth annotations (b) Test predictions

Fig. 6. Pupil center ground truth annotations and test predictions for NeuroEye
dataset

Fig. 7. Illustration of the data synchronization for RoADIE. The yellow
guideline indicates the time point at which the data was extracted.

with all national ethical research standards in accordance with
the Declaration of Helsinki. Written informed consent was
obtained prior to subject enrollment and testing. Nineteen
healthy controls participated in the calibration study. The mean
age is 40 years consisting of 79 % female and 21 % male. The
racial distribution of the controls was 81% White, 14% Asian,
and 5% American Indian or Alaska Native. One participant
did not follow the instructions during the experiment and was
excluded from the study.

A. Data Synchronisation

During this study, we used the gaze data and the synchro-
nized video from the RGB sensor of the RealSense Camera
(1), which was acquired during the non-calibrated session.
Further detail regarding non-calibrated gaze estimation using
the Tobii eye tracker can be found here [18]. The Tobii eye
tracker acquired data at 120 Hz, the digital camera acquired
data at 30 Hz, and the NeuroEye simulations were set at 240
Hz. For a fair comparison, the data from the three sources
were synchronized at 30 Hz during this study (see Fig. 7).

B. State-of-the-art

We evaluated the state-of-the-art, digital camera-based
methods and our NeuroGaze prototype on the acquired Neu-
roEye examination video and compared it to the “Tobii”
eye tracker. We used the video feeds during the NeuroEye
examination as “input” for gaze estimation. The gaze estima-
tions of the relative position of the left and right eyes were
the “output”. We substituted the Tobii gaze coordinates, the
centroid of the Bounding Box coordinate, and the GazeML
[54] screen coordinates to Eq. 1 to Eq. 4 to estimate the relative

TABLE I
NEUROGAZE PUPIL DETECTOR MODEL DESCRIPTION

Pupil detector Training Testing
NeuroGaze (A) NeruoEye NeruoEye
NeuroGaze (B) MPIIGaze-pupil center data NeruoEye
NeuroGaze (C) NeruoEye + MPIIGaze-pupil center data NeruoEye

eye position for the left and right eye. We evaluated pre-trained
implementations for MPIIGaze, and GazeML on NeuroEye
Dataset since these two methods fundamentally predict the
gaze points from annotated screen coordinates. The NeuroEye
Dataset does not use labels/annotation for gaze points as
screen coordinates. The screen coordinates of GazeML were
accounted for and normalized for the relative gaze estimation.
We used gaze orientation output from MPIIGaze [13], [38]
implementation substituted to Eq. 4 to compute the relative
gaze from the gaze orientation, and Eq. 1 to compute the
conjugacy of the eye movement.

We performed a cross-dataset validation for a fair evaluation
of NeuroGaze with the state-of-the-art methods above. Here
we annotated pupil centers on a subset of the MPIIGaze dataset
[55] and used the data in training the detection model of
NeuroGaze. We annotated 2250 pupil center images by ran-
domly selecting images of the left eye and right eye from each
participant for each day. The implementations of NeuroGaze
are as follows: “NeuroGaze (A)” trained on NeuroEye data
and tested on NeuroEye data, “NeuroGaze (B)” trained on
MPIIGaze-pupil center data and tested on NeuroEye data, and
“NeuroGaze (C)” trained on NeuroEye and MPIIGaze-pupil
center data and tested on NeuroEye data (see Table. I).

The methods [43], [44] developed for pupil center detection
using a bounding box were dependent on non-generalized local
variables and failed to perform effectively in the NeuroEye
data. Therefore we developed a Bounding Box approach using
a similar CNN architecture to NeuroGaze pupil center detec-
tion. The model consists of two convolution layers followed
by two Relu activation layers of dimension 3 × 20 × 40 and
32×10×20 performing convolutions with a kernel of 3×3 and
stride of 2. The third Relu activation layer is between two fully
connected layers of dimension 3200× 128 and 128× 2. The
final fully connected layer is connected to the Regression layer
that outputs four nodes, respectively, used for the prediction
of x, y, h, and w of the bounding box around the pupil center.
The pupil center is estimated by estimating the centroid of the
bounding box.

