Study on Seepage for Random Packed Porous Media Using the Lattice Boltzmann Method

jinfeng zhang¹, Zhongyue Li¹, Guangwei Liu¹, and Qinghe Zhang²

¹Tianjin University
²State Key Laboratory of Hydraulic Engineering Simulation and Safety, Tianjin University

October 26, 2023

Abstract

The permeability coefficient of seepage is an important factor that is widely used in various engineering fields. There are numerous issues that influence the permeability coefficient, among which the porosity, particle size, particle size distribution and Reynolds number are of great importance. In this paper, a C++ code based on the three-dimensional lattice Boltzmann method (LBM) was developed and used to investigate the effects of the abovementioned factors on the permeability coefficient. A multiple relaxation time (MRT) collision scheme of the LB equations was used in the simulation. Porous media were prepared using the random packing method. Laminar flow and turbulent flow were simulated separately for particle Reynolds numbers in a range from 0.001 to 3,000. It was proven that in addition to the influence of porosity and particle size distribution on the permeability, the influence of the Reynolds number was obvious and could not be ignored. As the Reynolds number increased, the permeability of porous media decreased gradually. Based on the numerical simulation results, a modified formula for the permeability coefficient is proposed.
Study on Seepage for Random Packed Porous Media Using the Lattice Boltzmann Method

Jinfeng Zhang1,2, Zhongyue Li1, Guangwei Liu1*, and Qinghe Zhang1

1State Key Laboratory of Hydraulic Engineering Simulation and Safety, Tianjin University, Tianjin, 300072, China

2Key Laboratory of Earthquake Engineering Simulation and Seismic Resilience of China Earthquake Administration, Tianjin University, Tianjin, 300350, China

Corresponding author: Guangwei Liu (guangweiliu@tju.edu.cn)

Key Points:

- DNS to study the permeability coefficient for the laminar and turbulent seepage flow.
- The porosity, particle size, particle size distribution and Reynold number can affect the permeability coefficient.
- A modified formulation for the permeability coefficient is significant for porous medium seepage.
The permeability coefficient of seepage is an important factor that is widely used in various engineering fields. There are numerous issues that influence the permeability coefficient, among which the porosity, particle size, particle size distribution and Reynolds number are of great importance. In this paper, a C++ code based on the three-dimensional lattice Boltzmann method (LBM) was developed and used to investigate the effects of the abovementioned factors on the permeability coefficient. A multiple relaxation time (MRT) collision scheme of the LB equations was used in the simulation. Porous media were prepared using the random packing method. Laminar flow and turbulent flow were simulated separately for particle Reynolds numbers in a range from 0.001 to 3,000. It was proven that in addition to the influence of porosity and particle size distribution on the permeability, the influence of the Reynolds number was obvious and could not be ignored. As the Reynolds number increased, the permeability of porous media decreased gradually. Based on the numerical simulation results, a modified formula for the permeability coefficient is proposed.

1. Introduction

Seepage phenomena play important roles in permeable seabeds and breakwaters. The seepage of water through a sandy seabed beneath a breakwater is an important consideration for its design and stability. However, the permeability of seepage is difficult to predict because of the complexity of pore geometric characteristics and
pore connectivity.

Many scholars have conducted research on permeability through analytical studies, experiments, field observations and numerical simulations. For example, an experiment can be a simple way to calculate permeability by measuring the pressure gradient and the flow rate (Despois and Mortensen, 2005; Rodríguez et al., 2004). For saturated flow at a low Reynolds number, the mean flow rate of a viscous fluid through a porous medium is inversely proportional to the viscosity and proportional to the applied pressure difference. Darcy’s law can be written as

$$\frac{-dP}{dx} = \frac{1}{K}(\mu \cdot V)$$ \hspace{1cm} (1)

where $\frac{dP}{dx}$ is the pressure gradient, K is the permeability coefficient, μ is the dynamic viscosity coefficient of the fluid, and V is the overall mean value of the velocity in the x direction. The dimension of relative permeability K is length squared.

However, as velocities quicken, discrepancies between experimental data and results obtained from Darcy’s law appear. A term representing kinetic energy is suggested to be added to Eq. 1:

$$\frac{-dP}{dx} = \frac{1}{K}(\mu \cdot V) + \beta \cdot (\rho \cdot V^2)$$ \hspace{1cm} (2)

where β is the Forchheimer coefficient (also known as the non-Darcy coefficient) and ρ is the density of the fluid.

