Scleritis Following the booster shot of inactivated COVID-19 (Sinopharm) Vaccine in a 52-year-old Woman

Kimia Jazi1, Mahnaz Rahimi2, Fatemeh Hasani3, Maryam Shirmohammadi2, and Maryam Masoumi4

1Qom University of Medical Sciences
2Qom University of Medical Sciences and Health Services School of Medicine
3Golestan University of Medical Sciences and Health Services
4Qom University of Medical Sciences and Health Services

October 19, 2023

Scleritis Following the booster shot of inactivated COVID-19 (Sinopharm) Vaccine in a 52-year-old Woman

Kimia Jazi1, Mahnaz Rahimi1, Fatemeh Hasani2, Maryam Shirmohammadi1, Maryam Masoumi3*

1Student Research Committee, Faculty of Medicine, Medical University of Qom, Qom, Iran
2Golestan Research Center of Gastroenterology and Hepatology, Golestan University of Medical Sciences, Gorgan, Iran
3Clinical Research of Development Center, Shahid Beheshti Hospital, Qom University of Medical Sciences, Qom, Iran

Corresponding Author:
Maryam Masoumi,
Clinical Research of Development Center, Shahid Beheshti Hospital, Qom University of Medical Sciences, Qom, Iran
Email: m.masoumiy@gmail.com

Abstract

Background: The only way to mitigate the spread of COVID-19 pandemic, were vaccines. Although effective in decreasing the rate and severity of the disease, there has been also considerable adverse events. Since the birth of vaccines, adverse reactions undeniably accompanied vaccines immunity and COVID-19 vaccines are no exceptions. In this report, we aimed to evaluate a rare reaction.

Case presentation: We report a 52-year-old woman, presenting with scleritis following the third dose of Sinopharm vaccinations. She had no significant past history of any disease or any similar reactions after previous doses. No significant positive point was found during evaluations. She was prescribed a tapering dose of prednisolone (30mg at the start), along with azathioprine (50mg/day) to control the episode. After two weeks, the scleritis completely resolved.

Conclusion: Adverse events of vaccines could be a sign of an undiagnosed autoimmune disease. As mentioned in this case, clinicians must carefully assess patients with ocular adverse events as they are highly associated to undiagnosed autoimmune diseases.
Keywords
scleritis; COVID-19; COVID-19 vaccine; adverse events; case report

Key Clinical Message: Although vaccination is necessary to prevent infectious diseases, there are also rare adverse events that could be a sign of an undiagnosed autoimmune disease. Clinicians must carefully assess patients to rule out possible underlying diseases.

Introduction
In December 2019, the world faced the outbreak of COVID-19 of which the SARS-CoV-2, was known as the causative pathogen. As the virus found its way worldwide, in the beginning of March 2020 WHO officially declared the disease as a pandemic (1).

Inevitably, massive vaccination became the only way to prevent and control the unleashed pandemic (2). In almost two years 155 vaccine candidates were developed which 23 of them were authorized following different strategies (inactivated, mRNA, viral vector, nanoparticle-based peptide vaccines, etc.). All authorized vaccines have shown promising efficacy; however, the AEs and SAEs remained an unknown challenge (3). The most common AEs were injection site pain or tenderness, fatigue, headache, rash, fever, chill, as well as myalgia, and arthralgia (4). Moreover, thrombosis and thrombocytopenia, myocarditis or pericarditis, inflammatory myositis, and autoimmune diseases were frequently reported SAEs (4, 5). To date few, studies have reported cases of ocular inflammatory AEs after the first or second dose of vaccination, including white dot syndrome, pan uveitis, choroiditis, along with scleritis and scleritis (6, 7).

Herein, we reported a case of 52-year-old woman presented with simple scleritis following third dose of Sinopharm COVID-19 vaccination.

