A multi-algorithm approach for modeling coastal wetland eco-geomorphology

Zeli Tan1, L. Ruby Leung2, Chang Liao3, Luca Carniello4, Jose F. Rodriguez5, Patricia M. Saco6, and Steven G. Sandi7

1Pacific Northwest National Laboratory (DOE)
2PNNL
3Pacific Northwest National Laboratory
4University of Padova
5University of Newcastle
6The University of Newcastle
7Deakin University

September 13, 2023

Abstract

Coastal wetlands play an important role in the global water and biogeochemical cycles. Climate change is making them more difficult to adapt to the fluctuation of sea levels and other environment changes. Given the importance of eco-geomorphological processes for coastal wetland resilience, many eco-geomorphology models differing in complexity and numerical schemes have been developed in recent decades. But their divergent estimates on the response of coastal wetlands to climate change indicate that substantial structural uncertainties exist in these models. To investigate the structural uncertainty of coastal wetland eco-geomorphology models, we developed a multi-algorithm model framework of eco-geomorphological processes, such as mineral accretion and organic matter accretion, within a single hydrodynamics model. The framework is designed to explore possible ways to represent coastal wetland eco-geomorphology in Earth system models and reduce the related uncertainties in global applications. We tested this model framework at three representative coastal wetland sites: two saltmarsh wetland (Venice Lagoon and Plum Island Estuary) and a mangrove wetland (Hunter Estuary). Through the model-data comparison, we showed the importance to use a multi-algorithm ensemble approach for more robust predictions of the evolution of coastal wetlands. We also find that more observations of mineral and organic matter accretion at different elevations of coastal wetlands and evaluation of the coastal wetland models at different sites of diverse environments can help reduce the model uncertainty.

Hosted file

972967_0_art_file_11344265_s0mnhg.docx available at https://authorea.com/users/540193/articles/665776-a-multi-algorithm-approach-for-modeling-coastal-wetland-eco-geomorphology

Hosted file

972967_0_supp_11344267_s0objct.docx available at https://authorea.com/users/540193/articles/665776-a-multi-algorithm-approach-for-modeling-coastal-wetland-eco-geomorphology
A Multi-algorithm Approach for Modeling Coastal Wetland Eco-
geomorphology

Zeli Tan1*, L. Ruby Leung1, Chang Liao1, Luca Carniello2, José F. Rodríguez3, Patricia M. Saco3,
Steven G. Sandi4

1Pacific Northwest National Laboratory, Richland, WA, USA
2Department of Civil, Environmental and Architectural Engineering, University of Padova,
Padova, Italy
3School of Engineering, University of Newcastle, Callaghan, Australia
4School of Engineering, Deakin University, Geelong, Australia

*Correspondence to: Zeli Tan (zeli.tan@pnnl.gov)
Abstract: Coastal wetlands play an important role in the global water and biogeochemical cycles. Climate change is making them more difficult to adapt to the fluctuation of sea levels and other environment changes. Given the importance of eco-geomorphological processes for coastal wetland resilience, many eco-geomorphology models differing in complexity and numerical schemes have been developed in recent decades. But their divergent estimates on the response of coastal wetlands to climate change indicate that substantial structural uncertainties exist in these models. To investigate the structural uncertainty of coastal wetland eco-geomorphology models, we developed a multi-algorithm model framework of eco-geomorphological processes, such as mineral accretion and organic matter accretion, within a single hydrodynamics model. The framework is designed to explore possible ways to represent coastal wetland eco-geomorphology in Earth system models and reduce the related uncertainties in global applications. We tested this model framework at three representative coastal wetland sites: two saltmarsh wetland (Venice Lagoon and Plum Island Estuary) and a mangrove wetland (Hunter Estuary). Through the model-data comparison, we showed the importance to use a multi-algorithm ensemble approach for more robust predictions of the evolution of coastal wetlands. We also find that more observations of mineral and organic matter accretion at different elevations of coastal wetlands and evaluation of the coastal wetland models at different sites of diverse environments can help reduce the model uncertainty.

Plain Language Summary: Coastal wetlands are a critical component of the earth system, strongly influencing global water and biogeochemical cycles. Although numerical models of coastal wetlands differ substantially in complexity and numerical methods, few studies have investigated the structural uncertainties of these models in a state-of-the-art way. To bridge this gap, we developed a multi-algorithm model framework for the eco-geomorphological processes
of coastal wetlands within a single hydrodynamics model. Through model-data comparison at three representative saltmarsh and mangrove sites, we demonstrated the importance to use a multi-algorithm ensemble approach for more robust predictions of the evolution of coastal wetlands. We also show the importance to include more comprehensive eco-geomorphology observations (e.g., observations along an elevation gradient and at different sites of diverse environments) for reducing the model uncertainty.

1. Introduction

Coastal wetlands, such as tidal marshes and mangroves, are valued for providing many important ecosystem services, including coastline protection, storm surge attenuation, wildlife habitat, and water quality improvement. Particularly, they are observed to sequester atmospheric carbon dioxide at a rate much higher than other ecosystems, thus offering a potential nature-based solution for climate mitigation (Aburto-Oropeza et al., 2008; Macreadie et al., 2019; Temmerman et al., 2013; Teuchies et al., 2013). Despite the resilience of coastal wetlands to past fluctuations in sea level and climate over long periods of time (Cahoon et al., 2006; Saintilan et al., 2020; Törnqvist et al., 2020), recent observations of local wetland loss raise concerns over their acclimation to intensified natural and human-induced disturbances, such as sea level rise (SLR), storm surge, sediment supply reduction, eutrophication and drought (Blum & Roberts, 2009; Crosby et al., 2016; Deegan et al., 2012; Kirwan & Megonigal, 2013; Törnqvist et al., 2021).

Eco-geomorphological processes, such as mineral accretion, organic matter (OM) accretion, landward migration and wave-action erosion, play crucial roles in the acclimation of coastal wetlands to natural and human-induced disturbances (Craft et al., 2009; Howes et al.,
Mineral accretion is a process of mineral sediment accumulation on the soil bed of coastal wetlands through either plant-mediated particle settling or direct capture of sediment by plant stems (Kirwan & Mudd, 2012) and can help coastal wetlands build the elevation against rising sea levels (Cahoon et al., 2021). With the accumulation of plant litter in the soil column, OM accretion can also help raise the bed elevation of coastal wetlands (Kirwan & Mudd, 2012). Wave-action erosion can accelerate the land loss at the shore which reduces the habitat area of coastal wetlands (Leonardi et al., 2016). In contrast, landward migration is a process by which coastal wetlands move to higher elevation and expand their habitat area (Schuerch et al., 2018). Due to the importance of these eco-geomorphologic processes, many eco-geomorphology models different in complexity and parameterization methods have been developed in recent decades (D'Alpaos et al., 2011; Fagherazzi et al., 2012; Kirwan et al., 2010; Marani et al., 2007; Mcleod et al., 2010; Rodriguez et al., 2017). The application of these models at the regional, continental, and global scales have greatly advanced our understanding in the evolution of coastal wetlands under intensified environmental changes and provided valuable insights on the management and conservation of this ecosystem (Kirwan & Mudd, 2012; Leonardi et al., 2016; Mariotti & Fagherazzi, 2010; Reyes et al., 2000).

However, substantial structural uncertainty exists in these eco-geomorphology models as indicated by their inconsistent predictions on the fate of coastal wetlands under accelerated SLR (Craft et al., 2009; Kirwan et al., 2010, 2016; Rodriguez et al., 2017; Schuerch et al., 2018). For example, based on the Sea Level Affecting Marshes Model (SLAMM) that simulates the dominant processes (e.g., inundation, wave-action erosion, and salinity intrusion) but ignores the adaptation of salt marshes to SLR with accelerating rates of elevation change, Craft et al. (2009)
estimated that salt marshes will decline in area by 45% by 2100 under the worst Intergovernmental Panel on Climate Change (IPCC) SLR scenario. But based on a salt marsh model that represents the dynamic, eco-geomorphic feedbacks between tidal inundation and increased vertical accretion of mineral and organic sediments, a more recent study demonstrated that marshes could survive under a wide range of future SLR scenarios by building elevation at rates similar to or exceeding historical SLR (Kirwan et al., 2016). The structural uncertainty of the eco-geomorphology models has two sources. First, different eco-geomorphology models usually implement different parameterization schemes for the same process. For instance, there are at least seven different mineral accretion schemes implemented in various eco-geomorphology models (D’Alpaos et al., 2007; Fagherazzi et al., 2007; French, 2006; Kirwan & Mudd, 2012; Morris et al., 2012; Temmerman et al., 2003b; van de Koppel et al., 2005). Second, very few eco-geomorphology models include all eco-geomorphologic processes critical to the dynamics of coastal wetlands. As stated above, the SLAMM model used by Craft et al. (2009) does not include the dynamic, eco-geomorphic feedbacks between tidal inundation and increased vertical accretion of mineral and organic sediments. Moreover, the landward migration of coastal wetlands and its limitation by human barriers have not been represented in eco-geomorphology models until very recently (Schuerch et al., 2018).