A total of 5400 bounding boxes around pupil centers
were annotated to train and validate the Bounding Box pupil
detector. The annotated pupil center images were accumulated
from segments of 50 random images of the left and right eye
for each participant performing the NeuroEye examinations:
H-Test, Dot-Test, and OKN-Test. We trained the model to min-
imize the mean square error between the predicted and ground
truth coordinates. An Adam optimizer [53] of a learning rate
of 5e− 4 was used for model optimization.



C. Eye Conjugacy

We utilized the Spearman correlation coefficient to quantify
the conjugacy of left and right gaze estimations obtained
from the digital camera-based methods above. We chose the
correlation coefficient because movement between the eye in
humans has near ”perfect coordination” [56]. This means that
both eyes move at the same velocity in all directions. This
is a de facto constant rate of change between the left and
right eye, which results in a linear relationship. Mathematically
a correlation coefficient represents this ocular physiology.
Since the distribution of gaze coordinates is non-Gaussian,
the Spearmen coefficient was preferred over Pearson.

V. RESULT

Table. II presents the overall performance of the camera-
based eye-tracking methods for conjugate gaze estimation. For
this analysis, we assumed that healthy participants could per-
form conjugate eye movement in all directions. This assump-
tion was confirmed by the high Spearman rank correlation
coefficient reported by the Tobii Eye tracker.

Among the digital camera-based methods, the NeuroGaze
(A) reported the best conjugate gaze estimation with the
highest mean correlation coefficient (see Table. II). The varia-
tions of the NeuroGaze method “NeuroGaze (B)”, and “Neu-
roGaze (C)” also reported improved eye tracking performance
compared to the state-of-the-art eye tracking methods. The
GazeML method reported the lowest correlation coefficient
mean for all three NeuroEye examinations. In general, digital
camera-based eye-tracking methods reported a higher variabil-
ity in eye tracking for different participants compared to the
Tobii eye tracker (see Fig. 8).

The H-Test stimulates a motion across all the quadrants
of the screen. The NeuroGaze (A) reported a correlation
coefficient mean of 0.85 with a 95% confidence interval
ranging from 0.59 to 0.93. The Bounding Box method reported
a correlation coefficient mean of 0.72 with a 95% confidence
interval ranging from 0.47 to 0.90. The MPIIGaze reported a
correlation coefficient mean of 0.60 with a 95% confidence
interval ranging from 0.33 to 0.81. The overall performance
of digital camera-based eye tracking methods showed a 40%
to 45% variability in conjugate gaze estimation (see Fig. 8).

The relative gaze plot for the H-Test shows (see Fig. 9) a
highly conjugate eye movement between the left and right
eye for Tobii. The NeuroGaze showed the most conjugate
eye movement while tracking with a similar trajectory to the
relative gaze trajectory of Tobii. The Bounding Box approach
also showed a similar trajectory to the relative gaze trajec-
tory of Tobii. However, the Bounding Box approach did not
consistently capture the conjugacy of the eye movement since
there was an offset in pupil center detection for both eyes.
The MPIIGaze also showed evidence of following a similar
trajectory to the relative gaze trajectory of Tobii. However, the
MPIIGaze trajectory was inconsistent and did not capture the
eye movement’s conjugacy.

The Dot-Test stimulates a series of saccade and fixation eye
movement events across all the quadrants of the screen canvas.

The NeuroGaze (A) outperformed the state-of-the-art digital
camera-based methods with a correlation coefficient mean of
0.85 with a 95% confidence interval ranging from 0.54 to
0.95 (see Table. II). The Bounding Box approach reported
a correlation coefficient mean of 0.72 with a 95% confidence
interval ranging from 0.27 to 0.86. The MPIIGaze reported a
correlation coefficient mean of 0.55 with a 95% confidence
interval ranging from 0.29 to 0.84. The pupil center-based eye
tracking methods reported a tighter eye tracking variability of
20% to 25% (see Fig. 8).

The relative gaze plot for the Dot-Test shows (see Fig. 9)
the relative eye movement during periods of fixation (when
the relative gaze is flat) and saccade (when the relative gaze
has a steep rise). NeuroGaze captured the most conjugate
eye movement while tracking the fixation and saccade eye
movement. The NeuroGaze showed a similar trajectory to the
relative gaze trajectory of Tobii. The Bounding Box approach
did not consistently capture the left and right eye movement.
The conjugacy of eye movement was also reasonable during
fixation periods. However, the ability to capture eye movement
conjugacy lowered during periods of saccades.