The determination of parameters is very important. The available literature provides many general formulas to calculate permeability and Forchheimer coefficients based on porous media parameters such as porosity or tortuosity, but the formulas are usually empirical and not universal (Sobieski and Trykozko, 2014).
Different formulas computed with a fixed set of parameters can lead to totally
different β coefficient values, ranging over several orders of magnitude.

Based on experimental data and theoretical analysis, the classic Kozeny–Carman
(KC) equation (Carman, 1997, 1939) that relates the permeability K to porosity ε has
been proposed:

$$K = \frac{\varepsilon^3}{C_{KC} \Gamma^2 S^2}$$ \hspace{1cm} (3)

where C_{KC} is the Kozeny coefficient, Γ is the hydraulic tortuosity, which can be
defined as the ratio of the average length of the fluid paths to the geometric length of
the porous media (Matyka et al., 2008), and S is the specific surface area.

To predict the permeability properly, many different forms of modified KC
equations have been developed. Koponen (Koponen et al., 1996) proposed the
concept of effective porosity, which is defined as the ratio of the volume of the
conducting pores to the total pore volume, to replace the original porosity in Eq. 1. He
considered that some pores were interconnected and contributed very little or nothing
to the global flow. Later, Koponen (Koponen et al., 1997) used the lattice-gas cellular
automaton method to simulate an uncompressible flow in a 2D porous medium and
gave the relationship between effective porosity and original porosity. However,
compared to a 2D porous medium, the structure of a 3D porous medium is more
complicated. 2D simulations cannot consider the real pore connectivity. The empirical
formula of the 2D model is not practical. Sheikh (Sheikh and Pak, 2015) gave a new
empirical formula of the effective porosity for 3D conditions using the lattice
Boltzmann method. However, some parameters for his empirical formula are not easily obtained.

The geometric characteristic is also a key factor that influences the permeability of the pore medium. Some researchers have used regularly arranged spheres or cylinders (Li et al., 2005; Okabe and Blunt, 2004), whereas others have used random packed methods (Lee and Yang, 1997; Maier et al., 1998) to build porous media with simple geometric features to study permeability. Their results have shown that different arrangements of particles can cause different permeabilities. Some studies of the influence of particle shape on the permeability of a porous medium through numerical simulations have been carried out in the past (Dorai et al., 2015; Osiptsov, 2017; Saomoto and Katagiri, 2015; Scholes et al., 2007; Stewart et al., 2006). These studies used regularly shaped particles such as cubes or ellipsoids. Chukwudozie (Chukwudozie and Tyagi, 2013) simulated the effect of the surface geometric characteristics of particles on permeability. In their study, the surface geometric characteristics of particles were controlled by the several bulges above the sphere, and the particle arrangement in the porous medium was cubic and centred as a regular body, which is very different from the real arrangement condition. Natural soil particles can be regarded as a set of spheres with a random size distribution that reflect realistic conditions. Liu (Liu and Jeng, 2019) used two parameters (Wadell sphericity and Cox roundness) to express the roughness of spherical particles. Their simulation results showed that the sensitivity of sphericity and roundness is less than that of particle size distribution and porosity.
In previous studies, simulations have mainly focused on uniform particle size. However, soil is composed of various particle sizes. Smaller particles may have more influence on permeability due to their greater specific surface area (Ghassemi and Pak, 2011), so the size distribution of particles must be considered (Wilson et al., 2008). In summary, although there are many formulas for predicting permeability using geometric parameters, only a few can be used in engineering practice. The empirical formulas proposed in the existing studies are diverse, lack a general format, and can be applied only to special soils.

Previous studies have mainly focused on investigating the permeability of laminar flow through porous media while neglecting the characteristics of turbulent flow. This is mainly because of the complexities of the flow field in porous media and the significant computational resources required for simulating turbulence. However, understanding the behaviour of turbulent flow is crucial. Fattahi (Fattahi et al., 2016) employed a lattice Boltzmann method to investigate high Reynolds number flow through an unstructured packing of spherical particles, but a comprehensive analysis of the permeability regularities was not conducted. In this study, we present a three-dimensional numerical simulation using a multiple relaxation time lattice Boltzmann method to examine the flow through a soil medium composed of rigid spherical particles with a certain size distribution. Through numerical simulations, we establish correlations between parameters such as porosity, particle size distribution, Reynolds number, and permeability.