To date, our understanding of the structural uncertainty of eco-geomorphology models is still limited, despite the importance of eco-geomorphological processes to the Earth system (Ward et al., 2020). A few studies have strived to understand the uncertainty of coastal wetland eco-geomorphology models through model comparison (Kirwan et al., 2010) or model review (Fagherazzi et al., 2012; Mcleod et al., 2010). However, unlike the state-of-the-art methods used to compare some other Earth system processes (Guseva et al., 2020; Huntzinger et al., 2013; Jin
et al., 2016; Schellnhuber et al., 2014; Tan et al., 2018), model comparison and review can only provide an incomplete evaluation of model uncertainty (Fisher & Koven 2020). For model review, the related studies mostly focused on analyzing high-level features of eco-geomorphology models, such as capability and complexity, inputs requirements, spatial- and temporal-scale accountability, and practical applicability, but did not consider the real performance of the eco-geomorphology models in simulating coastal wetland dynamics under diverse environmental conditions (Fagherazzi et al., 2012; Mcleod et al., 2010). For model comparison, previous studies usually performed the comparison of eco-geomorphology models at the ecosystem level with a focus on the overall response of coastal wetlands to SLR and the participant models were commonly not configured under a consistent protocol. As a result, the model uncertainty associated with individual processes cannot be isolated and not all estimated model uncertainty can be attributed to eco-geomorphologic processes (Kirwan et al., 2010). In addition, these model comparison studies were only conducted at specific or very few sites (Kirwan et al., 2010). It is thus unclear how well the knowledge gained at a specific site can be transferred to other environmental conditions.

Algorithm-level model comparison approaches have shown promising skills for assessing the uncertainty of a particular process in large-scale models (Donatelli et al., 2014; Jin et al., 2016; Tan et al., 2018). Motivated by these studies, we developed an algorithm-level model comparison framework to investigate the structural uncertainty of coastal wetland eco-geomorphology models. The framework’s efficacy is evaluated at the coastal wetland sites of distinct environmental conditions. Through this work, we aim to evaluate the algorithm-level uncertainties of coastal wetland eco-geomorphology modeling related to mineral and OM accretion and explore possible ways to reduce the related uncertainties in global applications.
2. Materials and methods

2.1. Model description

We developed a Multi-Algorithm Coastal wetland Eco-geomorphology Simulator (MACES) model framework to assess the structural uncertainty of eco-geomorphology models. The MACES framework consists of two components (Figure 1): a one-dimensional (1-D) transect-based hydrodynamic module (MACES-hydro) and an algorithm-level model comparison module that implements different eco-geomorphologic process algorithms (MACES-geomor). MACES-hydro simulates water level, tide velocity, significant wave height, bottom shear stress, suspended sediment and other hydrodynamic conditions along a 1-D coastal transect that varies from low-elevation open water at the ocean side to high-elevation upland at the land side (Figure 2). All eco-geomorphology algorithms in MACES-geomor (Table 1) use the same hydrodynamic conditions simulated by MACES-hydro to model eco-geomorphologic processes, such as mineral and OM accretion, at each grid cell of the coastal transect. At the end of each year, MACES updates the transect elevation profile and land cover. A design feature of MACES is that a new coastal wetland eco-geomorphology model can be easily created by configuring MACES-geomor with a different combination of eco-geomorphologic algorithms. Although we focus on mineral and OM accretion in this work, the developed framework can be extended to other eco-geomorphologic processes, such as landward migration and wave-action erosion. Landward migration and wave-action were not tested for this study due to data limitations.

The 1D transect-based coastal hydrodynamics model MACES-hydro was developed mainly based on the work of Tambroni & Seminara (2012) and Carniello et al. (2005) for cross-section averaged physical variables on the coastal landscape. It simulates tide and storm surge
propagation, wave generation and propagation, and particle transport. Tide and storm surge

driven water flow is governed by the 1-D Saint Venant Equations (Tambroni & Seminara, 2012):

\[
\frac{\partial h}{\partial t} + \frac{\partial (uh)}{\partial x} = 0, \quad (1)
\]

\[
\frac{\partial u}{\partial t} + U \frac{\partial u}{\partial x} + g \frac{\partial H}{\partial x} + g \frac{v|u|}{C_z} = 0, \quad (2)
\]

where \(h \) is water flow depth (m), \(U \) is water flow velocity (m s\(^{-1}\)), \(H \) is water surface elevation (m) relative to the Mean Sea Level (MSL), \(g \) is the acceleration due to gravity (m\(^2\) s\(^{-1}\)), and \(C_z \) is the Chézy’s friction coefficient (m\(^{1/2}\) s\(^{-1}\)). The friction coefficient \(C_z \) is a function of bed roughness, vegetation stem size and vegetation density, described in detail in Section 1.1 of Text S1. Wave generation and propagation in shallow waters is described by the conservation of the wave action \(N \), which is defined as the ratio of wave energy \(E \) (J m\(^{-2}\)) to the relative wave frequency \(\sigma \). By using the linear wave theory, the wave action conservation equation can be simplified as (Carniello et al., 2005):

\[
\frac{\partial N}{\partial t} + \frac{\partial (c_g N)}{\partial x} = \frac{S}{\sigma}, \quad (3)
\]

The wave group celerity \(c_g \) is given as (Mariotti & Fagherazzi, 2010):

\[
c_g = \frac{\sigma}{2k} \left(1 + \frac{2kh}{\sinh(2kh)} \right), \quad (4)
\]

where \(k \) is the wave number \((k = 2\pi/\lambda, \text{ where } \lambda \text{ is wavelength}) \). The wave energy source term \(S \) is determined by the wind wave generation \(S_{wg} \), the wind wave dissipation through bottom friction \(S_{bf} \), the white capping \(S_{wc} \), and the depth induced breaking \(S_{brk} \):

\[
S = S_{wg} - S_{bf} - S_{wc} - S_{brk}. \quad (5)
\]

The detailed definitions of the gain and loss terms of wave energy can be found in Section 1.2 of Text S1. Both tide and storm surge induced water flow and wind induced waves contribute to the production of bottom shear stress \(\tau_b \), which is important for the modeling of sediment deposition.
and resuspension over the coastal landscape. Suggested by Soulsby (1997), the nonlinear interaction between these two forces can be evaluated using the below empirical formulation:

$$\tau_b = \tau_{\text{wave}} + \tau_{\text{curr}} \left[1 + 1.2 \left(\frac{\tau_{\text{wave}}}{\tau_{\text{curr}} + \tau_{\text{wave}}} \right)^{3.2} \right],$$ \hspace{1cm} (6)$$

where τ_{curr} is the bottom shear stress induced by water flow only and τ_{wave} is the bottom shear stress induced by wave only. As detailed in Section 1.3 of Text S1, the shear stress τ_{curr} is a function of water flow velocity U and water depth h and the shear stress τ_{wave} is a function of significant wave height H_w, water depth h and wave period T. The transport of suspended sediment in the water column is governed by the advection-dispersion continuity equation (Maan et al., 2015):

$$\frac{\partial c_{ss}}{\partial t} + \frac{\partial (U c_{ss})}{\partial x} - \frac{\partial}{\partial x} \left(K \frac{\partial c_{ss}}{\partial x} \right) = -Q_m,$$ \hspace{1cm} (7)$$

where c_{ss} is the depth-averaged suspended sediment concentration (SSC) (kg m$^{-3}$), K is the dispersion coefficient (m2 s$^{-1}$), and Q_m is the net sediment deposition rate (kg m$^{-2}$ s$^{-1}$). The net sediment deposition is defined as sediment deposition minus sediment resuspension and the long-term average of Q_m equals to mineral accretion. For salinity and nutrients, it is assumed that their concentrations do not change during transport over the coastal landscape and thus the dynamics are directly controlled by inundation.