The OKN-Test stimulates a series of alternative smooth
pursuit and saccade eye movements resulting in a consistent
movement of the eyes horizontally at two different speeds. The
Tobii reported its lowest correlation coefficient mean of 0.84
among the three NeuroEye examinations for the OKN test. At
the same time, Tobii eye tracking presented a variability of
25% among the healthy participants from the study. Among
digital camera-based eye tracking, NeuroGaze (A) reported
the highest performance with a correlation coefficient mean
of 0.5 with a 95% confidence interval ranging from 0.41 to
0.74 (see Table. II). The Bounding Box approach reported a
correlation coefficient mean of 0.38 with a 95% confidence
interval ranging from 0.09 to 0.6. The MPIIGaze reported a
correlation coefficient mean of 0.38 with a 95% confidence
interval ranging from 0.13 to 0.61. Both COTS and digital
camera-based eye tracker performance decreased during the
OKN-Test.

The relative gaze plot for the OKN-Test shows that (see Fig.
9) the eye movement during periods of smooth pursuit (when
the relative gaze has a linear rise) and saccades (when the
relative gaze has a steep rise). The NeuroGaze outperformed
other digital camera-based-eye tracking methods by capturing
the most conjugate eye movement while tracking the smooth
pursuit and saccade eye movement. The NeuroGaze also
showed a similarity in trajectory to the relative gaze trajectory
of Tobii. However, the Bounding Box approach showed a less
similar trajectory to the relative gaze trajectory of Tobii. This
could also result from the Bounding Box approach’s inability
to capture the left and right eye movement consistently.

VI. DISCUSSION

In this preliminary study, we demonstrated the potential
of digital camera-based methods to estimate eye movement
and conjugacy. Conjugacy is a clinically relevant characteristic
that neurologists and ophthalmologists utilize to determine the



TABLE II
MEAN CORRELATION AND THE 95% CONFIDENCE INTERVAL (CI) COMPARISON FOR THE SPEARMAN RANK-ORDER CORRELATION COEFFICIENT OF THE

PROPOSED NEUROGAZE, COTS EYE TRACKER, AND STATE-OF-THE-ART DIGITAL CAMERA-BASED EYE-TRACKING METHODS

Method H-Test Dot-Test OKN-Test
mean 95% CI mean 95% CI mean 95% CI

Tobii 0.95 (0.91,0.98) 0.96 (0.91,0.97) 0.84 (0.70,0.94)
Bounding Box 0.72 (0.47,0.90) 0.72 (0.27,0.86) 0.38 (0.09,0.60)

MPIIGaze 0.60 (0.33,0.81) 0.55 (0.29,0.84) 0.38 (0.13,0.61)
GazeML 0.14 (-0.09,0.33) 0.14 (-0.15,0.38) 0.12 (-0.01,0.38

NeuroGaze (A) 0.85 (0.59,0.93) 0.85 (0.78,0.95) 0.50 (0.41,0.74)
NeuroGaze (B) 0.79 (0.69,0.89) 0.79 (0.63,0.90) 0.45 (0.34,0.56)
NeuroGaze (C) 0.81 (0.73,0.91) 0.82 (0.77,0.90) 0.47 (0.10,0.75)

Fig. 8. Box-Whisker plot representation of the Spearman rank-order correlation coefficient summary of all participants for COTS eye tracker and state-of-the-art
web camera-based eye-tracking methods

presence of neuropathology. To achieve this, we developed a
novel method to investigate the performance of digital camera-
based eye tracking during computer-adapted neurological eye
examinations. Moreover, we highlighted the importance of
eye-tracking methods using the pupil center to track the eyes
based on annotated screen coordinates. We also showed the
impact of relative gaze use and the generalizability of the
pupil-center detection approach. The findings of this study
highlight the feasibility of using a digital camera-based gaze
estimation to measure clinically relevant eye-tracking informa-
tion.