Many researchers have used numerical simulation methods to study porous
Traditional numerical simulation methods cannot manage the complex boundary conditions of porous media. The lattice Boltzmann method (LBM) proposed by McNamara and Zanetti (McNamara and Zanetti, 1988) is a mesoscopic simulation method that combines macroscopic continuous simulation and microscopic molecular dynamics simulation. It is a conventional approach used to simulate the seepage of porous media. In addition to the lattice Boltzmann method, some researchers have used the finite volume method (FVM) to study permeability at the pore scale (Garcia et al., 2009; Stefansson and Keilegavlen, 2023; Torskaya et al., 2014). The disadvantage of the finite volume method is that the general simulation conditions are relatively sparse because of the complexity of FVM modelling. Furthermore, owing to the high computational resource cost of solving the Navier–Stokes (N–S) equations, most of these studies have employed calculations based on the Laplace equation instead of the N–S equations.

The following work is structured as follows: Section 2 presents the numerical model, which is divided into two parts: the lattice Boltzmann method (Section 2.1) and the construction of porous media (Section 2.2). The validation of the presented numerical model is discussed in Section 2.3. Section 3 provides a comparison of the numerical results. Finally, Section 4 presents the conclusions of this study.

2. Numerical Model and Validation

2.1 Lattice Boltzmann method for fluid flows
The LBM is a conventional computational fluid method based on the lattice gas automaton method and the Boltzmann equation. This method is a mesoscopic simulation method and has a clear physical background based on molecular dynamics theory. The advantage of the LBM in seepage problems lies with its strong capability to simulate complex pore structures (Chen and Doolen, 1998).

The Bhatnagar–Gross–Krook (BGK) model is the most popular LB method with a standard bounce-back scheme for fluid–solid boundary conditions (Guo et al., 2000). In the BGK model, the collision operator is approximated by a single relaxation time (SRT) approximation. However, the SRT approximation has some disadvantages, such as numerical instability and viscosity dependence at boundary locations. The dependence on viscosity causes some problems in seepage simulations. The permeability becomes viscosity dependent, even though it should be a physical property of the porous medium alone. By using a multiple relaxation time (MRT) approach, which separates the relaxation times for different kinetic nodes, the disadvantage of the BGK model can be significantly overcome to improve numerical stability (Du et al., 2006; Pape et al., 2000). The general form of the governing equation with the D3Qq velocity set in the MRT model is as follows:

\[
f_{\alpha}(x + e_{\alpha} \Delta t, t + \Delta t) - f_{\alpha}(x, t) = -M^{-1} \left[S(m - m^{eq}) \right]
\] (4)

where \(f_{\alpha}(x, t) \) denotes the density distribution function at lattice position \(x \) and time \(t \); \(e_{\alpha} \) is the discrete velocity in the \(\alpha \) direction, and \(\alpha \) ranges from 1 to q-1 in three dimensions. The particle speed is \(c = \Delta x / \Delta t \), \(\Delta x \) is the lattice constant, and \(\Delta t \) is the time step. \(M \) is the transformation matrix. \(S \) is the diagonal collision matrix in moment.
space. \(\mathbf{m} \) is the vector of moments. \(\mathbf{m}^{eq} \) is the vector of equilibrium moments.

The equilibrium distribution function of the D3Q27 model is

\[
f_a^{eq} = \omega_a \rho + \omega_a \rho_0 \left[\frac{\mathbf{e}_a \cdot \mathbf{u}}{c_s^2} + \frac{(\mathbf{e}_a \cdot \mathbf{u})^2}{2c_s^4} - \frac{|\mathbf{u}|^2}{2c_s^2} \right]
\]

(5)

where \(c_s \) is the lattice sound speed (\(c_s^2 = c^2 / 3 \)), \(\rho_0 \) is the reference density of the fluid and \(\omega_a \) is the weight coefficient, which has the following value:

\[
\omega_0 = \frac{8}{27}, \quad \omega_{1-6} = \frac{2}{27}, \quad \omega_{7-18} = \frac{1}{54}, \quad \omega_{19-26} = \frac{1}{216}
\]

(6)

The macro density and velocity can be obtained through the distribution function:

\[
\rho = \sum_a f_a
\]

(7)

\[
\rho_0 \mathbf{u} = \sum_a f_a \mathbf{e}_a
\]

(8)

where \(\rho \) is the fluid density and \(\mathbf{u} \) is the vector of fluid velocity.

Eq. (2) can be restored to the Navier–Stokes equation based on the Chapman–Enskog expansion (Liu et al., 2021).