As listed in Table 1, MACES-geomor implements seven widely used algorithms for mineral accretion (D’Alpaos et al., 2007; Fagherazzi et al., 2007; French, 2006; Kirwan & Mudd, 2012; Morris et al., 2012; Temmerman et al., 2003b; van de Kopp et al., 2005) and four algorithms for OM accretion (D’Alpaos et al., 2007; Kakeh et al., 2016; Kirwan & Mudd, 2012; Morris et al., 2012), respectively. Correspondingly, the change of transect elevation η (m) is calculated using the Exner equation:
\begin{equation}
(1 - \lambda) \frac{d(\rho_s n)}{dt} = Q_m + Q_{om},
\end{equation}

where \(\lambda \) is the sediment porosity, \(\rho_s \) is the sediment wet bulk density (kg m\(^{-3}\)), and \(Q_{om} \) is the OM accretion rate (kg m\(^{-2}\) s\(^{-1}\)). The detailed descriptions of these eco-geomorphologic algorithms can be found in Sections 2 and 3 of Text S1. It should be noted that for OM accretion, we included one more algorithm corresponding to the null hypothesis that OM accretion is negligible for the transect elevation change. Here, the algorithms of mineral and OM accretion were selected based on three criteria through literature review. First, the selected algorithms must have been successfully applied in multiple studies (ideally for coastal wetlands in different environmental conditions). Second, the selected algorithms are substantially different between each other in mathematical formulations and conceptual understanding. Third, the selected algorithms can be implemented using 1-D hydrodynamics. Table 1 summarizes all the MACES-geomor algorithms and their characteristics. The free parameters of mineral and OM accretion algorithms are listed in Tables S1 and S2, respectively.

We chose the 1-D hydrodynamic model over more advanced two-dimensional (2-D) or three-dimensional (3-D) hydrodynamic models (e.g., Delft3D) that can resolve detailed coastal hydrodynamics for two reasons. First, the prominent features of coastal wetlands that 2-D and 3-D hydrodynamic models can represent, such as tidal channels and microtopography, are usually at spatial scales of meters, which are much finer than the spatial resolutions that current and even future Earth system models (ESMs) can afford (Feng et al., 2022; Ward et al., 2020). Second, detailed 2-D and 3-D hydrodynamic models usually require intense labor work of mesh delineation to ensure model stability. As a result, it is difficult to configure such advanced models at continental or global scales, particularly when coupling them with eco-geomorphology models which dynamically alter the mesh bottom elevation. Third, while it is possible to model
eco-geomorphology at continental or global scales using simplified 2-D hydrodynamics models which do not resolve water flow and wave dynamics and only use semi-analytical approaches for suspended sediment is possible (Langston et al., 2020), the adoption of such 2-D approximations would exclude many widely used eco-geomorphic algorithms for comparison as they need water flow and wave as inputs (Cao et al., 2021; D’Alpaos et al., 2007; Leonardi et al., 2016). It should be noted that testing the applicability of multiple eco-geomorphologic algorithms on the same hydrodynamics platform is not new. For example, Delft3D has already implemented different mineral accretion algorithms in its morphodynamic module D-Morphology (Deltares, 2022). But as discussed above, compared to these models, our work is more relevant to representing coastal wetland geomorphology in ESMs. Moreover, our multi-algorithm framework extends the comparison of eco-geomorphologic algorithms to biogeochemical and ecological processes, such as OM accretion, which are usually not included in 2-D and 3-D coastal models (Zhang et al., 2020). It should also be noted that, because 1-D hydrodynamics models do not represent channel processes, the 1-D discretization does not entirely preserve the site characteristics. As such, it is recognized that the MACES simulated hydrodynamics can provide less detail than 2-D and 3-D coastal models, however, as discussed above the results obtained in MACES are satisfactory for the purposes of Earth system modeling.

2.2. Numerical methods

We employed a 1-D Godunov-type central-upwind scheme (Kurganov & Levy, 2002) to discretize the spatial domain of the Saint Venant equations which include source terms due to bottom topography, the wave equation and the particle transport equation. This finite volume scheme introduces a linear piecewise approximation to each grid cell with the Superbee slope limiter (Roe, 1986) to achieve the solutions of both second-order accuracy in space and
diminishing total variation. Because this scheme is very effective in suppressing spurious
oscillation of the simulated water level at the periodically flooded areas, it has been widely used
as the numerical solver for coastal hydrodynamics (Liang & Marche, 2009). After spatial
discretization, we employed a fourth-order adaptive Runge-Kutta-Fehlberg method to discretize
the hydrodynamic equations in the time domain to achieve second-order accuracy in time
(Burden et al., 1978). In addition, to avoid negative particle concentrations, we incorporated a
scheme described by Tan et al. (2015) into the Runge-Kutta-Fehlberg method to recursively
curtail the running time step when large negative concentrations occur, until the negative values
are small enough to be assigned safely as zero.

One prominent feature of MACES is the use of a hybrid Fortran and Python
programming approach to balance computational efficiency and software usability. The
computational-intensive hydrodynamic module was written in Fortran and then converted to a
Python package using f2py (Python Software Foundation, Fredericksburg, VA, USA). All the
other modules, including eco-geomorphology, I/O and settings, were written in Python 3 directly.
As such, new algorithms of eco-geomorphology can be easily integrated into MACES in the
future. Model input and output files are written in the NetCDF and Excel format and model
settings are written in the user-friendly XML (Extensible Markup Language) format.

2.3. Model calibration and evaluation

Model calibration of different MACES-geomor algorithms is conducted using the
Python-version Parameter ESTimation tool (PyPEST). The PyPEST tool was developed by Liao
et al. (2019) based on the model-independent parameter estimation code PEST (Doherty et al.,
1994). PyPEST carries out the calibration process iteratively with six steps (parameter generation,
model configuration, input data generation, model run in parallel, output extraction, and output
post-processing) until the user-defined cost function threshold criteria are met (Figure S1). Depending on data availability at different sites, different combinations of observed datasets are used to calibrate different geomorphology module algorithms with consideration of module dependency. For example, observed long-term mineral accretion rate and SSC are used to calibrate the mineral accretion algorithms. Observed long-term OM accretion rate and aboveground biomass are used to calibrate the OM accretion algorithms. When calibrating the mineral and OM accretion algorithms, only the algorithm-specific parameters (Tables S1–S2) are adjusted while the parameters related to flow and waves are maintained.

MACES-hydro is validated against observed or benchmark water level, significant wave height, and/or bottom shear stress without calibration. In the experiments to validate MACES-hydro, we configured the model with null mineral and OM accretion algorithms and chose the method of Morris et al. (2012) to calculate aboveground biomass. In the experiments to validate the simulated suspended sediment, we only compared mineral accretion algorithms and used only one OM accretion algorithm at each site that simulates the most realistic aboveground biomass. Because the related observations and benchmark estimates usually cover only a few days, the related validation is only run for a few weeks. For MACES-geomor, because we expect that most of the algorithms can reproduce the observed accretion rates by calibration, our analysis does not focus on validating the individual algorithms explicitly. Instead, we focus on analyzing the uncertainty of mineral and OM accretion algorithms across the 1-D wetland transects, which is important for explaining their divergent predictions in coastal wetland evolution under SLR (Tambroni & Seminara, 2012).

