Coupled hydrodynamic and habitat suitability models jointly reveal suitable area for stock enhancement and release of marine organism larvae in Liaodong Bay

Xiaowei Hu¹, Wenhao Hou², Zhaojun Sheng¹, Yanbin Xi³, Jiaxuan Yu¹, and Ruijin Zhang¹

¹Dalian Ocean University
²Dalian University of Technology
³National Marine Environment Monitoring Centre

September 11, 2023

Abstract

Stock enhancement can effectively increase population sustainability and improve fishery resources, making it crucial to discern the suitable habitats for stock enhancement based on efficiency considerations. In this paper, a comprehensive model was established to simulate environmental characteristics in the Liaodong Bay. A habitat suitability model was developed by considering the optimal growth conditions of the Portunus trituberculatus larvae (PTL). The coupled model showed that the optimal area for stock-enhancement with PTL occurs in late June, and the initial suitable habitat area identified represents 17.12% of the whole Liaodong Bay. Based on the larval migration model of PTL, the deviation between the larvae and the suitable habitat, as well as the actual available area for stock enhancement, were further determined after larval release in the initial suitable habitat. Only 33.67% of the larvae fulfilled the criteria of remaining within the suitable habitat for 95% of the time, and these larvae represented 6.19% of the whole area of Liaodong Bay. These findings mean that the truly area available for stock enhancement is likely to be a very small portion of the entire bay, and more precise release of larvae will be necessary to ensure survival rates after release. Our study actually provides a methodological framework for the identification of suitable environment of stock enhancement. This methodology can provide technical guidance for the stock enhancement of marine larvae with same applicability for other bays, which in turn contributes to the sustainable use of marine ecosystem services and fisheries resources.

Hosted file

Coupled hydrodynamic and habitat suitability models jointly reveal suitable area for stock enhancement and release of marine organism larvae in Liaodong Bay

Xiaowei Hu 1,#, Wenhao Hou 2,##,* , Zhaojun Sheng 1,3, Yanbin Xi 4, Jiaxuan Yu 1,3, Ruijin Zhang 1,3,*

1 College of Marine Science and Environment, Dalian Ocean University, Dalian, China
2 State Key Laboratory of Coastal and Offshore Engineering, Dalian University of Technology, Dalian, China
3 Operational Oceanographic Institution, Dalian Ocean University, Dalian, China
4 National Marine Environmental Monitoring Center, Dalian, China

# These authors contributed equally to this work and share first authorship.
* Corresponding author:
Wenhao Hou (hwhao0636@163.com)
Ruijin Zhang (ruijinz@dlou.edu.cn)

Abstract

Stock enhancement can effectively increase population sustainablility and improve fishery resources, making it crucial to discern the suitable habitats for stock enhancement based on efficiency considerations. In this paper, a comprehensive model was established to simulate environmental characteristics in the Liaodong Bay. A habitat suitability model was developed by considering the optimal growth conditions of the Portunus trituberculatus larvae (PTL). The coupled model showed that the optimal area for stock-enhancement with PTL occurs in late June, and the initial suitable habitat area identified represents 17.12% of the whole Liaodong Bay. Based on the larval migration model of PTL, the deviation between the larvae and the
suitable habitat, as well as the actual available area for stock enhancement, were further determined after larval release in the initial suitable habitat. Only 33.67% of the larvae fulfilled the criteria of remaining within the suitable habitat for 95% of the time, and these larvae represented 6.19% of the whole area of Liaodong Bay. These findings mean that the truly area available for stock enhancement is likely to be a very small portion of the entire bay, and more precise release of larvae will be necessary to ensure survival rates after release. Our study actually provides a methodological framework for the identification of suitable environment of stock enhancement. This methodology can provide technical guidance for the stock enhancement of marine larvae with same applicability for other bays, which in turn contributes to the sustainable use of marine ecosystem services and fisheries resources.

