A critical update on the management of retrosternal goiter

Cesare Miani¹, Luca Giovanni Locatello², Anna Maria Bergamin-Bracale², Nicole Caiazza², Stefania Rigo², Maria Gabriella Rugiu³, Andrea Zuin¹, and RICARD SIMO⁴

¹Università degli Studi di Udine
²Presidio Ospedaliero Universitario Santa Maria della Misericordia
³Azienda sanitaria universitaria Friuli Centrale
⁴Guy’s and St Thomas’ NHS Foundation Trust Ear Nose and Throat Head and Neck Service

October 21, 2023

Abstract

Background: Retrosternal goiters (RGs) pose several challenges to head and neck surgeons because of the intricate anatomical relationships with major vessels and other mediastinal structures. Methods: A scoping review of the last five years in the PubMed database was conducted and a total of 105 articles were discussed, along with methodological issues and future directions in the research on RGs. Results: The surgical excision of RGs may be accomplished by standard transcervical approach in the vast majority of cases, yet the potential need for a transthoracic approach must be always kept in mind. Great expertise in referral centers is required to maintain an acceptable rate of postoperative complications, and a thorough diagnostic work-up is mandatory. Several non-surgical treatments in addition to mini-invasive approaches have been proposed for RGs. Conclusions: RGs require a multidisciplinary thyroid team in order to eventually minimize the risk of complications and avoid extracervical approaches.

Introduction

Retrosternal goiter (RG), also referred to as intrathoracic or retrosternal, or cervico-mediastinal goiter, was first described by Haller in 1794 but it still represents a challenge for inexperienced head and neck and thoracic surgeons, as well as for anesthesiologists¹,². Clinically RGs are usually incidental findings, yet they can present sometimes with life-threatening dyspnea. They pose many issues in terms of airway management: because of tracheal deviation, external compression, and risk of tracheomalacia and cardiovascular collapse, RGs should be managed only in referral centers where expected difficulties can be safely managed. In this regard, an accurate preoperative work-up is mandatory in order to avoid complications and to reduce the need for an extra-cervical approach. The most recent review available on RG dates back to some years ago, and since then the evolution of technology has brought in different innovations, especially in new mini-invasive techniques such as image-guided ablation or robotic-assisted transthoracic surgery³.

The present review aims to critically discuss the published evidence in the last five years on the medical and surgical management of RG, with particular attention to the need for multidisciplinary management of these patients.

Materials and Methods

The PRISMA statement (https://www.equator-network.org/reporting-guidelines/prisma/) was followed in the preparation of the present paper, and a modified PRISMA flowchart is given in Figure 1 ⁴. No institutional review board approval was necessary for the present work. The PubMed database was used in order to perform the review of the literature from January 1st 2017 to January 1st 2023. The following search
(intrathoracic OR retrosternal OR cervico-mediastinal OR substernal) AND (goiter OR goitre). All the pertinent articles were included after careful reading of the titles and abstracts. Full texts of the included articles were then retrieved by the first author (LGL) and quantitative and qualitative data were synthesized accordingly. Papers reporting surgical outcomes of RG mixed with other thyroid disorders (Reason 1); studies other than original articles or reviews or case series/reports (Reason 2), or written in languages other than English or French, or Italian were excluded (Reason 3).

The search strategy retrieved a total of 172 articles and, after applying the selection criteria, a total of 98 articles were ultimately analyzed. Additionally, a further 7 articles were retrieved and included in the discussion after checking through the reference lists of the relevant studies. Quantitative and qualitative data regarding surgical outcomes were summarized and systematically reported in tables.

Definition, Classification, and Pathogenesis of RG

From an etymological point of view, RG must at least partially be located in the mediastinum, but a myriad of factors affects this seemingly simple definition: a clinical versus a radiological evaluation, the extension of the head at the time of examination, the proportion of thyroid mass that is required to extend into the thoracic cavity, just to name a few. As of today, we still haven’t found a commonly accepted definition of RG which suffers from an “identity crisis”, and a historical overview of the over ten definitions available has just been published. Notably, Rios et al. analyzed the various criteria to define RGs and they found none to be clinically meaningful. The most recent (and somehow broadest) definition comes from the 2020 American Association of Endocrine Surgeons (AAES) guidelines, where “if a mediastinal extension is present, meaning that the gland extends caudally past the sternal notch on physical examination, computer tomography (CT) imaging, or at the time of surgery” it can be considered as a true RG. Since an authoritative international consensus has not been reached, the most recent literature is still heavily affected by these heterogeneous definitions (see Table 1), and this represents an enormous obstacle for comparing surgical outcomes.