2.4. Model input and evaluation data
We evaluate the model at three representative coastal wetland sites with two located in midlatitude and one located in subtropics: Venice Lagoon, Plum Island Estuary and Hunter Estuary (Table 2). Venice Lagoon is a microtidal wetland with a large central waterbody and extensive intertidal salt marshes. The dominant saltmarsh species include *Limonium serotinum*, *Puccinellia palustris*, *Arthrocnemum fruticosum* and *Spartina maritima*. The long-term mineral and OM accretion rate of the saltmarsh are 3.5 mm yr\(^{-1}\) and 132 gC m\(^{-2}\) yr\(^{-1}\), respectively (Bellucci et al., 2007; Roner et al., 2016). Plum Island Estuary is a macrotidal wetland with extensive areas of productive, tidal marshes. The dominant saltmarsh species include *Spartina alterniflora* at lower elevations and *Spartina patens* at higher elevations. The long-term mineral accretion rate can be as high as 6.9±0.9 mm yr\(^{-1}\) (Wilson et al., 2014) and the long-term OM accretion rate is 69.9±9.4 gC m\(^{-2}\) yr\(^{-1}\) (Wang et al., 2019). Hunter Estuary is a microtidal wetland with grey mangrove *Avicennia marina* at lower elevations and *Sporobolus virginicus*–*Sarcocornia quinqueflora* mixed saltmarsh at higher elevations. The mineral accretion of mangroves and saltmarsh are 3.66 mm yr\(^{-1}\) and 3.37 mm yr\(^{-1}\), respectively (Howe et al., 2009). The OM accretion of mangroves and saltmarsh are 105 gC m\(^{-2}\) yr\(^{-1}\) and 137 gC m\(^{-2}\) yr\(^{-1}\), respectively (Howe et al., 2009).

To simulate the hydrodynamics and eco-geomorphology of coastal wetlands, MACES is driven by the seaward-side water level and SSC and averaged wind speed and air temperature over the coastal transect. We extracted water level and wind conditions from high-frequency (10-minute or 15-minute) measurements for the three sites. The seaward boundary SSC is set based on the high-frequency (15-minute) analytical estimates for Hunter Estuary and as fixed values extracted from the global coastal Database for Impact and Vulnerability Analysis to sea-level rise (DIVA) (Schuerch et al., 2018; Vafeidis et al., 2008) for the other two sites. Daily air
temperature was extracted from measurements for Venice Lagoon and Plum Island Estuary and
the European Center for Medium-Range Weather Forecasts (ECMWF) Interim reanalysis (ERA-
Interim) (Dee & Uppala, 2009) for Hunter Estuary.

For each site, we constructed its 1-D transect from high-resolution Digital Elevation
Model (DEM) and land cover maps (Hopkinson & Valentine, 2005; Rodríguez et al., 2017;
Tambroni & Seminara, 2012; Ye & Pontius, 2016) by: 1) dividing all grid cells into 17 elevation
groups spanning from -12.5 m to 16.5 m (some elevation groups can be empty); 2) calculating
the average slope and land cover fractions of each elevation group; 3) calculating the transect
length of each elevation group based on its slope and elevation range. For the first step, the
elevation range of the 17 groups is the largest (i.e., 4 m) near to the land and sea edges and the
smallest (i.e., 0.5 m) near to the sea level. For the third step, the slope of a grid cell is calculated
by dividing its elevation by its distance to the nearest channel network. The constructed 1-D
transects of the three sites are shown in Figure 3.

For Venice Lagoon, we use observed water level, SSC and significant wave height and
benchmark bottom shear stress estimates from a 2-D hydrodynamic model Wind Wave Tidal
Model (WWTM) (Carniello et al., 2011) at two tidal flat stations (1BF: -1.1 masl; 2BF: -2.1 masl)
for model evaluation. For Plum Island Estuary, we use observed water level at the channel (-0.73
masl) and marsh edge (1.25 masl) of Nelson Island, observed SSC at the channel (-1.45 masl)
and marsh interior (1.69 masl) of Law’s Point, observed mineral accretion at three saltmarsh
stations (LAC: a \textit{Spartina alterniflora}-dominated high saltmarsh with an elevation of 1.1 masl;
LPC: a \textit{Spartina patens}-dominated high saltmarsh with an elevation of 1.4 masl; MRS: a
\textit{Spartina alterniflora}-dominated high saltmarsh with an elevation of 0.89 masl), and observed
aboveground biomass at LAC and MRS for model evaluation. For Hunter Estuary, we use the
benchmark estimates of water level and SSC at four stations (channel: 0.22 mAHD; mangrove edge: 0.05 mAHD; mangrove interior: 0.38 mAHD; saltmarsh edge: 0.65 mAHD) of the wetland for model evaluation. For a specific site, when validating our model over a station, we always choose the grid cell with the closest elevation to the station for comparison. In the model, the total accretion (mm yr\(^{-1}\)) is calculated by the Exner equation based on the simulated long-term net sediment deposition (kg m\(^{-2}\) yr\(^{-1}\)), the simulated long-term net OM deposition (kg C m\(^{-2}\) yr\(^{-1}\)), sediment bulk density (kg m\(^{-3}\)), and sediment porosity. Correspondingly, mineral accretion (mm yr\(^{-1}\)) is also estimated using the Exner equation by excluding the contribution of OM deposition.

3. Results

3.1. Simulated hydrodynamics at the three coastal wetland sites

The MACES model can reproduce the observed hydrodynamics at the three coastal wetland sites. The simulated hydrodynamics at Venice Lagoon were validated in the two periods of very different tide and wind conditions: 12/10/2002–12/11/2002 and 4/2/2003–4/4/2003 (Figure 4). Specifically, the spring period in 2003 has the high tide of 64 cm asl and the maximum wind speed of 17.3 m s\(^{-1}\) (Figure S2). In contrast, the winter period in 2002 has the much smaller high tide and maximum wind speed: only 38 cm asl and 11.6 m s\(^{-1}\), respectively (Figure S2). The 1-D MACES hydrodynamics module MACES-hydro performs reasonably well in capturing the observed tide and wave dynamics in both periods (Figure 4), with low root-mean-square-errors (RMSE) of simulated water depth and significant wave height at the 1BF and 2BF stations. During the low wind and tide period when observations are available (Figures 4a–4d), the RMSE of simulated water depth at 1BF and 2BF are 5.8 cm and 4.2 cm, respectively, which correspond to only 5% and 2% of the observed mean water depth, and the RMSE of simulated significant wave height at 1BF and 2BF are 4.7 cm and 4.6 cm, respectively, which
correspond to 35% and 19% of the observed mean significant wave height. The model also captures the temporal variability of the bottom shear stress benchmark at 1BF and 2BF during the high tide and wind period, with the RMSE of 0.13 Pa and 0.15 Pa, respectively. It should be noted that as the simulated bottom shear stress is compared to the WWTM model benchmark instead of observations, the evaluation could be marked by substantial uncertainty.

For both periods, the simulated significant wave height mainly followed the wind dynamics (Figure 4). The wind-induced bottom shear stress is also the dominant component of the total bottom shear stress (Figure 4). In the morning of 12/10/2002 when wind speed exceeded 11 m s\(^{-1}\), the simulated significant wave height reached its peak value at the two stations: 22.6 cm and 39.4 cm, respectively. Correspondingly, the simulated bottom shear stress also reached its peak value at the two stations: 0.19 Pa and 0.31 Pa, respectively. On April 3, 2003, when wind speed frequently exceeded 15 m s\(^{-1}\), the simulated significant wave height reached its peak value at the two stations: 31.4 cm and 52.4 cm, respectively. The contribution of the current-induced bottom shear stress to the total bottom shear stress never exceeded 10% in both periods (Figures 4e–4f and 4k–4i), showing that wind action dominates the generation of bottom shear stress. Both the observations and simulations show that 2BF has larger significant wave height values than 1BF. This difference could be explained by the attenuation of wave energy by friction when wave moves toward land as 2BF is deeper and closer to the seaward boundary than 1BF.

The simulated hydrodynamics at Plum Island Estuary were validated in the summer and fall periods of 2017 (7/19–7/22 and 10/7–10/10) when tide and wind conditions were different (Figure 5). In the summer period, the tide level varied substantially, while the wind speed never exceeded 6 m s\(^{-1}\) (Figure S3). In contrast, in the fall period, the wind speed sometimes exceeded
8 m s\(^{-1}\), while the tide level varied moderately (Figure S3). For both periods, MACES-hydro captures the observed dynamics of water depth at a river channel station (-0.73 masl) and a saltmarsh station (1.25 masl) reasonably well (Figure 5). The RMSE of the simulated water depth at the river channel station were 9.1 cm and 7.5 cm for the summer and fall periods, respectively. The RMSE of the simulated water depth at the saltmarsh station were 2.2 cm and 1.5 cm for the summer and fall periods, respectively.

