Mineral Grain Localization and Classification using Deep Neural Networks

Raymond Donelick\(^1\), Andrew J Donelick\(^1\), and Raymond A Donelick\(^1\)

\(^1\)Affiliation not available

September 11, 2023
Mineral Grain Localization and Classification using Deep Neural Networks

Apatite.com Partners, LLC
Viola, Idaho USA
Andrew J. Donelick¹
adonelick@g.hmc.edu
Raymond A. Donelick¹
donelick@apatite.com

Introduction

Locating high quality apatite and zircon mineral grains on a microscope mount is one of the first steps in a thermochronology analysis, and it is often a tedious and time-consuming process. Fortunately, this problem is well suited to be solved with deep-learning based image analysis techniques.

Traditional deep-learning based object recognition pipelines require massive amounts of expert-labeled data. The time consuming nature of collecting such data can be an insurmountable hurdle to creating a usable object recognition system.

This system leverages a modern pre-trained image segmentation model to solve the object localization problem without expert input. An expert can then quickly label the localized objects by class, which serves as the basis for a mineral & quality classifier. Together these components form a unified object recognition and localization system that is faster to train and easier to maintain than a traditional pipeline.

Step 1: Image Capture

Start with reflected light images of a mineral mount collected from an optical microscope. We use 1200 x 1600 pixel images with a spatial size of approximately 250 µm x 330 µm, respectively.

Step 2: Image Segmentation

Segment the image to distinguish grain-like objects from epoxy mount background. The output from the segmentation can be masks or bounding boxes locating the grain within the image.

Step 3: Grain Candidate Filter

Extract each candidate grain from the 20X image, and then filter the grain-like objects to remove incomplete grains or objects of no analytical value. This step uses a neural network trained to identify objects likely to be grains, regardless of quality or mineral type.

Step 4A: Grain Classification

Classify the grains by mineral and quality using a Convolutional Neural Network (CNN) model trained on the dataset collected and labeled by the expert.

High, Medium Quality Zircon
High, Medium Quality Apatite
Oxides or Sulfides
Holes, Barite, Quartz
Low Quality Apatite, Zircon
Currently these classes are not used for analysis, but may support future analytical techniques.

Step 4B: Grain Classifier Dataset and Training

Each grain candidate is labeled by an expert with its mineral type and quality. The labeled image dataset is used to train a convolutional neural network (CNN) model to classify images by mineral and quality.

Step 5: Thermochronology Analysis

Finally, we combine the candidate grain mask with image position metadata to provide the grain’s location on the epoxy mount. This information allows the grain(s) to be located and analyzed.

Status of Grain Classification Dataset

Total Number of Samples: 57,202

Significant imbalances are present in the dataset. Data augmentation during training helps, but significant work remains in building out and balancing this dataset to improve classification accuracy results.

Grain Classification Results

Validation accuracy results for each of the classes in the grain dataset. These results are for a classifier built with a ResNet-34 model architecture.