RGs can be variously defined according to their extension and relationships with anatomical structures of the mediastinum: the most recent classification divides them into a Type I RG (extending anteriorly to the trachea and RLN), a Type II RG (where at least a part of the mass extends posteriorly to the mediastinal vessels, the trachea, and the RLN), and a Type III (purely mediastinal) RG. Unfortunately, a formal correlation of these classifications with surgical outcomes has not been performed. We must remember that over 99% of RGs are secondary (type I and II), i.e. they represent an inferior extension of the normal thyroid gland, and they are vascularized by branches of superior and inferior thyroid arteries. Instead, primary (type III) RGs are clearly separated from the orthotopic cervical thyroid, they receive arterial branches from intrathoracic arteries, and they are usually incidental findings. In these cases, a missed gland can be diagnosed only when postoperative TSH levels remain unchanged or a (functional) imaging of the chest is performed. From an embryological point of view, type III RG is explained by an erroneous migration of the median and lateral anlagen from the pharyngeal pouch and the ultimobranchial body, as it was recently reviewed by Rico and Lung. Migration of the median anlage may also lead to a presternal goiter, and in 2019 the seventh case worldwide was reported. Sometimes, after subtotal thyroidectomy, patients may present with only a residual central mediastinal mass shifting the trachea laterally (“pseudo-primary RG”). This may also happen decades after the initial surgery and it may mimic other mediastinal or pulmonary pathologies, such as paraganglioma or adenocarcinoma of the lung.

Regarding the pathogenesis of RG, no recent study has ever explored if there are different molecular mutations in RG compared to non-intrathoracic goiters. The issue remains unsolved and anatomical and functional factors (no limitations downwards encountered by the expanding gland, traction forces associated with swallowing, a negative intrathoracic pressure during inspiration), and gravity itself has been called into question. A 1939’s study by Crile proposed that patients with a short neck and hypertrophic cervical muscles might theoretically favor the retrosternal expansion of the goiter, but no formal anthropometric study exists to corroborate this assumption. In the end, and besides the simple time during which a goiter has been allowed to grow undisturbed, risk factors for the development of RGs remain still unexplored.
Clinical Presentation

A chronic and slowly progressive airway compression is the usual presentation of RG, and this can last many years in areas where iodine deficiency is endemic23. A choking sensation exacerbated by the supine position, globus, wheezing, and exercise-induced dyspnea (both mistaken for asthma), or dysphagia are the symptoms most commonly reported by patients, that on the other hand are asymptomatic at presentation in over one-third of cases5. Mechanisms of dyspnea are believed to be direct extrinsic tracheal compression, dysfunction of the recurrent laryngeal nerve, and lung atelectasis24. Instead, in less than 5\% of cases the clinical presentation of RG may be acute: spontaneous hemorrhagic enlargement of RG may occur during pregnancy25,26 or for unclear reasons27,28, acute asphyxia and cardiac arrest have been described29,30, and some authors have hypothesized a direct phrenic nerve compression by the RG as the main cause of these dramatic scenarios31.

Rarer presentation may be constituted by thyrotoxicosis or symptoms of superior vena cava syndrome (facial plethora and congestion, upper neck cyanosis, or a positive Pemberton’s sign with facial flushing and engorgement of superficial jugular veins upon raising the arms)5. While it had been previously reported that this syndrome was more often associated with malignancy, this remains unproven21. Isolated dysphagia is also possible in case of goiter growing only in the retro-esophageal plane32,33, while the only presenting symptom may also be represented by oropharyngeal bleeding because of pharyngolaryngeal “downhill” (i.e., without venous portal hypertension) varices34. Furthermore lower and upper extremities edema35, pericardial effusion, chylothorax, or hemoptysis because of tracheal varices have been also described21.

Diagnostic Work-up and Anesthesiologic Considerations

The diagnostic workup of a goiter begins with simple palpation of the neck and performing an ultrasound. Regarding the former, Pattashanee and colleagues have shown that clinical examination in modified Rose’s position (i.e., supine, a roll under the shoulders, and by hyperextending the neck) has an excellent sensitivity (98\%) and a variable specificity (46.7-91.1\%) to identify substernal extension36. Another interesting result is that, in the absence of the Pemberton’s sign, the probability of getting a false positive finding of a substernal extension was only 4\%, and this is quite relevant in the context of low-income countries where the availability of CT scan is scarce36,33, an 89\% sensitivity and 87\% specificity for any degree of tracheal narrowing were registered (AUC = 0.90)37.