A. Impact of Neurological Eye Examinations
The previous implementation of eye tracking with a digital

camera mainly measured gaze points, fixation sequence, heat
maps, and area of interest [57], [58]. Neurological eye exam-
inations stimulate or elicit fixation patterns, smooth pursuit,
and saccadic eye movements. These clinically relevant mea-
surements are widely different compared to conventional gaze
measurements [58]. Eye conjugacy is one clinically relevant
measurement estimated from binocular eye movements. The
COTS and NeuroGaze eye conjugacy estimations were mainly
affected during the OKN-test by continuous eye motion stimu-
lated by smooth pursuit and saccadic eye movements. The low
image acquisition speed of Tobii at 120 Hz and NeuroGaze
at 30 Hz compared to the speed of saccadic movements may
have impacted the quantification of eye conjugacy measure-
ments during the OKN-test. The impact of image acquisition
speed for NeuroGaze may be reflected in the variability in
conjugacy measurements from H-test and Dot-Test (see Fig.

8). NeuroGaze reported a high variability during H-test in
which the eye continuously moved at a physiologically slow
speed, whereas low variability is present in the Dot-test in
which the eyes switch from fixated and saccadic phases. The
“stop” and “go” pattern of eye movement (Dot-test) is more
suitable for NeuroGaze compared to continuous eye movement
elicited during the H-test.

B. Pupil Center

We demonstrated that a digital camera could measure clin-
ically relevant information using a pupil-center-based eye-
tracking method. The method comprises multiple steps, includ-
ing facial landmark alignment, normalization, and appearance-
based pupil center detection. We showed that it is more
advantageous to develop a model by training on pupil center
coordinates compared to screen coordinates. Comparing the
performance of the pre-trained MPIIGaze and GazeML on
the NeuroEye dataset was unfair since the models were not
trained on this dataset. For a fairer evaluation, we trained
NeuroGaze (B) on the MPIIGaze dataset, then tested it on
the NeuroEye dataset (see Fig. 10). NeuroGaze (B) still out-
performed the MPIIGaze method, which further emphasizes
appearance-based pupil detection’s benefit in measuring eye
conjugacy. Moreover, the performances of NeuroGaze A, B,
and C training conditions suggest good generalizability of the
three CNN models. Specifically, NeuroGaze (C), trained with
the NeuroEye and tested on the MPIIGaze dataset, has the
most adaptability among the three models.



Fig. 9. Illustration of the relative gaze plot for a participant along with the eye movement stimulation indicators for the H-Test (row 1), Dot-Test (row 2),
and OKN-Test (row 3) of the Tobii (column 1), Bounding Box(column 2), MPIIGaze (column 3), NeuroGaze B (column 4) and NeuroGaze A (column 5).



Fig. 10. NeuroGaze Pupil Center detection on NeuroEye dataset. NeuroGaze (A) trained on NeuroEye data, NeuroGaze (B) trained on MPIIGaze-pupil center
data, and NeuroGaze (C) trained on NeuroEye and MPIIGaze-pupil center data.

Fig. 11. Relative gaze plot comparison between Tobii and NeuroGaze for the
OKN-Test

Fig. 12. Relative gaze plot comparison between Tobii and NeuroGaze for the
Dot-Test

C. Relative Gaze Trajectory

In addition to quantifying the conjugacy, combining the
relative gaze trajectory/path with eye movement detection
methods [7], [59] enables the quantification of eye movement
events such as the number of saccades performed during the
OKN-test. This correlative information about the left and right
eye may overcome the limitations caused by the slow image
acquisition speeds of the digital camera as shown in relative
gaze plots in Fig. 1 and Fig. 11.

D. NeuroGaze vs. Tobii

The relative gaze plots comparing Tobii and NeuroGaze
show (see Fig. 1, 11, 12) that similar trends among the
trajectories. The path plots also highlight the capability of
NeuroGaze to capture fixation, smooth pursuit, and saccade
eye movements. However, there is a clear difference in the
scale of the relative gaze angle. The dissimilarity is most
likely due to the different working principles of the COTS
eye tracker “Tobii” and NueroGaze. The NeuroGaze works
based on identifying the pupil center of the eye to estimate
the relative gaze. This is achieved using the eye’s optical
axis to perform relative gaze estimation. Tobii, on the other
hand, works on the principle of pupil central corneal reflection
(PCCR) to estimate relative gaze [60]. PCCR is based on
re-constructing the optical axis to derive the visual axis and
estimate gaze using the visual axis. The difference between the
optical and visual axis is known as the Kappa angle. Therefore,
we can assume that the Kappa angle may be the most likely
cause of the difference in scale of the relative gaze angle.