The simulated hydrodynamics at Hunter Estuary were validated in the period of 9/28/2004–9/30/2004 for both low-elevation locations where mangrove species reside and high-elevation locations where saltmarsh species reside (Figure 6). MACES-hydro well reproduced the water depth benchmark at four representative locations: a river channel station at an elevation of -0.22 mAH (Figure 6a), a mangrove-dominated station at an elevation of 0.05 mAH (Figure 6b), a mangrove-dominated interior station at an elevation of 0.38 mAH (Figure 6c), and a saltmarsh-dominated station at an elevation of 0.65 mAH (Figure 6d). The RMSE of the simulated water depth at the four stations were 4.6 cm, 5.4 cm, 2.7 cm and 0.4 cm, respectively.

Importantly, as shown by our simulations, the water level across a coastal wetland transect is far from being spatially uniform if the seaward boundary is not extremely close to the shoreline. For instance, at Venice Lagoon and Plum Island Estuary where the distance from the seaward boundary to the shoreline is more than 18 km and 0.7 km, respectively, the water level peaks in the wetland interiors clearly lagged those at the boundary (Figures 4–5), showing the effect of bed roughness on water flow. In contrast, at Hunter Estuary where the seaward boundary is very close to the shoreline (only 20 m in distance), the difference between the simulated water level and the boundary condition is negligible (Figure 6).

3.2. Simulated suspended sediment dynamics at the three coastal wetland sites
The MACES model can also capture the dynamics of suspended sediment at the three coastal wetland sites reasonably well when appropriate mineral accretion algorithms are selected. For Venice Lagoon, the observed SSC at 1BF during the low wind and tide period ranged from 7.3 mg l\(^{-1}\) to 92.0 mg l\(^{-1}\) (Figure 7), with one larger peak value occurring on the windy morning of 12/10/2002 and one smaller peak value occurring on the morning of 12/11/2002 (Figure 4). Three out of the seven mineral accretion algorithms, including M12, F07 and DA07, can reproduce the observed two SSC peaks (Figure 7). Among the algorithms, the F07 algorithm has the lowest RMSE of 12.0 mg l\(^{-1}\) as well as the lowest normalized RMSE (NRMSE) of 0.45. But even the three best performing algorithms overestimated SSC at the mid-day of 12/10/2002. A possible reason is that the model does not reproduce the rapid decrease of wave energy after the windy morning on 12/10/2002. The simulated SSC by F06, T03 and KM12 is almost constant because these algorithms do not represent sediment resuspension (Section 2.1, 2.2 and 2.3 of Text S1) and there is limited sediment deposition at 1BF. As a result, the SSC is almost entirely determined by the seaward boundary (9.4 mg l\(^{-1}\)) which was extracted from the DIVA database. It should be noted that the dynamics of suspended sediment in the coast is notoriously difficult to model (Le Hir et al., 2007; Temmerman et al., 2003). Thus, the performance achieved by our 1-D model is satisfactory.

For Plum Island Estuary, the MACES model reproduces the temporal variability of SSC at a river channel station (-1.45 masl) and the decrease of SSC from the river channel to a saltmarsh station (1.69 masl) in the summer period of 2017 reasonably well (Figure 8). Because the river channel station is close to the model boundary (Figure 3), its suspended sediment dynamics is strongly regulated by the SSC boundary condition (Figure S3) and the difference between different algorithms is mainly caused by the simulated sediment deposition rather than...
the simulated sediment resuspension. Among the algorithms, the M12 algorithm has the lowest RMSE of 7.4 mg l\(^{-1}\) as well as the lowest NRMSE of 0.57 at the river channel station. There are several SSC peaks at the river channel that our model fails to capture (Figure 8), which could be attributed to the uncertainty of the boundary condition. For the saltmarsh station, the performance of different algorithms is similar, implying that all the algorithms predicted reasonable sediment deposition over the saltmarsh planform.

The MACES model also captures the temporal variability of SSC along the elevation gradient of Hunter Estuary from the river channel, the mangrove edge, the mangrove interior to the saltmarsh edge (Figure 9). Because the river channel station in this case is even closer to the model boundary than in Plum Island Estuary (Figure 3), the dynamics of suspended sediment is strongly regulated by the boundary condition (Figure S4) before being fully deposited at the saltmarsh edge. The four more complex algorithms, including M12, F07, VDK05 and DA07, outperform the three simpler algorithms (i.e., F06, T03 and KM12). Overall, the M12 algorithm has the best performance at the four stations: the RMSE of 1.6 mg l\(^{-1}\) at the river channel, 0.9 mg l\(^{-1}\) at the mangrove edge, 2.8 mg l\(^{-1}\) at the mangrove interior and 0.4 mg l\(^{-1}\) at the saltmarsh edge, respectively (we removed data points in the comparison when the simulated water depth was zero). This result may indicate that more sophisticated mineral accretion algorithms are needed to reasonably represent sediment deposition at this wetland site. But we should note that these algorithms seem to underestimate sediment deposition in the mangrove wetland area. It is possibly because mineral accretion algorithms were usually developed based on the saltmarsh studies and are less applicable to mangrove wetlands.

3.3. Simulated mineral and OM accretion at the three coastal wetland sites
Once carefully calibrated, most of the MACES mineral and OM accretion algorithms can reproduce the observed long-term mineral and OM accretion rates at the three coastal wetland sites, especially when the accretion rates are only measured at single locations. But different algorithms demonstrate remarkable variations in the simulated mineral and OM accretion along the elevation gradient. Moreover, our ensemble simulations show that the variations of the simulated mineral and OM accretion along the elevation gradient differ substantially among the coastal wetland sites.

For Venice Lagoon, all of the seven mineral accretion and four OM accretion algorithms can predict the observed long-term mineral accretion rate of 3.54 mm yr\(^{-1}\) and the observed long-term OM accretion rate of 132 gC m\(^{-2}\) yr\(^{-1}\), respectively, at the observation station that is about 0.2 km from the marsh shore edge (Figure 10). The good model performance does not rely on which OM accretion or mineral accretion algorithm is combined. For example, for the F06 mineral accretion algorithm, its combination with the M12 OM accretion algorithm performs comparably to that with the DA07 OM accretion algorithm. Despite the convergence of different algorithms at the observation station, the simulated summer aboveground biomass, OM accretion and mineral accretion along the elevation gradient differ substantially among the algorithms (Figure 10). For the summer aboveground biomass at the saltmarsh, the M12 algorithm predicts an increasing trend with elevation, while the other three algorithms predict slight decreases (Figure 10a). Also, the marsh aboveground biomass simulated by M12 is much higher than those by the other algorithms (Figure 10a), even though the estimates are all within the reported range of 1–3 kg m\(^{-2}\) (Tambroni & Seminara, 2012). Driven by the change of aboveground biomass, the M12 algorithm predicts an increase of OM accretion with elevation and the algorithms of DA07 and K16 predicts a decrease (Figure 10b). However, KM12 predicts an increase of OM accretion
with elevation despite the decrease of simulated aboveground biomass. It is because KM12 simulates a much larger increase of the root:shoot quotient along the elevation gradient. For mineral accretion, the algorithms of F06 and KM12 predict a moderate increase with elevation, the algorithms of F07 and VDK05 predict its moderate decrease, and the other algorithms predict its rapid decrease (Figure 10c). As a result, the simulated mineral accretion differs remarkably at both the marsh shore edge and the marsh-upland interface. For example, at the saltmarsh edge, the estimate by T03 is over 6 mm yr\(^{-1}\) but that by F06 is less than 4 mm yr\(^{-1}\). In contrast, at the 1.5 km to the edge, the estimate by T03 falls close to zero but that by F06 is over 4 mm yr\(^{-1}\).

Importantly, our model can provide the multi-algorithm ensemble estimate of mineral and OM accretion over the saltmarsh, which shows that the total accretion gradually decreases along the elevation gradient with the importance of OM accretion moderately increasing (Figure 10d). However, mineral accretion is almost always the dominant source over the saltmarsh platform. It should be noted that this more robust signal would be difficult to discern using single-algorithm simulations.