Case Presentation
A 52-year-old woman presented with redness in both eyes for one week (Figure 1). She had no history of hypersensitivity reaction or similar events. The patient first developed right eye redness 3 days following the third dose of inactivated Sinopharm vaccine (BBIBP-CorV), which spread to the left side 3 days after. In physical examination, the patient’s vital signs were normal and stable, without respiratory distress and fever. No signs of lymphadenopathy or splenomegaly were detected. The patient’s neurological examination was unremarkable. The ophthalmic evaluation showed no signs and symptoms of eye discharge, pain, photophobia, and itching. Besides, the patient had a remarkable past medical history of pterygium on her left eye conjunctiva in the past year, well controlled. The oculist reported her visual acuity to be 20/20 OU before. Slit lamp examination showed anterior diffused scleritis with negative phenylephrine test results. There was no sign of inflammation or the existence of cells.

Laboratory results showed elevated levels of CRP, and ESR to be 9.1 (positive >9), and 39 (positive >30). Moreover, liver function tests, kidney function tests, albumin, total protein, PANCA and anti-MPO, CANCA and Anti PR3, FANA, ds cryoglobulins, C3, C4, anti-dsDNA, serology tests for HCV, HBV and HIV were negative or normal (Table 1). Also, the results of stool examination and urinalysis did not reveal any findings in favor of renal disorders or infectious diseases.

Radiological evaluation with a CXR and computed tomography scan did not show any notable findings. Echocardiography and electrocardiogram showed no abnormal findings without any systolic or diastolic dysfunction and with normal EF. EMG-NCV were normal.

By merging all the information obtained from the patient’s symptoms and clinical evaluations, and the recent COVID-19 vaccine, scleritis as an autoimmune reaction induced by Sinopharm COVID-19 vaccination was approved after all assessments.

She was administered a tapering dose of prednisolone (30mg at the start), followed by azathioprine (50mg/day) to control the episode. After two weeks, the scleritis completely resolved.

Discussion
Episcleritis has been previously found in a patient confirmed with COVID-19 infection (8, 9). In this report, we presented a case of scleritis after the third dose of COVID-19 vaccination with inactivated Sinopharm vaccine. Recently, Pichi and colleagues reported four cases of scleritis and episcleritis following the first dose of COVID-19 Sinopharm vaccination (10). There has been few reports of mild scleritis or episcleritis caused by live virus vaccination previously (11).

Regarding various reports of ocular adverse events induced after vaccination, COVID-19 vaccination-associated scleritis would not be exempt in surprising. The pathogenesis and mechanism of this immune response, remains the question. The most frequently proposed mechanism include molecular mimicry between scleral and vaccine peptides as well as hypersensitivity due to antigen-specific cell and antibody reactions (12). Moreover, although safe in most of the population, vaccine adjuvants that were added to achieve the desired protection, led to autoinflammatory syndromes particularly connective tissue disorders due to different nucleic acid metabolism (9, 13, 14). Noteworthy, inactivated COVID-19 vaccines stimulate T helper 2 cell reactions causing an increase in inflammatory (15). The addition of alum as an adjuvant aggravated immunopathologic reactions (16).

The genes for immunity, inflammation, and coagulation are part of X chromosome, so we may suspect that viral interactions associated with human genes could induce an abnormal immune response in COVID-19. Besides, according to Manzo et al., the presence of excess antigen and the formation of relatively resistant soluble antigen-antibody immune complexes after exposure to SARS-CoV-2 may cause persistent inflammation in organs (17). There are several reported cases of ocular inflammation and related conditions following COVID-19 vaccination. These include anterior uveitis (7, 18), scleritis (7), episcleritis (7), multiple evanescent white dot syndrome, Vogt-Koyanagi-Harada disease (19), panuveitis (20), choroiditis (21), and central serous chorioretinopathy (22). Most cases were successfully treated with corticosteroid therapy, including topical, intravitreal, and/or systemic administration, and many patients achieved complete recovery of their baseline visual acuity. A case series of orbital inflammation following mRNA vaccines was also described, with all cases successfully treated with oral prednisolone (23). It is important for healthcare providers to be aware of these potential ocular reactions to COVID-19 vaccination and to monitor patients closely for any signs or symptoms of ocular inflammation or related conditions.