CT scan of the neck and thorax remains the gold standard for a full assessment and classification of RG because it evaluates the dimensions, the morphology, and the relationships to the adjacent mediastinal anatomical structures (Figure 2). It is usually performed with the aid of intravenous iodine contrast agents, despite a theoretical more than a real risk of precipitate thyrotoxicosis (Jod-Basedow phenomenon)5,21. Some authors have proposed a simple yet not validated rule-of-thumb: if the RG remains cranial to the aortic arch in the sagittal plane of CT performed while the patients maintain a full neck extension, then sternotomy is usually not necessary38. Classical predictors of the need for sternotomy are based on the craniocaudal length of the retrosternal extension, the ratio between the retrosternal portion and the diameter of the upper thoracic inlet (so-called “iceberg” or “cone-shaped RG”), and the anterior or posterior relationships with major vessels2,39,393 had a negative predictive value for the extra-cervical approach of 100\%40. Volume was manually outlined on axial sections by two radiologists, but interrater agreement and kappa coefficients were not calculated thus leaving doubts on the applicability of this technique. The value of imaging in the prediction of an exclusive transcervical approach to RG will be discussed further in the next sections.

CT scan lets a clear assessment of both tracheal deviation and extrinsic compression, which are both reasons why airway management is usually labeled as difficult in RG patients, and a very low threshold for endoscopic-assisted awake intubation is kept by anesthesiologists. This fear mostly derives from anecdotal evidence of extreme RG where emergency tracheostomy29, or the need for a pediatric flexible bronchoscope were necessary41. In the most extreme case, the application of extracorporeal membrane oxygenation (ECMO) before the induction of general anesthesia has been described with success42,43. Actual evidence instead dispels the myth of a difficult airway, in the absence of classical risk factors (mouth opening less than 4
cm, a thyromental distance less than 6 cm, Mallampati Class III or higher, etc.)\(^{39}\). In a 2020 paper, 22 cases of “giant” type I RG (defined as trespassing the aortic arch on CT scan), with a mean maximum diameter of 114.2 ± 19.5 mm were all successfully intubated with standard laryngoscopy or awake tracheal intubation (for 5 patients, 22%) using flexible bronchoscopy\(^{44}\). A larger multi-institutional series from the USA, confirmed that direct laryngoscopy or videolaryngoscopy techniques were sufficient in 162 patients (90.5%), while transnasal of transoral fiberoptic was intubation used for the remaining 17 patients\(^{45}\). The authors did not give a clear-cut definition of RG, yet they performed a multivariate analysis where the body mass index was the only factor to positively correlate with the number of attempted intubations\(^{45}\).

Non-surgical management of RG

When surgery is not indicated or it is not feasible because of the patient’s general status, frailty, or comorbidities, a wait-and-see approach or medical treatment of RG may be proposed\(^5,21\). In the most recent literature, no new studies regarding levothyroxine supplementation or radioiodine treatment have been published. For both options many drawbacks are present (missed malignancy, risk of thyrotoxicosis or of an increase airway obstruction) and only with the advantage of a slow and modest size reduction at best\(^21\). Instead minimal-invasive techniques such as transcervical microwave ablation (TcMA), transcervical radiofrequency ablation (TcRfA), or selective embolization of the thyroid arteries (SETA), whose preliminary reports date back to the 2000s, are being further explored.

Ultrasound-guided microwave TCA of RG combined with ethanol injection was reported as an effective and safe treatment for solitary nodular RG, especially for patients who are ineligible or unwilling to receive surgical treatment \(^{46,47}\). A first preliminary experience was presented by Cui et al in 2018 on 10 patients a mean volume reduction ratio (VRR) of around 67% was reported after one month, while no local (pain, hematoma, etc.) or functional (thyrotoxicosis crisis, changes in TSH, etc.) adverse events were reported\(^{46}\). In a subsequent prospective study from the same hospital involving 72 patients (mean age 47.8 years) and with a mean follow-up of 23.9 months, TCA yielded a mean VRR of 83.12 ± 12.74 % (range: 52.01–100%) after one year; 57 patients (79.2%) showed a total regression of the intrathoracic extension (by CT scan) while 8 patients (11.1%) needed a second procedure because of “regrowth of unsatisfactory reduction”. 4.2% (3/72). Two patients complained of temporary neck pain/discomfort, while there was a case of postprocedural dysphonia, which resolved spontaneously after 1 month, for an overall complication rate of 4.2%\(^{47}\).