The Smagorinsky eddy viscosity model (Krafczyk and Olke, 2003) is used to simulate turbulent flows, and then the LBE large eddy simulation (LES) model is established. The eddy viscosity \(\nu_t \) is calculated by the mean strain rate \(\bar{\mathbf{S}} \),

\[
\nu_t = (C_s \Delta)^2 \| \bar{\mathbf{S}} \|
\]

(9)

where \(C_s = 0.15 \) is the Smagorinsky constant, \(\Delta = \delta_c \) is the filter length, and

\[
\| \bar{\mathbf{S}} \| = \sqrt{2 \bar{S}_y \bar{S}_y}.
\]

In the LBE, the mean strain rate \(\bar{\mathbf{S}} \) is calculated by the nonequilibrium part of the mean second-order moment \(\bar{\mathbf{P}} \):
\[
\bar{S}_\gamma = \frac{3\bar{P}_\gamma}{-2\tau_{\text{total}}\rho_0 c^2 \delta_t}
\]

(10)

where \(\bar{P}_\gamma = \sum_{\alpha=0}^{q-1} e_{\alpha j} f_{\alpha} - \rho_0 \mu_j - p \delta_j \).

In our simulations, the pressure gradient boundary condition is applied to the inlet and outlet boundary. On the solid–fluid surface, the central linear interpolation (CLI) scheme of boundary conditions is applied. The CLI scheme was proposed by Ginzburg (d’Humières et al., 2002; Ginzburg et al., 2008; Ginzburg and d’Humières, 2003) based on two relaxation times (TRT), which can be seen as the minimal configuration that provides just enough free relaxation parameters to avoid nonlinear dependencies of the truncation errors on the viscosity in the context of porous media simulations.

Let \(x_i \) denote a lattice node located at a distance of at most \(i > 0 \) cells from the boundary, and let \(q = \| x_i - x_s \| / \| x_i - x_b \| \) define a normalized wall distance (Fig. 1).

The CLI scheme requires three values at two fluid nodes. The CLI scheme can be expressed as

\[
f_\beta(x_{f1}, t) = \frac{1-2q}{1+2q} f_\alpha(x_{f1}, t) - \frac{1-2q}{1+2q} f_\beta(x_{f1} - e_\alpha \delta_t, t) + f_\alpha(x_{f1} + e_\alpha \delta_t, t) \tag{11}
\]

where \(\beta \) is the diametrically opposite direction to \(\alpha \).

To verify the developed MRT–LBM model and the given boundary conditions, the Poiseuille flow between two parallel plates is simulated. Between the two parallel plates, the velocities at the plates are zero, and the velocity reaches its maximum in the middle. The velocity profile between two plates of width \(2a \) is a parabolic curve given by
where L is the length along the low direction, ν is the fluid dynamic viscosity, Δp is the pressure difference, and y is the distance of any point from the middle of the domain.

The maximum velocity along the centreline is given by

$$u_0 = \frac{\Delta p a^2}{2\nu p L}$$

The lattice sizes of the calculation domain are set to 100×100×200, and the Reynolds number is 0.1, which indicates that the flow is laminar. The velocity contour and the comparison between the numerical results and analytical solutions of the velocity in the x direction are shown in Fig. 2.

2.2 Simulation of porous medium

Simulation methods for forming granular packings of hard particles usually involve one of two methods. One is the concurrent algorithm, which involves the densification of a fixed number of particles. The other is the sequential algorithm, which involves progressively adding more particles to a fixed volume.

The sphere packing code utilizes the concurrent algorithm used by Williams and Philipse to generate packings of spherocylinders (Williams and Philipse, 2003). The algorithm has been modified to support the generation of packings for systems of spheres with lognormally distributed radii and to provide control over the final porosity of the packing. The major steps can be seen in Fig. 3.
To improve convergence, the spheres are divided into a collection of cells consisting of equally sized subdomains, which is a common optimization for N-particle methods. To consider potential overlaps only from neighbouring cells for a given sphere, the code is significantly accelerated by increasing the number of cells, thereby reducing the length of the search path needed when computing overlaps. However, this optimization can lead to oversights in overlap computation if the maximum radius exceeds half of the cell width. Errors may occur if too many cells are requested for a given system, causing the maximum radius to exceed half of the cell width. Nonetheless, the generated porous medium is consistent with the actual on-site conditions. Fig. 4 illustrates the typical porous media constructed in the study.