For Plum Island Estuary, when comparing with more spatiotemporally resolved validation data, some mineral and OM accretion algorithms show clearly better performance than the others. For instance, while all the OM accretion algorithms provide satisfactory simulations of the summer aboveground biomass distribution along the elevation gradient, M12 seems to capture the higher saltmarsh biomass at the edge more reasonably (Figure 11a). Also, the algorithms of DA07 and KM12 can simulate the seasonality of the saltmarsh biomass at the high marsh station LAC (1.1 masl), while the algorithms of M12 and K16 cannot simulate any seasonality (Figure 11c). All the OM accretion algorithms successfully predict the observed long-term OM accretion rate (69.9±9.4 gC m\(^{-2}\) yr\(^{-1}\)) within the elevation range of 0–1.5 masl.
Furthermore, we find that all the mineral accretion algorithms except F06 and KM12 can reproduce the observed long-term mineral accretion rates at the *Spartina alterniflora*-dominated low marsh station MRS (6.9±0.9 mm yr\(^{-1}\)), the *Spartina alterniflora*-dominated high saltmarsh station LAC (5.3±0.1 mm yr\(^{-1}\)) and the *Spartina patens*-dominated high saltmarsh station LPC (2.3±0.1 mm yr\(^{-1}\)) (Figure 11d), which shows the decline of mineral accretion along the elevation gradient. It implies that the use of F06 and KM12 at Plum Island Estuary may lead to biased predictions of the saltmarsh’s resilience to SLR. Like Venice Lagoon, the multi-algorithm ensemble estimate indicates that the total accretion gradually decreases along the elevation gradient with the importance of OM accretion increasing (Figure 11e). However, different from Venice Lagoon, OM accretion can dominate the total accretion at some high marsh areas of Plum Island Estuary. This is possibly because the platform of Plum Island Estuary has a much larger elevation gradient than that of Venice Lagoon (Figure 3) that impairs the landward transport of suspended sediment.

For Hunter Estuary, different mineral and OM accretion algorithms can also reproduce the observed long-term mineral accretion rate (3.66 mm yr\(^{-1}\)) and OM accretion rate (105 gC m\(^{-2}\) yr\(^{-1}\)) at the mangrove-dominated station (0.56 mAHD) after calibration (Figure 12). All the four OM accretion algorithms predict the decrease of aboveground biomass along the elevation gradient and from the mangrove-dominated area at low elevations to the saltmarsh-dominated area at high elevation (Figure 12a). The simulated aboveground biomass is consistent with the reported values that are 1000 g m\(^{-2}\) and 900 g m\(^{-2}\) for mangrove and saltmarsh, respectively (Rodríguez et al., 2017). Driven by aboveground biomass, the simulated OM accretion by M12, DA07 and K16 decreases along the elevation gradient (Figure 12b). The simulated OM accretion by KM12 increases with elevation despite the negative relationship between aboveground...
biomass and elevation. As discussed for Venice Lagoon, it is caused by a much larger increase of the root:shoot quotient along the elevation gradient parameterized in KM12. The discontinuity of the simulated OM accretion at the mangrove-saltmarsh boundary by the DA07 is because the root:shoot quotient of saltmarsh species in the DA07 is set to be higher than that of mangrove species (Kakeh et al., 2016), but these quotient ratios may also vary depending on the hydrodynamic conditions and salinity gradient (Sandi et al., 2021). In Hunter Estuary, the simulated mineral accretion on the platform shows two spatial patterns: the nearly constant rate by the algorithms of F06, T03 and KM12 and the decline rate by the other algorithms (Figure 12c). Notably, in the latter group, the simulated mineral accretion rate at the wetland shore edge is well above 10 mm yr\(^{-1}\), which is much higher than that at Venice Lagoon and Plum Island Estuary, but the variation of accretion across the section follows a similar general as other of recent eco-geomorphic simulations in the Hunter Estuary using a simplified 2-D domain (Breda et al. 2021). The multi-algorithm ensemble estimates show that mineral accretion dominates the total accretion in all the areas of the platform except the area close to the wetland-upland boundary (Figure 12d). As explained for Plum Island Estuary, it is mainly because the large platform slope at Hunter Estuary impairs the landward transport of suspended sediment (Figure 3).

4. Discussion

4.1. Algorithm-level uncertainties of modeling coastal wetland eco-geomorphology

It is not surprising that significant algorithm-level uncertainties exist in the modeled eco-geomorphology at the three coastal wetland sites. However, our study shows that a multi-algorithm ensemble simulation approach may provide more robust signals about the evolution of coastal wetlands in different environments and thus help reduce the prediction uncertainty. For
example, the multi-algorithm ensembles reveal that it is critical to represent OM accretion in the coastal wetland eco-geomorphology models to realistically predict coastal wetland resilience under future SLR. This is because while OM accretion may only account for 10% of the total accretion at low-elevation saltmarsh or mangrove, its contribution in the higher elevation areas is much larger and even surpasses the contribution from mineral accretion. As a result, ignoring OM accretion would cause a significant underestimation of coastal wetland survival.

To reduce the algorithm-level uncertainty in the simulation of coastal wetland evolution, it is also important to constrain mineral and OM accretion algorithms using observations from at least two locations at different elevations of a coastal wetland site. For example, if mineral accretion was only observed at the *Spartina patens*-dominated high saltmarsh station LPC and the algorithm of F06 or KM12 was chosen for modeling, the prediction on the resilience of coastal wetlands to SLR would be severely biased. Thus, new observations should be prioritized to capture the elevation and vegetation gradients of mineral and OM accretion. Although we focus on the model structural uncertainty and thus carefully calibrate the model parameters for each algorithm in this study, the use of multi-location observations at different elevations can also help reduce the parameter uncertainty of eco-geomorphology modeling. For instance, for Plum Island Estuary, if only the LPC station is benchmarked, even those good algorithms (i.e., T03, M12, F07, VDK05 and DA07), albeit reproducing the decline of mineral accretion with elevation, would produce widespread estimates of mineral accretion at the low-marsh station MRS.

Although the existence of substantial algorithm-level uncertainties in coastal wetland eco-geomorphology models is expected, due to the variations of coastal wetland characteristics, such as tidal range, SSC, topography, and vegetation species, they cannot be fully learned by
analyzing the mathematical formulations only. Instead, these uncertainties must be carefully evaluated using a multi-algorithm approach like MACES. For example, as the mineral accretion algorithms of F06 and KM12 use spatially constant SSC to derive sediment deposition, it would be expected that the estimated mineral accretion by these two algorithms is uniform over coastal wetland platforms. However, with the simulated bottom shear stress declining with the water depth along the elevation gradient, the simulated force to resuspend sediment decreases in higher elevation wetland and correspondingly sediment deposition is simulated to increase along the elevation gradient. Furthermore, this effect varies among the coastal wetland sites due to the difference in tidal range, topography and vegetation species (Figures 10–12). Similarly, while it is expected that the simulated mineral accretion by M12, F07, VDK05 and DA07 would decrease with elevation because the modeled SSC in the interior areas decreases due to deposition and sediment resuspension is weak over the vegetated platform, it is still difficult to discern which algorithm simulates the strongest declining effect without testing the algorithms in a united hydrodynamics model.

4.2. Modeling coastal wetland eco-geomorphology in diverse environments

Coastal wetlands are an important ecosystem type spanning broad geographic regions, from tropical and subtropical mangroves, midlatitude saltmarshes to arctic coastal tundra (Keddy, 2000). Through the application of a multi-algorithm model framework developed in this study, we show that the uncertainties of coastal wetland eco-geomorphology models should be evaluated for coastal wetlands in diverse environments. Previous studies that rely on the knowledge of a single type of coastal wetlands for the prediction of large-scale coastal wetland response to SLR may lead to unreliable conclusions. For example, while Venice Lagoon and Plum Island Estuary are both saltmarshes, due to the difference in environments, there are
substantial distinctions on the simulated mineral and OM accretion at the two sites, including the much more important role of OM accretion to the rise of saltmarsh bed against SLR at Plum Island Estuary. Correspondingly, a multi-algorithm approach that include diverse eco-geomorphology algorithms can be more capable to predict large-scale coastal wetland evolution. As demonstrated in the study, MACES includes the mineral and OM accretion algorithms that can be applied to the most common plant species of coastal wetlands (Crase et al., 2013; Day Jr et al., 1999; Kirwan & Mudd, 2012; Liu et al., 2020; Morris et al., 2002; Mudd et al., 2010; Temmerman et al., 2003b): *Spartina alterniflora*, *Spartina patens*, *Puccinellia palustris*, *Spartina maritima* and *Avicennia marina*. Particularly, very few eco-geomorphology modeling studies have included both saltmarsh and mangrove. These algorithms can also be applied to different tidal ranges (microtidal and macrotidal) and climate (Mediterranean climate, humid continental climate and humid subtropical climate). Furthermore, although we have not validated the algorithms of wave-action erosion and landward migration in this study, they have been implemented in the MACES model. The inclusion of these processes in the multi-algorithm approach would further extend the model’s applicability to diverse environments.