It should be noticed that in both studies, a significant reduction in terms of RG-associated signs and symptoms (i.e., neck circumference and a VAS scale measuring pain, shortness of breath, positional dyspnea, dysphagia, and dysphonia) was obtained, despite the fact that the procedure focused only on the largest retrosternal nodule\(^{46,47}\).

TcRfA is another option and Chiang et al. recently showed a VRR of 75.5% (p<0.001) in a series of 16 RGs\(^{48}\). In this series, only 4 (25%) patients showed complete regression of the substernal portion of the goiter, while there was a case of temporary hoarseness and a case of subcutaneous/focal mediastinal hematoma, which was managed conservatively (complication rate 12.5%). Nonetheless, all the patients reported significantly lower cosmetic and symptom scores on the VAS scale at 6 months\(^{48}\).

Regarding the SETA procedure, a small Italian series of 10 patients reported complete success in reducing the thyroid function and RG dimensions but no formal endpoints were used, and follow-up time was not reported. In addition, all patients developed transient thyrotoxicosis requiring corticosteroids, antibiotics, and methimazole, while one patient (10%) had right vocal cord fixation lasting around 6 months\(^{49}\). Yilmaz and coworkers instead presented their experience with SETA in 56 goiters, and among them 47 were considered “intrathoracic”\(^{50}\). The procedure was conducted successfully in 145 out of the 146 thyroid arteries and complications occurred in 27 patients (48%), but if we eliminate a case of intraoperative blurry vision, one case of groin hematoma, and 23 cases of hyperthyroidism (since it is a predictable effect because of the necrosis of the gland), only 3 (5%) patients developed temporary hoarseness. Notably, after 6 months, the mean thyroid volume was reduced from 147.0 mL to 62.6 mL, while the mean retrosternal extension was reduced from 31.7 mm to 15.9 mm (P < .001). Quality of life was measured by the popular ThyPRO tool.
and the mean scores improved from 155.4 to 70.4 (P < .001)50. These authors also reported that one patient died of myocardial infarction two weeks after SETA, and a possible causative effect cannot be excluded. Despite the absence of a comparative study, SETA is reported to be applicable irrespective of the goiter dimensions but this does not fit the preprocedural reported mean dimensions of the nodules (80.2 ± 46.7 mL for SETA50, versus 76.10 ± 50.56 mL for TcMA47).

In summary, all these non-surgical approaches have many advantages (no reported risk of iatrogenic hypothyroidism or hypoparathyroidism; they are a day or one-day procedures for ablation and SETA, respectively; they can be performed even in very fragile patients, etc.) but they retain the fundamental limit of not permitting any histological evaluation of the RG, even though at least one50, or two47 consecutive non-malignant (up to Bethesda category 3) fine-needle core biopsies were required as an inclusion criterion. The clinical experience remains however limited and, most importantly, the lack of a head-to-head comparison between standard surgical resection and these techniques remains their central limit.

Indications and Classical surgical approaches to RG

Classical indications for surgically removing a simple/non-toxic goiter date back to the beginning of the twentieth century: relief from compression symptoms, prevention of or suspicion of an associated malignancy, or for cosmetic purposes51. Unfortunately, these criteria are somehow vague and, because ultimately the surgeon is the sole responsible for the outcomes of thyroidectomy, in 2018 a “Choosing wisely” initiative from Germany proposed more reproducible criteria: compression symptoms (dyspnea, stridor, dysphagia) must be directly attributable to goiter while a reasonable suspicion of malignancy must be documented (\textit{i.e.}, TI-RADS category 4c/5, Tir 3 or higher class at FNAC in the presence of risk factors for thyroid cancer, basal calcitonin serum level increase >26 pmol/L in women and 60 pmol/L in men, cN+ status at ultrasound). In the absence of the above, surgery may also be indicated for “prevention of complications” that may derive from a progressive RG (defined as tracheal compression >35%, superior vena cava syndrome)n52–54. Again the progression must be documented but the very natural history of untreated RG is still poorly understood2.

