Effect of Cadmium on Six Different Carrot Breeding Lines, Using RGB and Hyperspectral Imaging

Kathleen Zapf¹, Philipp Simon¹, Linda Lee¹, and Lori Hoagland¹

¹Affiliation not available

October 30, 2023

Abstract

Carrot (Daucus carota L.) is a hyperaccumulator of toxic heavy metals like cadmium, taking up and storing high concentrations in the taproot. Cadmium is toxic in very small concentrations in edible plant parts, translocated there from contaminated soils. Cadmium poisoning in humans is strongly linked to damage to the liver, lungs, and bones, as well as prostate, kidney, pancreatic, and testicular cancer. Cadmium may also be detrimental to carrot plant growth and nutrient content.

We chose 6 different carrot breeding lines shown in previous trials to differ in their tendency to hyperaccumulate heavy metals. Carrots were grown in the AAPF (Ag Alumni Phenotyping Facility) growth chambers. Carrots were either treated with CdCl₂ (cadmium chloride) or control, and grown in a mix of 1/3 sand, 1/3 field soil, 1/3 potting media. Plants were imaged with RGB cameras and hyperspectral imaging throughout their growth, then destructively harvested after 2 months and prepared for heavy metal analysis.

Results include hyperspectral data including several vegetative indices and reflectance values often used to detect stress, and RGB images and color values (potentially indicating differences in the health of the plant). Heavy metal concentrations in carrot leaves and roots were also estimated using ICP-OES.

Carrot breeding lines differ in their tendency to hyperaccumulate cadmium in their roots, which could spur breeding efforts, but much more research is needed concerning the environmental effect. Phenotyping technologies detecting cadmium stress may be useful in determining stress response to heavy metals.

Kathleen Zapf², Philipp Simon², Linda Lee³, Lori Hoagland¹

¹Purdue University Dept. of Horticulture and Landscape Architecture, West Lafayette, IN, USA
²USDA Agricultural Research Service, Madison, WI, USA
³Purdue University Dept. of Agronomy, West Lafayette, IN, USA

ORCiD: 0000-0001-5672-3601

Keywords: phenotyping, cadmium, carrot, plant breeding, heavy metals, soil, hyperspectral imaging