As mentioned, our patient didn’t show any serious reaction to previous doses of inoculation until the first booster. These reactions were found to be induced by activation of the secondary immune response; the memory cells (24). Comparing to the first and second doses of vaccinations, Rahmani et al. Reported that booster doses are more probable to stimulate rare AEs including neurological symptoms (25). Moreover, authors suggested hormonal, genetic, and behavioural factors along with the time between the primary cycle to the first booster dose. The more the time between the booster dose and the first administration, the higher the immunogenic effect after the third shot (25). Consequently, further studies could elucidate the proper time of the booster inoculations, particularly for high-risk patients in order to prevent serious reactions.

Vaccine-associated maladaptive immune response becomes more important in patients with autoimmune diseases. A study demonstrated that ocular inflammatory AEs following vaccination could be the first presentation of an undiagnosed autoimmune disease (26). Thus, there should be further assessments in patients presenting with ophthalmologic inflammatory reactions following COVID-19 vaccination.

List of abbreviations

COVID-19: coronavirus disease 2019
SARS-CoV-2: Severe Acute Respiratory Syndrome Coronavirus-2
WHO: World Health Organization
AEs: Adverse Events
SAEs: Serious AEs
PANCA and anti-MPO: perinuclear anti-neutrophil cytoplasmic antibodies
CANCA and Anti PR3: anti-neutrophil cytoplasmic antibodies
CXR: Chest X-ray
EMG-NCV: Electromyography-nerve conduction velocity
AST: aspartate aminotransferase
ALT: alanine transaminase
WBC: White blood cell
RBC: Red blood cell
Hb: hemoglobin
MCV: mean corpuscular volume
MCH: mean corpuscular hemoglobin
MCHC: Mean corpuscular hemoglobin concentration
ESR 1h: Erythrocyte Sedimentation Rate in one hour
CRP: c-reactive protein
Anti B2-GLP1 antibody: anti-b2glycoprotein antibody
ACA: anti-cardiolipine antibody
LA antibody: lupus anticoagulant
dRVVT: Diluted Russell Viper Venom Time
aPPT: activated partial prothrombin time
Anti-dsDNA: anti- double-stranded DNA
C3/C4: complement 3/4
CH50: total hemolytic complement
FANA: fluorescent antinuclear antibody
Anti-Sm/RNP antibody: anti-Smith/antinuclear ribonucleoprotein antibody
HLA: human leukocyte antigen
HCV, HBV and HIV

Declarations

Ethics approval and consent to participate
Not applicable

Consent for publication
Written informed consent was obtained from the participant in this study for all the information and images.

Availability of data and materials
All data generated or analyzed during this study are included in this published article.

Competing interests
The authors declare no competing interests.
Authors’ contributions
K.J analyzed and interpreted the patient data and revised the article critically for important intellectual content, M.R performed associated examinations, F.H and M.S were major contributors in writing the manuscript, M.M drafted the article and approved the version to be published.