An exhaustive explanation to the patient and their caregivers is the key to surgical success3. A detailed technical overview of the classical surgical approaches to RG has been recently given by Uludag et al and it will briefly be discussed here39. A Kocher incision, ligation of the superior and inferior vascular peduncles, and digital dissection remain the standard surgical steps, but resection of the pre-laryngeal musculature is often necessary for delivering large goiters. A 2022 study has for the first time evaluated its consequences on vocal and swallowing function: by using patient-reported impairment scores, a prospective head-to-head study of 34 patients revealed no significant differences when strap muscles are transected or not55.

In 2021, the International Neural Monitoring Study Group (INMSG) published the most important study of surgical anatomy since the introduction of intraoperative neuromonitoring (IONM). The authors have meticulously evaluated the course and anatomical relationships of 1000 RLNs: strikingly, among other findings, it emerged that in 50% of cases of RG (versus 30% in standard thyroidectomies), the RLN was fixed, splayed, or entrapped at the level of the capsule of the thyroid, thus rendering at high risk for loss of signal56. IONM is thus mandatory for every RG operation and, in the case of “giant” RG, many authors suggest the upfront use of a transcervical medial approach, which implies the separation of the isthmus and dissection of Berry’s ligament in a layered fashion along the trachea and towards the RLN. In a series from the USA, successful identification of the RLN was reported to be 84% with this approach and postoperative vocal cord dysfunction (assessed by flexible laryngoscopy) was null57. A very high rate (17%) of postoperative hematoma was reported, yet the authors declared that revision in the operative room was deemed necessary only for one patient57. Another larger case series from Greece declared instead no postoperative bleeding, and a permanent RLN damage rate comparable with classic lateral approaches58.

Regarding the extent of the resection, even in the most recent series total thyroidectomy is the preferred strategy for RG, which however can harbor one or more foci of malignancy in up to 40% of cases51. When the intrathoracic part is well lateralized, or there are anatomical constraints or technical issues during the dissection, a subtotal resection or a simple hemithyroidectomy may help relieve the compression symptoms
while minimizing the postoperative complications. New technologies are being exploited also in this type of operation: in 2018, some authors have proposed a microdebrider-assisted intracapsular reduction thyroidectomy on a small series of 26 patients. According to the proponents, a standard sinus suction debrider may morcellate the intracapsular part of the RG, it has no effect on the risk of major bleeding, and may avoid the need for sternotomy in selected patients. Instead, recent retrospective papers on transoral endoscopic thyroidectomy vestibular approach (TOETVA) or transoral robotic thyroidectomy (TORT) consider RG as an exclusion criterion because of intrinsic limitations in terms of surgical exposure.

Current Indications for combined surgical approaches to RG

Several goiter-related and patient-related factors must be considered in the surgical plan. The former are usually evaluated by neck and chest imaging, and as already mentioned patients are deemed at high risk for an extra-cervical approach when: RG extends below the aortic arch, it has multiple or separate mediastinal compartments, it has an “iceberg” or conical shape (i.e., it extends to both sides of the thorax or it has a diameter that is larger than the upper thoracic inlet). Some authors believe that in presence of possible malignancy, sternotomy may be favored, but there is no consensus on this point. In extreme cases, RG may be strictly adherent to the pericardium, or it can even invade it: in these exceedingly rare cases of intrapericardial RG, sternotomy and the availability of a cardipulmonary bypass are essential. Instead, patient-related features that may favor an extracervical approach include a history of previous thyroid or thoracic surgery, previous irradiation in the neck or chest areas, preoperative dysfunction of the vocal cords, coagulopathies, or platelet disorders (e.g., Bernard-Soulier syndrome).

The most important study that has corroborated these factors was published in 2019: in a cohort of 237 RGs where 29 (12.2%) required sternotomy, on multivariate logistic regression analysis, extension below the aortic arch (OR 10.84), an iceberg shape (OR 59.30), and previous neck surgery (OR 4.83) were all significantly associated with an extra-cervical approach. For the sake of completeness, another group has suggested the presence of an inflammatory component in the excised RG as a predictor for sternotomy (only on univariate analysis and in a small series), while in another series of 109 RGs, only the part extending beyond the sternal notch into the mediastinum would predict sternotomy (univariate only, odds ratio 3.43, confidence interval 1.65-6.41), with a sensitivity of 94% and specificity of 86.5% when it is more than 5 cm.