2.3 Simulation of seepage in the porous medium

The boundary conditions in the simulation domain are set as follows: the pressure boundary condition is used for the inlet boundary and the outlet boundary. The CLI scheme boundary condition (Ginzburg et al., 2008; Ginzburg and d’Humières, 2003) is used for the other four boundaries and the boundaries of the solid particles. The simulation domain is set to 200×200×200, and the porosity ε is 0.5.

The relative permeability can be calculated by Eq. 1. The dimensionless permeability k is defined as

$$k = \frac{K}{d_p^2}$$

(14)

where d_p is the characteristic length of the spherical particles. For the seepage of
porous media, the medium particle size \(d_{50} \) is generally used to denote the characteristic length.

For the Poiseuille flow between two parallel plates filled with a porous medium of porosity \(\varepsilon \), the Navier–Stokes equation can be simplified as

\[
\frac{\nu}{\varepsilon} \frac{\partial^2 u}{\partial y^2} + \frac{F}{\varepsilon} = 0
\]

(15)

where \(F \) denotes the total body force due to the porous media and other external force fields and is given by

\[
F = \frac{\varepsilon v}{K} u - \frac{\varepsilon F_e}{\sqrt{K}} |u| u + \varepsilon G
\]

(16)

where \(G \) is the body force induced by the external force. \(F_e \) is the geometric function and is related to the porosity \(\varepsilon \). On the right side of Eq. 16, the first term is the linear (Darcy) and the second term is the nonlinear (Forchheimer) drag due to the porous medium.

The velocity of the solid–fluid boundary is zero, and the lateral velocity component \(v \) is zero everywhere. The quadratic nature of the nonlinear drag makes it negligible for low-velocity flows. For the cases in which the Reynolds number is small, the nonlinear drag can be neglected. Without the nonlinear term, the analytical solution of Eq. 15 can be written as

\[
u = G K \left(1 - \frac{\cosh[r(y - H/2)]}{\cosh(r H / 2)} \right)
\]

(17)

where \(u_0 \) is the peak velocity of the flow along the centreline given by

\[
u_0 = G K \left[1 - \cosh^{-1}(\frac{r H}{2}) \right]
\]

(18)
where \(r = \sqrt{v/K} \).

Due to the presence of solid particles, the velocity distribution of a single line may deviate from the analytical solution. Therefore, to more accurately compare with the analytical solution, the mean velocity of the cross section at height \(y \) is calculated as a replacement for the local velocity at that particular location. The comparison between the numerical results and analytical solutions of the velocity in the \(y \) direction is shown in Fig. 5(a). The analytical solutions are calculated by Eq. 18, and the simulation results are the mean velocity of the cross section in the height \(y \). Because of the randomness of the sphere pack structure, the mean velocity distribution of the porous seepage may not fit the analytical solutions accurately. The maximum error of the velocity is 10.6%.

Fig. 5(b) shows the streamlines of the simulated porous medium. In pore spaces, streamlines often undergo changes, particularly in the regions between large and small particles. Between large particles, streamlines tend to become more tortuous and complex, as the large particles impede fluid flow and cause streamlines to bend and branch. Between small particles, streamlines tend to become smoother and more linear, as the gaps between small particles are smaller and fluid can more easily pass through these gaps and flow along relatively straight paths.

Sobieski (Sobieski and Trykozko, 2014) calculated the permeability and Forchheimer coefficient based on experimentally measured flow rates and pressure drops. Fig. 6 illustrates the comparison of the velocity–pressure relationship between the experimental data and simulation data. The simulation data are in good agreement
with the experimental data. The simulation parameters are based on Sobieski's experiment and are summarized in Table 1. The maximum error between the simulation results and experimental results is 6%. The main reason for the error is attributed to the unclear characteristics of certain porous media, such as the nonuniform coefficient.

2.4 Mesh sensitivity analysis

The minimum resolution of each spherical particle required for simulation accuracy needs to be determined. Under the situation of porosity $\varepsilon = 0.5$, the permeability of spherical particles with different resolutions (d_p/dx) is shown in Fig. 7. Fig. 7 illustrates that when the diameters of medium spherical particles reach ten lattices, the dimensionless permeability will remain stable. Twenty lattices are sufficient to describe the structure of spherical particles.