As the algorithm-level uncertainties of eco-geomorphology models are site dependent, this multi-algorithm model framework can also be used to select appropriate eco-geomorphology algorithms for specific coastal wetland environment. For example, our simulation indicates that it is better to avoid the use of F06 and KM12 to predict the evolution of coastal wetlands in an environment similar to Plum Island Estuary but these two mineral accretion algorithms can still be useful for coastal wetlands like Venice Lagoon. To extend this algorithm selection strategy to the global scale, it would need the related observations across diverse environments. Currently, there have already been many published datasets of mineral and OM accretion from coastal
wetlands across broad regions (Breithaupt et al., 2012; Chmura et al., 2003; Crosby et al., 2016; Lovelock et al., 2015; Parkinson et al., 2017). The next step would be to identify and survey geographic and ecological factors that are crucial for the classification of coastal wetlands. Nevertheless, the development of this multi-algorithm coastal wetland eco-geomorphology model will facilitate the reduction of algorithm-level uncertainties in global applications.

4.3. Limitations and future work

To prioritize computational efficiency and the representation of suspended sediment dynamics, we have chosen to model coastal wetland eco-geomorphology on a simplified 1-D coastal transect. As a result, the MACES model cannot resolve the detailed spatial heterogeneity of coastal wetland dynamics that are needed for decision making and damage mitigation. For instance, while the model can assess the overall wetland vulnerability under SLR, it cannot be used to locate specific areas for remedy. Additionally, because the simulated variables are not linked with specific locations, the impact of SLR and other climate extremes on the ecosystem services of coastal wetlands cannot be reasonably evaluated by the current MACES framework. A possible solution is to use the emerging machine learning techniques to downscale low-fidelity high-efficiency hydrodynamics models to emulate the high-fidelity low-efficiency hydrodynamics models (Feng et al., 2023; Fraehr et al., 2023).

Although we intend to drive all the mineral and OM accretion algorithms with the same hydrodynamic conditions, particularly water level and SSC, due to the impact of vegetation on the transect surface roughness (Eq. S1.3), the simulated hydrodynamics would be changed by the choice of mineral and OM accretion algorithms. As a result, the simulated differences of mineral and OM accretion may not be fully caused by the algorithm-level uncertainties.
Another limitation of the model is the very simplified representation of the biological and biogeochemical processes in MACES that could limit the prediction accuracy of OM accretion. Despite the importance of macroclimatic drivers (particularly air temperature) to the evolution of coastal wetlands under climate change (Osland et al., 2016), the related effects are either neglected or only simply parameterized in the MACES algorithms (D’Alpaos et al., 2007; Kakeh et al., 2016; Kirwan & Mudd, 2012; Morris et al., 2012), which would cause biased estimates of sediment deposition, OM deposition and coastal wetlands resilience (Schoutens et al., 2019). In the future, it is thus necessary to adopt some advanced developments of vegetation dynamics and biogeochemistry from more complex land surface models (Oleson et al., 2013). In addition, it will be valuable to extend the framework to the other two processes (Table 1), including landward migration and wave-action erosion, which are also important for coastal wetland resilience (Mariotti & Fagherazzi, 2010; Schuerch et al., 2018) but have not been evaluated due to data limitation.

Our future work will also include the application of the model framework to the global scale. One challenge is to delineate 1-D coastal wetland transects for different regions of the world which needs high-quality high-resolution digital terrain and land cover data. Some recently published datasets, such as 30-m resolution high-quality Forest And Buildings removed Copernicus Digital Elevation Model (FABDEM) (Hawker et al., 2022) and the high-resolution global distribution map of mangroves and saltmarshes compiled by US Geological Survey and the World Conservation and Monitoring Centre (http://data.unep-wcmc.org/), may facilitate the model’s global applications.

5. Conclusion
We developed a multi-algorithm model framework MACES to evaluate the algorithm-level uncertainties of mineral and OM accretion modeling based on consistent hydrodynamic conditions. This model framework was validated for hydrodynamics and mineral and OM accretion at three representative coastal wetland sites of diverse environments: the microtidal saltmarsh site of Venice Lagoon, the macrotidal saltmarsh site of Plum Island Estuary, and the microtidal mangrove and saltmarsh mixed site of Hunter Estuary. The MACES model can reproduce the observed dynamics of water depth, wave, and bottom shear stress and also the observed long-term mineral and OM accretion. As expected, our approach shows that there are significant algorithm-level uncertainties in coastal wetland eco-geomorphology models, which can lead to divergent estimates of the coastal wetland vulnerability under SLR. In contrast, multi-algorithm ensemble estimates from MACES can provide more robust signals on the evolution of coastal wetlands. Additionally, our study indicates that more observations of mineral and OM accretion along the elevation gradient of coastal wetlands and the evaluation of the coastal wetland models at different sites of diverse environments can also help reduce the model uncertainty. The MACES framework provides a useful tool to realistically predict the fate of coastal wetlands under climate change at large scales.

Open Research

The MACES source code can be freely downloaded from Tan (2023) and will be routinely updated at https://github.com/tanzeli1982/MACES. The data used in this study are publicly available at Tan et al. (2023).
Acknowledgements: We appreciate Dr. Maarten Kleinhans and one anonymous reviewer for their valuable comments. The research is supported by the U.S. Department of Energy, Office of Science, Office of Biological and Environmental Research as part of the multi-program, collaborative Integrated Coastal Modeling (ICoM) project. It is also partly supported by PREMIS Initiative at Pacific Northwest National Laboratory (PNNL) under the Laboratory Directed Research and Development Program. PNNL is operated for DOE by Battelle Memorial Institute, United States under contract DE-AC05-76RL01830. The authors wish to thank the Ministero delle Infrastrutture e dei Trasporti, Magistrato alle Acque di Venezia, through its concessionary Consorzio Venezia Nuova for the field data collected in the Venice lagoon. Data sets of Plum Island Estuary were provided by the Plum Island Ecosystems LTER, with the support by the National Science Foundation under Grants #OCE-9726921, OCE-0423565, OCE-1058747, OCE-1238212, OCE-1637630.

References

Morris, J., & Sundberg, K. (2006). Change in marsh surface elevation measured with a Surface Elevation Table (SET) at control plots in a *Spartina alterniflora*-dominated salt marsh at Law's Point, Rowley River, Plum Island Ecosystem LTER, MA. Environmental Data Initiative.

Figure Captions

Figure 1. Model framework for algorithmic comparison of model response of coastal wetland to future environmental stresses. The model comparison platform builds on a 1-D coastal hydrodynamic model which simulates the dynamics of sediment, salinity, nutrients, water inundation, bottom shear stress and other hydrodynamic processes over three coastal landscapes. Processes tested in this paper include Mineral accretion and Organic matter accretion; Landward migration and Wave-action erosion will be tested in the future.

Figure 2. Sketch of the coastal system and notations. L denotes the 1-D transect domain of coastal landscapes with L_f as the domain of tidal flats and L_w as the domain of coastal wetland. MSL is mean sea level, MHT is mean high tide water level, and WL is water level. The notations of H, h and η represent water level relative to MSL, water depth and bottom elevation relative to MSL. H_0 is the water level at the seaward boundary and η_0 is the bottom elevation at the seaward boundary.

Figure 3. The elevation of 1-D MACES transects (solid lines) for Venice Lagoon, Plum Island Estuary and Hunter Estuary. Horizontal dash lines represent sea levels and vertical dash lines represent the ocean edge of coastal wetland.