E. Limitations

There are a few limitations to this study. First, as a proof-
of-concept, our study included small sample sizes and lacked
race/ethnic diversity. The full extent of a gaze correlation
coefficient to discriminate between normal and abnormal eye
movements will require further research with larger and more
diverse sample sizes and a greater range of neuro-ocular
deficits. Despite the small sample size, it may be reasonable
to assume that the healthy participants in this cohort represent
the distribution of normal eye movements in a healthy adult
population. We are currently collecting data on consecutive
patients presenting with the acute vestibular syndrome and
posterior circulation stroke to better assess the feasibility of
NeuroGaze in a population with pathological eye movements.

The relative gaze plot of Tobii for the H-test (see Fig. 11)
shows catch-up saccades of low gain while performing smooth
pursuit eye movements. These small catch-up saccades are nor-
mal during smooth pursuits [61]. However, we noticed that the
digital camera-based eye-tracking methods had limited ability
to capture these small saccades consistently. We hypothesize
that the slow image acquisition speed is why these methods
miss small saccades.



VII. CONCLUSION

We investigated the feasibility of using a digital camera
to capture eye movements during digitally adapted clinical
eye exams (NeuroEye). We presented the performance of a
novel method NeuroGaze along with other state-of-the-art
digital camera-based eye tracking methods and compared them
internally and to a COTS eye tracker. NeuroGaze demonstrated
the ability to estimate eye conjugacy consistently better than
other state-of-the-art methods, under fair comparison condi-
tions. NeuroGaze did so by having the most similar conju-
gacy estimates to the “Tobii” reference and less variability.
Specific to NeuroGaze, our method tested accurately for most
participants of the H-Test and Dot-Test, and a few participants
of the OKN-test. This is promising since NeuroGaze can be
further improved to capture conjugate eye movements in these
less accurate cases by (1) increasing the number of training
samples by enrolling more participants and (2) improving the
architecture of the pupil detector to achieve enhanced accuracy
of measuring the pupil center.

In conclusion, we present preliminary evidence that digital
cameras can be used with machine learning techniques to
estimate eye conjugacy for future clinical applications. This
is clinically significant because this approach overcomes the
limitations of complex and expensive setups (e.g., infrared
cameras). More importantly, this approach removes the need
for a calibration procedure which has caused prior studies to
exclude participants, potentially introducing selection bias and
limiting generalizability. Our feasibility study suggests that
this technology could be deployed for clinical use in the clinic
or pre-hospital setting, including telemedicine or emergency
medical services (EMS) encounters to detect neurological
injury or diseases that cause neuro-ocular deficits, like stroke.
This underscores the need for further research on this approach
with neurological disease populations. This is the focus of our
continued research.
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and Philippe Lefèvre, “What triggers catch-up saccades during visual

tracking?,” Journal of neurophysiology, vol. 87, no. 3, pp. 1646–1650,
2002.

[46] Lee Friedman, John A Jesberger, and Herbert Y Meltzer, “A model
of smooth pursuit performance illustrates the relationship between gain,
catch-up saccade rate, and catch-up saccade amplitude in normal controls
and patients with schizophrenia,” Biological psychiatry, vol. 30, no. 6,
pp. 537–556, 1991.

[47] Nicolas Burra and Dirk Kerzel, “Meeting another’s gaze shortens
subjective time by capturing attention,” Cognition, vol. 212, pp. 104734,
2021.

[48] Roy S Hessels, Chantal Kemner, Carlijn van den Boomen, and Ig-
nace TC Hooge, “The area-of-interest problem in eyetracking research:
A noise-robust solution for face and sparse stimuli,” Behavior research
methods, vol. 48, no. 4, pp. 1694–1712, 2016.

[49] Antonia Vehlen, Ines Spenthof, Daniel Tönsing, Markus Heinrichs, and
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