3. Results and Discussion

3.1 Effect of porosity on permeability

To study the effect of porosity on permeability, it is necessary to ensure that other parameters remain unchanged. The porosity is adjusted by controlling the number of particles, and the floc size distribution remains unchanged. The medium floc diameter was fixed at 20 lattice units, and the particle numbers were set to 1000. Considering the porosity of natural soil, the upper limit of porosity was set to 0.55. Nine porous media with different porosities varying from 0.35 to 0.55 were constructed. Their
The widely used form of the KC equation is obtained as (Chen and Doolen, 1998)

\[K = \frac{\varepsilon^3}{(1-\varepsilon)^2} \frac{d_p^2}{180} \]

(19)

Sheikh (Sheikh and Pak, 2015) summarized another equation, which after some substitutions becomes

\[K = \frac{1-1.209(1-\varepsilon)^{2/3}}{60\varepsilon} \frac{\varepsilon^3}{(1-\varepsilon)^2} d_p^2 \]

(20)

Recently, Ahmadi (Ahmadi et al., 2011) provided the following relationship by analytical derivation:

\[K = \frac{1-1.209(1-\varepsilon)^{2/3}}{30[1-1.209(1-\varepsilon)^{2/3} + 2\varepsilon]} \frac{\varepsilon^3}{(1-\varepsilon)^2} d_p^2 \]

(21)

Jeong’s equation (Jeong, 2010) is as follows:

\[K = e^{(0.709\ln(\varepsilon^{3/5}/(1-\varepsilon)^2) - 5.09)} d_p^2 \]

(22)

The abovementioned formula is mainly derived mathematically, often making simplified assumptions about the porous medium model. As a result, there may be some deviation from the actual results.

Based on the calculated results of the permeability (Fig. 8), the correlation between the permeability and porosity of the porous media was determined. According to the KC equation (Eq. 19), a linear regression on the relative permeability \(K \) and the expression \(\varepsilon^3 / (1-\varepsilon)^2 \) of the porosity was performed. As shown in Fig. 9 (a), \(R^2 \) is 0.9876. The largest relative error is 50% when the porosity is 0.35.
To reduce the relative error and obtain a more accurate correlation between permeability and porosity, the logarithms of the relative permeability K and $e^3/(1-e)^2$ were taken separately, and linear regression was performed to obtain the results shown in Fig. 9(b). The R^2 is 0.9951, which indicates a good degree of fitting.

In this study, a new fitting formula is introduced on the basis of the KC formula. The fitting curve is shown in Fig. 10.

$$K = \frac{e^3}{(1-e)^2}^{0.76} \frac{d_p^2}{80}$$ \hspace{1cm} (23)

3.2 Effect of particle size distribution on permeability

Soil is composed of particles with different sizes. Smaller particles may have more influence on the permeability due to their greater specific surface area (Liu and Jeng, 2019). Hence, additional investigations have been conducted on correlating the permeability with the particle size distribution. The particle size distribution can be characterized by the gradation parameters. The coefficient of nonuniformity C_u, which reflects the distribution of different particle sizes, can be expressed as

$$C_u = \frac{d_{60}}{d_{10}}$$ \hspace{1cm} (24)

To examine the influence of the coefficient of nonuniformity on the permeability, six porous media with different gradation parameters were constructed, and their porosity ε was set to 0.5. The gradation curves for the six porous media are shown in Fig. 11. The relationship between the coefficient of nonuniformity and the relative permeability coefficient is shown in Fig. 12 when the flow is laminar. The results
show that the permeability depends on the coefficient of nonuniformity and increases with an increasing coefficient of nonuniformity, almost with a parabolic trend. Therefore, the effect of the particle size distribution on the permeability is obvious. Equation 25 accounts for the influence of the particle size distribution in the modified KC formula.

\[K = C_i \left(\frac{\varepsilon^3}{(1-\varepsilon)^2} \right)^{0.76} d_p^2 \]

(25)

where \(C_i \) is a coefficient related to the coefficient of nonuniformity. It can be expressed separately as

\[C_i = 0.014 C_u^2 - 0.03 C_u + 0.022 \]

(26)

3.3 Effect of the Reynolds number on permeability

Turbulent flow significantly affects the rate of transport. It comprises a complex flow pattern with various scales of vortices and turbulence structures. This flow state enhances the transport rate within the medium by facilitating mixing and diffusion mechanisms, thereby promoting rapid substance transfer between different regions. Hence, studying turbulent flow helps us better comprehend and control the permeation rate of substances.