Figure 4. Dynamics of simulated (black solid line) and observed or benchmark (red solid line with dots) water level, significant wave height and bottom shear stress at the two stations (1BF and 2BF) of Venice Lagoon during two time periods: 12/10/2002–12/11/2002 and 4/2/2003–4/4/2003. Black dashed lines in (a), (b), (g) and (h) represent the estimated water depth at the two stations by assuming the water level spatially uniform across the transect. Blue dashed lines in (c), (d), (i) and (j) represent the measured wind speed. Black dashed lines in (e), (f), (k) and (l) represent the simulated current-induced bottom shear stress.
Figure 5. Comparison of simulated (black solid line) and observed (red dashed line) water depth at the channel station at an elevation of -1.45 masl (a and b) and the *Spartina*-dominated saltmarsh station at an elevation of 1.69 masl (c and d) in Plum Island Estuary during two time periods: 7/19/2017–7/22/2017 and 10/7/2017–10/10/2017. Black dashed lines represent the estimated water depth at the two stations by assuming the water level spatially uniform across the transect.

Figure 6. Comparison of simulated (black solid line) and benchmark (red dashed line) water depth at the channel station at an elevation of -0.22 mAHD (a), the mangrove edge station at an elevation of 0.05 mAHD (b), the mangrove interior station at an elevation of 0.38 mAHD (c) and the saltmarsh edge station at an elevation of 0.65 mAHD (d) of Hunter Estuary during 9/28/2004–9/30/2004. Black dashed lines represent the estimated water depth at these stations by assuming the water level spatially uniform across the transect.

Figure 7. Comparison of observed column-integrated suspended sediment concentration (black) with simulated suspended sediment concentration simulated by seven mineral accretion algorithms at the 1BF station of Venice Lagoon during 12/10/2002–12/11/2002.

Figure 8. Comparison of observed column-integrated suspended sediment concentration (black) with suspended sediment concentration simulated by seven mineral accretion algorithms at the channel station at an elevation of -1.45 masl (a) and the *Spartina*-dominated saltmarsh station at an elevation of 1.69 masl (b) in Plum Island Estuary during the period of 7/19/2017–7/22/2017.

Figure 9. Comparison of benchmark column-integrated suspended sediment concentration (black) with suspended sediment concentration simulated by seven mineral accretion algorithms at the channel station at an elevation of -0.22 mAHD (a), the mangrove edge station at an elevation of 0.05 mAHD (b), the mangrove interior station at an elevation of 0.38 mAHD (c) and
the saltmarsh edge station at an elevation of 0.65 mAHD (d) in Hunter Estuary during 9/28/2004–9/30/2004.

Figure 10. Comparison of the simulated mean aboveground biomass in July 2002 by four MACES algorithms (a), comparison of the simulated long-term OM accretion by four MACES algorithms (b), comparison of the simulated long-term mineral accretion by seven MACES algorithms (c), and the mean (solid line) and standard deviation (shared area) of the simulated long-term total accretion and the contribution of OM accretion to total accretion (d) over the saltmarsh of Venice Lagoon. Black stars in (b) and (c) represent the observed long-term OM and mineral accretion, respectively.

Figure 11. Comparison of the simulated aboveground biomass in July 2018 at three elevation zones by four MACES algorithms (a), comparison the simulated long-term OM accretion by four MACES algorithms (b), comparison of the simulated monthly mean aboveground biomass during 2017–2018 at the LAC station by four MACES algorithms (c), comparison of the simulated long-term mineral accretion by seven MACES algorithms (d), and the mean (solid line) and standard deviation (shared area) of the simulated long-term total accretion and the contribution of OM accretion to total accretion (d) over the Plum Island wetland. Gray bars in (a), (c) and (d) represent the mean and standard deviation of the observed summer aboveground biomass, monthly mean aboveground biomass, and long-term mineral accretion, respectively.

Figure 12. Comparison of the simulated mean aboveground biomass in July 2004 by four MACES algorithms (a), comparison of the simulated long-term OM accretion by four MACES algorithms (b), comparison of the simulated long-term mineral accretion by seven MACES algorithms (c), and the mean (solid line) and standard deviation (shared area) of the simulated long-term total accretion and the contribution of OM accretion to total accretion (d) over the
Hunter Estuary wetland. Black stars in (b) and (c) represent the observed long-term OM and mineral accretion at the mangrove-dominated station of 0.56 mAHD in elevation, respectively.
Table 1. Summary of the MACES-geomor eco-geomorphology algorithms.

<table>
<thead>
<tr>
<th>Eco-geomorphology</th>
<th>Category</th>
<th>Algorithm</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mineral accretion</td>
<td>Only sediment deposition</td>
<td>F06 (French, 2006); T03 (Temmerman et al., 2003)</td>
</tr>
<tr>
<td></td>
<td>Both sediment deposition and vegetation trapping</td>
<td>KM12 (Kirwan & Mudd, 2012)</td>
</tr>
<tr>
<td></td>
<td>Both sediment deposition and erosion</td>
<td>F07 (Fagherazzi et al., 2007); VDK05 (van de Koppel et al., 2005)</td>
</tr>
<tr>
<td></td>
<td>Sediment deposition, vegetation trapping and erosion</td>
<td>DA07 (D’Alpaos et al., 2007); M12 (Morris et al., 2012)</td>
</tr>
<tr>
<td>OM accretion</td>
<td>No growth seasonality and static shoot:root ratio</td>
<td>M12 (Morris et al., 2012)</td>
</tr>
<tr>
<td></td>
<td>Growth seasonality and static shoot:root ratio</td>
<td>DA07 (D’Alpaos et al., 2007); K16 (Kakeh et al., 2016)</td>
</tr>
<tr>
<td></td>
<td>Growth seasonality, dynamic shoot:root ratio and dynamic carbon turnover</td>
<td>KM12 (Kirwan & Mudd, 2012)</td>
</tr>
<tr>
<td>Storm surge erosion</td>
<td>Linear function of wave power</td>
<td>L16 (Leonardi et al., 2016)</td>
</tr>
<tr>
<td>Landward migration</td>
<td>Inundation and salinity thresholds</td>
<td>R20 (Reyes et al., 2000); R17 (Rodríguez et al., 2017); S18 (Schuerch et al., 2018)</td>
</tr>
</tbody>
</table>
Table 2. Characteristics and observational data of the three coastal wetland sites.

<table>
<thead>
<tr>
<th>Site Name</th>
<th>Location</th>
<th>Tidal range</th>
<th>Wetland</th>
<th>Evaluation data</th>
<th>Data source</th>
</tr>
</thead>
<tbody>
<tr>
<td>Venice Lagoon</td>
<td>45°33′N/12°27′E</td>
<td>0.84 m</td>
<td>Salt marshes</td>
<td>Water level, significant wave height, suspended sediment, bottom shear stress,</td>
<td>Bellucci et al. (2007); Carniello et al. (2011, 2012); Roner et al. (2016)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>long-term mineral accretion, long-term OM accretion</td>
<td></td>
</tr>
<tr>
<td>Plum Island Estuary</td>
<td>42°49′N/70°49′W</td>
<td>4.45 m</td>
<td>Salt marshes</td>
<td>Water level, suspended sediment, aboveground biomass, long-term mineral accretion, long-term OM accretion</td>
<td>Coleman & Kirwan (2020); Giblin (2018, 2019); Morris & Sundberg (2006, 2020); Vallino (2018); Wang et al. (2019); Wilson et al. (2014)</td>
</tr>
<tr>
<td>Hunter Estuary</td>
<td>32°55′S/151°48′E</td>
<td>1.11 m</td>
<td>Mangroves, salt marshes</td>
<td>Water level, suspended sediment, long-term mineral accretion, long-term OM accretion</td>
<td>Howe et al. (2009); Sandi et al. (2018); Rodriguez et al. (2017)</td>
</tr>
</tbody>
</table>
Figure 1.
Figure 2.
Figure 3.
Figure 4.
Figure 5.
Figure 6.
Figure 7.
Figure 8.
Figure 9.
Figure 10.
Figure 11.
Figure 12.
Figure 2.
Figure 3.
Figure 6.
Figure 7.
Figure 9.
Figure 11.