Unmeasurable aspects such as the surgeon’s expertise do however exist since there are case series where RG cases below the aortic arch or in the posterior mediastinum were reported to be completely excised through a purely transcervical approach.

Complete sternotomy is the gold standard access for RG but less extensive approaches have been devised, namely partial or split sternotomy, manubriotomy, anterolateral or posterolateral thoracotomy, the hemi-clamshell approach (partial median sternotomy plus an anterolateral thoracotomy), and they are all technically described in the work of Uludag et al. Endoscopic-assisted approaches are another option but in the last years, video-assisted mediastinoscopy has lost its interest in favor of thoracoscopic approaches. For example, the subxiphoid thoracoscopic approach is a novel alternative proposed by a Chinese group for median RGs. Robotic-assisted procedures are being also actively explored but they are always combined with a transcervical incision.

Interestingly, in the 2016 American Thyroid Association (ATA) Statement on Remote-Access Thyroid Surgery (RATS), the substernal extension was considered a contraindication, but the latest papers seem to overcome this limit. A RATS by an axillo-thoracic endoscopic approach has been applied on very selected patients with RG. The excellent view of the surgical field provided by high-definition cameras is obviously very helpful in the identification of critical neurovascular structures (RLN and phrenic nerves, etc.) but, at present, all these approaches remain preliminary and a formal comparison with standard techniques is lacking. Finally and in very rare cases, a straightforward indication for combined approaches to RG is given by a coexisting thoracic condition: for instance, a minimally invasive transcervical and robotic transthoracic approach has been described for RG and concurrent thymoma, or RG excision and aortic valve replacement were performed through a mini-J sternotomy.
Complications associated with surgery for RG

The presence of RG is historically known to carry a higher risk of finding a malignancy and of the development of postoperative complications (hematoma, transient/permanent hypoparathyroidism, and RLN dysfunction) compared to cervical goiters. The most recent evidence has further confirmed these findings: for example, in a cohort of 1500 RLNs at risk, substernal extension and a thyroid volume >100 mL were the only significant factors for postoperative transient or permanent VC paralysis. In the IONM era, a study extracting 42341 operations from the UK Thyroid database found that RG was an independent factor (OR= 1.36, 95%CI 1.05- 1.77) that predicted the risk of RN injury, along with revision surgery and patient age. A recent anatomical study has revealed that iatrogenic lesions of the RNL after RGs’ resections are more frequent on the right side in comparison to the left one because of the known anatomical and embryological differences in the development of the RLN on either side of the neck.

Regarding postoperative hematoma formation, male sex, the use of preoperative anticoagulant therapy or postoperative subcutaneous heparin, and the presence of RG (38 cases) were all significant predictors in a group of 6900 thyroidectomies. Instead, RG was not a significant risk factor in another series of 5900 operations, including a total of 148 RGs (2.5%). Both series, unfortunately, did not provide a definition of RG nor how the extension was determined. On the contrary, another analysis of the aforementioned UK registry (n= 53838 entries) revealed in multivariable analysis that male sex, increasing age, redo surgery, RG (whenever having an “extension to the thoracic inlet or below”), and total thyroidectomy were all correlated with an increased risk of reoperation for bleeding; interestingly, surgeon monthly thyroidectomy rate correlated with a decreased risk.

The presence of RG is linked with a major risk of developing clinical symptoms of hypocalcemia (OR 10.26). A recent study published by Chen et al. provides evidence that there are predictive factors for this adverse event. This meta-analysis includes 23 studies and identifies twelve significant risk factors for postoperative hypoparathyroidism. In particular, hypoparathyroidism (OR 5.58), total thyroidectomy (OR 3.59), hypomagnesemia (OR 2.85), and preoperative vitamin D deficiency (OR 2.32), were those most associated with hypocalcemia. In another observational study, RG and its extension beyond the carina showed a statistically significant higher risk for transient (less than one year) hypocalcemia (relative risk = 1.76) after total thyroidectomy.

Van Slycke and colleagues reported that the higher risk of postoperative complication is influenced by the surgical approach chosen: out of 95 thyroidectomies performed for RGs, eighty patients (84%) were operated by cervicotomy and 15 (16%) by cervicosternotomy. The latter group had a higher risk of temporary recurrent laryngeal nerve palsy (21%) compared to cervicotomy (4%) and standard thyroidectomy (3%); also, the risk of temporary hypocalcemia after cervicosternotomy was higher than with transcervical approaches. In addition, another study highlights how postoperative complications associated with RG surgical removal are low in the hands of experienced, high-volume thyroid surgeons, regardless of transcervical or transthoracic approach. Instead, the presence of RG was statistically significant for being an independent predictor of any complication (OR 2.1), when controlling for age, BMI, gender, and race.