The particle Reynolds number (Re) for flow through a porous medium is typically expressed as

\[Re = \frac{VD}{\nu} \]

(27)

where \(D \) is the medium diameter of the porous medium particles.
Flow through soil with a particle Reynolds number less than 1 is classified as laminar, while flow with a particle Reynolds number greater than 100 is considered turbulent. Flow that falls between these two limits is transient. In this study, several simulations were conducted with varying particle Reynolds numbers in the range of 0.001 to 3,000 (0.001, 0.01, 0.01, 0.3, 30, 100, 300, and 3000). Figure 13 demonstrates that the dimensionless permeability remains constant in the laminar regime and does not vary as the particle Reynolds number increases. However, as the particle Reynolds number enters the transient regime, the dimensionless permeability decreases. This finding is consistent with the conclusions drawn in Fattahi’s research (Fattahi et al., 2016). Therefore, the empirical formula of permeability needs to consider the effect of the Reynolds number.

The Forchheimer term (Eq. 2) is commonly employed to describe the impact of nonlinear drag in turbulent flow. The Forchheimer coefficient β is an empirical coefficient that relies on soil and flow characteristics. The commonly used empirical formula of the Forchheimer coefficient β can be written as

$$\beta = \beta_0 \times \frac{1 - \varepsilon}{\varepsilon^3} \times \frac{1}{d_{50}}$$

where β_0 is an empirical parameter.

In previous studies, researchers did not account for the variation in the Forchheimer coefficient with the Reynolds number. Based on Eq. 2, the Forchheimer coefficient β can be calculated. Fig. 14 demonstrates the relationship between the particle Reynolds number and the Forchheimer coefficient. As the velocities increase,
the Forchheimer coefficient decreases. The fitting formula of the Forchheimer coefficient is provided below:

\[\beta = (-0.006 \ln(Re_p) + 0.051) \times \frac{1}{\varepsilon^3} \times \frac{1}{d_{50}} \]

(29)

Under turbulent conditions, the fluid demonstrates an irregular velocity distribution and exhibits vortex structures accompanied by highly intricate streamlines. The irregularity of turbulence leads to significant variations in path and velocity as the fluid traverses the pores of the medium, resulting in relatively low permeability.

On the other hand, laminar flow describes an ordered and parallel flow state of the fluid within a porous medium. In laminar flow, the fluid displays a layered and parallel velocity distribution with relatively regular streamlines. The ordered nature of laminar flow results in minimal changes in path and velocity as the fluid passes through the medium's pores, leading to relatively high permeability.

Based on the above conclusion, a modified Darcy formula considering the size distribution of particles and particle Reynolds number is finally presented. When the particle Reynolds number is less than 1, which indicates that the flow is laminar, Eq. 30 is applicable.

\[-\frac{dP}{dx} = \frac{1}{K} \cdot (\mu \cdot V) \]

(30)

\[K = C_1 \left(\frac{\varepsilon^3}{(1 - \varepsilon)^2} \right)^{0.76} d_p^2 \]

(31)

where \(C_1 \) is a coefficient related to the coefficient of nonuniformity. It can be expressed separately as

\[C_1 = 0.014C_u^2 - 0.03C_u + 0.022 \]

(32)
When the particle Reynolds number is greater than 1, which indicates that the flow gradually becomes turbulent, Eq. 33 is applicable. \(K \) refers to the same value as Eq. 31.

\[
\frac{dP}{dx} = \frac{1}{K} \cdot (\mu \cdot V) + \beta \cdot (\rho \cdot V^2) \\
\beta = (-0.006\ln(Re_p) + 0.051) \times \frac{1 - \varepsilon}{\varepsilon^3} \times \frac{1}{d_{50}}
\]

4. Conclusions

A newly developed 3D multiple relaxation time LBM code has been employed to investigate the effects of several issues, such as effective porosity, particle size, particle size distribution and the particle Reynolds number, on the permeability of porous media. Many numerical simulations were performed under different conditions. From the LBM simulations conducted in this study, the following conclusions can be drawn:

(1) The effects of porosity, particle size, particle size distribution and Reynolds number on the permeability were studied in this paper. It was proven that in addition to the influence of porosity and particle size distribution on the permeability, the influence of the Reynolds number on the permeability is obvious and cannot be ignored.

(2) An analysis of the seepage flow field at the pore scale revealed that certain seepage channels within the network exhibit significantly higher velocities than others, indicating the presence of a dominant seepage main channel phenomenon in the network.
Based on the numerical simulation results, a modified Darcy formula considering all the factors was provided.

The permeability coefficient formula is a valuable tool for future simulations of macroscopic porous seepage models. By integrating this coefficient into numerical models or simulations, we can effectively simulate and analyse the fluid behaviour within porous media under different conditions.