Acknowledgements
Not applicable

Funding
Not applicable

References

<table>
<thead>
<tr>
<th>Test, Unit</th>
<th>Result</th>
<th>Reference Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>Blood biochemistry</td>
<td></td>
<td></td>
</tr>
<tr>
<td>AST, U/L</td>
<td>17</td>
<td>Up to 35</td>
</tr>
<tr>
<td>ALT, U/L</td>
<td>15</td>
<td>Up to 45</td>
</tr>
<tr>
<td>Uric Acid, mg/dL</td>
<td>4.3</td>
<td>Male 3.4-7 Female 2.4-5.7</td>
</tr>
<tr>
<td>Hematology</td>
<td></td>
<td></td>
</tr>
<tr>
<td>WBC, μL</td>
<td>8800</td>
<td>4000-11000</td>
</tr>
<tr>
<td>RBC, 10^6/μL</td>
<td>4.84</td>
<td>4.2-6.3</td>
</tr>
<tr>
<td>Hb, g/dL</td>
<td>12.6</td>
<td>12-16</td>
</tr>
<tr>
<td>Hematocrit, %</td>
<td>40.5</td>
<td>30-45</td>
</tr>
<tr>
<td>MCV, fL</td>
<td>83.67</td>
<td>80-100</td>
</tr>
<tr>
<td>MCH, pg</td>
<td>26.03</td>
<td>27-32</td>
</tr>
<tr>
<td>MCHC, g/dL</td>
<td>31.11</td>
<td>33-38</td>
</tr>
<tr>
<td>Platelet, μL</td>
<td>363000</td>
<td>150000-450000</td>
</tr>
<tr>
<td>Neutrophil, %</td>
<td>40%</td>
<td>–</td>
</tr>
<tr>
<td>Lymphocyte, %</td>
<td>25%</td>
<td>–</td>
</tr>
<tr>
<td>Urine 24hr/ Pr, mg/24hr</td>
<td>147</td>
<td>24-141</td>
</tr>
<tr>
<td>Urine 24hr/ Volume, g/24hr</td>
<td>1200</td>
<td>–</td>
</tr>
<tr>
<td>Urine 24hr/ Cr, mg/24hr</td>
<td>624</td>
<td>600-1800</td>
</tr>
<tr>
<td>Test, Unit</td>
<td>Result</td>
<td>Reference Range</td>
</tr>
<tr>
<td>----------------------------</td>
<td>--------</td>
<td>-----------------</td>
</tr>
<tr>
<td>Serology</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ESR 1h</td>
<td>39</td>
<td>positive: >30</td>
</tr>
<tr>
<td>CRP quantitative</td>
<td>9.1</td>
<td>positive: > 6</td>
</tr>
<tr>
<td>Anti B2-GLP1 antibody (IgG)</td>
<td>7</td>
<td>positive: >20</td>
</tr>
<tr>
<td>Anti B2-GLP1 antibody (IgM)</td>
<td>1.7</td>
<td>positive: >20</td>
</tr>
<tr>
<td>ACA IgG</td>
<td>24</td>
<td>positive: >=12</td>
</tr>
<tr>
<td>ACA IgM</td>
<td>1.5</td>
<td>positive: >=12</td>
</tr>
<tr>
<td>LA antibody (dRVVT)</td>
<td>34</td>
<td>direct: 25-45</td>
</tr>
<tr>
<td>LA antibody (aPTT)</td>
<td>30</td>
<td>after mixing: 25-45</td>
</tr>
<tr>
<td>Anti-ds DNA</td>
<td>6.6</td>
<td>positive: >=100</td>
</tr>
<tr>
<td>C3</td>
<td>165</td>
<td>90-180</td>
</tr>
<tr>
<td>C4</td>
<td>54</td>
<td>10-40</td>
</tr>
<tr>
<td>CH50</td>
<td>90</td>
<td>positive: >=90</td>
</tr>
<tr>
<td>FANA</td>
<td>negative</td>
<td>Up to 1/100</td>
</tr>
<tr>
<td>C-ANCA</td>
<td>negative</td>
<td>Up to 1/10</td>
</tr>
<tr>
<td>P-ANCA</td>
<td>negative</td>
<td>Up to 1/10</td>
</tr>
<tr>
<td>Anti-Sm/RNP antibody</td>
<td>0.1</td>
<td>Up to 20</td>
</tr>
<tr>
<td>HLA-B27</td>
<td>negative</td>
<td>–</td>
</tr>
<tr>
<td>HLA-B5</td>
<td>positive</td>
<td>–</td>
</tr>
<tr>
<td>HLA-B51</td>
<td>negative</td>
<td>–</td>
</tr>
</tbody>
</table>

Figures, tables and additional files

TABLE 1 Laboratory Test Results

FIGURE 1: Unilateral anterior scleritis following COVID-19 Sinopharm vaccination three days after the third dose