Tracheomalacia remains the most dreadful complication in the case of large RGs, despite its incidence seems to be very low. In a series of 40 patients subjected to thyroidectomy with sternotomy, tracheomalacia was reported in 3 cases, in absence of any patient- or thyroid-related factor significantly associated with its development: one patient required tracheal resection with anastomosis, and two patients required tracheostomy. In another paper, 17 cases of tracheomalacia out of 106 cases were reported, probably caused by long-standing tracheal compression from RG: this study suggested that prolonged intubation was sufficient to resolve airways collapse without tracheal reconstruction in all cases. Zuo et al. reported how tracheomalacia could be successfully managed intraoperatively by suspending the trachea to the overlying skin with Prolene stitches, despite the fact that they didn’t exhibit either the exact number of patients affected or the long-term outcomes. Despite all the aforementioned complications, RG was not considered a contraindication for outpatient surgery: in a recent national survey conducted by the American Association of Endocrine Surgeons, the diagnosis of RG had no or minimal effect on same-day discharge.

7
The main issue in the analysis of the complications of surgery for RGs remains the non-standard definitions and characterizations. For instance, postoperative vocal cord dysfunction may be diagnosed by using a mirror, flexible laryngoscopy, or a mixture of both. The timing of what constitutes a “permanent” hypocalcemia changes (after 6 months, versus after 12 months); the same is true for hematoma/seroma that should be considered only when needing revision surgery according to some but not all the authors. To overcome these limitations, the use of the Clavien-Dindo system may be a solution: proposed in 1992 and revised in 2004, it appears reliable as a compelling tool for quality assessment in surgery worldwide. This classification system was reported as simple, reproducible, logical, useful, and comprehensive and it is beginning to be implemented also in thyroid surgery.

Conclusions

RG is not an uncommon encounter for head and neck surgeons. Its management requires a long-standing experience in the classical transcervical approach that may be sufficient in over 90% of treated cases. Despite a growing body of publications, we still have no shared definition of RG and this continues to bring in heterogeneity in the literature because it hampers a formal comparison and synthesis of the results. We believe that reaching an international consensus among head and neck and endocrine surgeons on the very definition and classification/grading of RG is a priority in order to seriously compare outcomes by data pooling and to increase the evidence in this field. A second priority is the definition of the natural course of this condition since it is likely in the near future that we will face more and more incidental RG as the use of neck imaging is becoming widespread.

REFERENCES

List of Figures

Figure 1. A modified PRISMA flowchart for selection and inclusion of the relevant studies in the present review.

Figure 2. High resolution CT sequences highlighting a bulky goiter extended in the retrosternal mediastinum. A-B: axial scans; C: sagittal scan; D: coronal scan. A mild tracheal compression could be noticed ()

List of Tables

Table 1. An overview of the most recent publications reporting surgical outcomes for transcervical and/or combined approaches for retrosternal goiter. CT, computed tomography; CXR, chest x-ray/radiograph; HEM, hemorrhage; HT, hemithyroidectomy; MRI, magnetic resonance imaging; NA, not available; PHC, permanent hypocalcemia; PRLNP, permanent recurrent laryngeal nerve palsy; RG, retrosternal goiter; TransTx, sternotomy; STT, subtotal thyroidectomy; TransCx, transcervical; TRACH, tracheomalacia; TT, total thyroidectomy, US, ultrasound.

Hosted file

Table1_outcomesRG.docx available at https://authorea.com/users/675888/articles/673683-a-critical-update-on-the-management-of-retrosternal-goiter
Identification of studies via databases and registers

Identification
- Records identified from:
 - Databases (n = 172)
 - Registers (n = 0)
- Records removed before screening:
 - Duplicate records removed (n = 0)
 - Records marked as ineligible by automation tools (n = 0)
 - Records removed for other reasons (n = 0)

Screening
- Records screened (n = 172)
- Records excluded** (n = 0)
- Reports sought for retrieval (n = 0)
- Reports not retrieved (n = 0)
- Reports assessed for eligibility (n = 172)
 - Additional eligible records from bibliographic data (n = 7)

Included
- Studies included in review (n = 105)