Acknowledgements

The authors gratefully acknowledge the financial support from the National Key Research and Development Project of China (2021YFB2601100), the National Natural Science Foundation of China (51979190), and the Open Funds of State Key Laboratory of Hydraulic Engineering Simulation and Safety of China (Grant No. HESS-2221).

Data Availability Statement

The data for the results presented is available, and the results can be reproduced, using a Docker container available at https://dx.doi.org/10.5281/zenodo.10005571 (Zhang & Li, 2023)

References

471 Bogdanov, I.I., Mourzenko, V.V., Thovert, J.F., Adler, P.M., (2003). Effective
472 permeability of fractured porous media in steady state flow. Water Resources
475 rnal of Agricultural Science, 29(2), 262–273. https://doi.org/10.1017/S00218
476 59600051789
479 003-2
482 id.30.1.329
483 Chukwudozie, C., Tyagi, M., (2013). Pore scale inertial flow simulations in 3-D s
484 mooth and rough sphere packs using lattice Boltzmann method. Transport Ph
486 232
489 11.031
491 ltiple-relaxation-time lattice Boltzmann models in three dimensions. Mathema

2. https://doi.org/10.1016/j.ces.2015.01.070

016/j.physleta.2006.07.074

Fattahi, E., Waluga, C., Wohlmuth, B., Rüde, U., Manhart, M., Helmig, R., (201

6). Lattice Boltzmann methods in porous media simulations: From laminar to

compfluid.2016.10.007

cal study of the effects of particle shape and polydispersity on permeability.

https://doi.org/10.1103/PhysRevE.80.021304

for flow through particulate media using Lattice Boltzmann method. Intern

tional Journal for Numerical and Analytical Methods in Geomechanics, 3

5, 886–901. https://doi.org/10.1002/nag.932

Stefansson, I., Keilegavlen, E., (2023). Numerical Treatment of State-Dependent P

Table 1 Simulation Parameters Used in Section 2.3

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fluid density</td>
<td>994.49 kg/m³</td>
</tr>
<tr>
<td>Dynamic viscosity coefficient</td>
<td>0.000743 kg/m·s</td>
</tr>
<tr>
<td>Kinematic viscosity coefficient</td>
<td>0.00000747 m²/s</td>
</tr>
<tr>
<td>Porosity of porous media</td>
<td>0.37</td>
</tr>
<tr>
<td>Medium particle size of porous media</td>
<td>1.95 mm</td>
</tr>
<tr>
<td>Nonuniformity coefficient</td>
<td>1.1</td>
</tr>
<tr>
<td>Water velocity range</td>
<td>0.00002-0.01 m/s</td>
</tr>
</tbody>
</table>

Fig. 1. A two-dimensional example of the boundary node, where X_f represents fluid...
node and X_b represents solid node.

Fig. 2. (a) The simulation domain of the numerical model, where the inlet boundary and outlet boundary using the pressure boundary condition. And the CLI boundary condition is used for the other four boundaries. (b) Comparison between LBM simulation and analytical solution of Poiseuille flow (Eq.13).
Fig. 3. Flowchart of the generation of porous medium
Fig. 4. (a) Porous medium is constructed using the code, where the porosity of porous medium is 0.5 and the particle number is 1000. (b) Particle size distribution of the generated porous medium.

Fig. 5. (a) Comparison between LBM simulation and analytical solution of porous Poiseuille flow (Eq.18) with porosity of 0.5. (b) Streamlines of flow through spherical...
particles in porous Poiseuille flow

Fig. 6. Comparison between experimental data by Sobieski and Trykozko (2014) and simulation data

Fig. 7. Permeability of spherical particles with different resolutions with porosity of
Fig. 8. Comparison between simulation results and other empirical formulas

Fig. 9. (a) Linear regression on the relative permeability K and the expression $\varepsilon^3 / (1 - \varepsilon)^2$ of the porosity. (b) Linear regression on the relative permeability K and the expression $\ln(\varepsilon^3 / (1 - \varepsilon)^2)$ of the porosity.
Fig. 10. Simulation results and the empirical formula
Fig. 11. Gradation curves for different calculation cases

Fig. 12. Relation between the relative permeability coefficient and coefficient of
nonuniformity with porosity of 0.5.

Fig. 13. Permeability with different particle Reynolds numbers with porosity of 0.4.

Fig. 14 Permeability with different particle Reynolds numbers with porosity of 0.4.