**Keywords:** Habitat suitability model; Fluid dynamics; Migration trajectory; Particle tracking; *Portunus trituberculatus*

1 Introduction

As overfishing, environmental pollution, and habitat destruction become increasingly serious, marine resources around the world are facing significant challenges (Etiegni et al., 2011; Horodysky et al., 2016; Utomo et al., 2019). Many countries have adopted fisheries management measures to address the current decline of marine fisheries resources, establishing controlling fishing quotas, marine reserves, and stock enhancement (Colloca et al., 2013; Green et al., 2014; Nielsen and Holm, 2007; Roberts et al., 2005). Among them, stock enhancement programs, with their effective ecosystem restoration function and advantage in alleviating the scarcity of fishery resources, are considered to be an important measure for restoring fishery resources (Han et al., 2016; Purcell et al., 2012; Taylor et al., 2005; Wang et al.,
Stock enhancement refers to the artificial release of fish, shrimp, shellfish, algae, and other aquatic organisms into natural waters to allow for their natural growth, in order to increase the population size of marine species, rebuilt biomass of the fished stock, attempting to restore ecological balance (Hilborn et al., 2020; Lorenzen et al., 2010; Pilnick et al., 2021).

In the late 19th century, breakthroughs in artificial breeding technology for marine fish allowed countries such as the United States, Japan, and some European nations to establish marine fish hatcheries (Christou et al., 2013; Shelbourne, 1964; Yoshimura et al., 1996). Economically valuable species such as *Gadus* and *Oncorhynchus keta* were artificially propagated, and attempts were made to increase the wild populations in natural water bodies by releasing hatchery-reared fish (Blankenship and Leber, 1995; Kitada, 2014). Since the 1950s, China has been exploring stock enhancement activities in its nearshore fisheries (Dong et al., 2009). In the early 1980s, China's efforts in stock enhancement and large-scale larva release experiments in its nearshore fisheries have continuously achieved success (Han et al., 2016; Hong and Zhang, 2002). The *Portunus trituberculatus*, with its high reproductive potential, survival rates, high economic profitability, and the technology of artificial breeding, has been identified as a key organism for stock enhancement and release in China's northern waters, particularly in the Liaodong Bay, China (Wang et al., 2020). However, the efficiency of stock enhancement has long been at a low level due to incomplete identification of oceanic environmental factors (such as tidal currents) (Wang et al., 2017). Some studies have suggested that larvae released during stock enhancement programs are vulnerable to extreme physical factors, such as typhoon waves, which can lead to high mortality rates (Gao et al., 2022). Ensuring the survival rate of released larvae in natural marine habitats has been
challenging (Wang et al., 2018; Xie et al., 2014). Thus, it is crucial to efficiently describe tidal currents, temperature, salinity, and wave conditions in the releasing area, to determine suitable areas for larval survival.

In the turn of the century, the fishing industry and researchers made easier to identify environmental characteristics of fish culture and release areas by using remote monitoring systems with integrated temperature and salinity sensors (Laroche et al., 2016; Lee et al., 2022; Skålvik et al., 2023). However, when faced with the need to understand the environmental features of larger oceanic areas, this technology becomes increasingly difficult to implement, as larger areas require more equipment and personnel investment, leading to a significant growing in production costs. In recent years, with the continuous development and improvement of ocean mathematical models, an increasing number of researchers utilized numerical simulation techniques to estimate the environmental characteristics of large marine areas (Karydis and Kitsiou, 2013; Ma et al., 2023; Uzun et al., 2022). The advantages of mathematical models lie in their ability to provide rapid feedback of environmental features over a large area at a low cost. Therefore, this enabled the selection of suitable areas for stock enhancement through numerical modeling of basic environmental variables.

This study focused on the stock enhancement population, through the release of *Portunus trituberculatus* larvae (PTL) as a case of study. Firstly, a comprehensive numerical model of the water environment in the Liaodong Bay was developed, which took into account physical factors such as tidal currents, water temperature, salinity, and waves. Based on this, an environmental suitability model and migration model of PTL were established, aiming to identify through the assess suitable areas for the stock enhancement of PTL in the Liaodong Bay. The results of this study are expected
to provide effective guidance for the selection of stock enhancement and release areas, thereby facilitating the management, conservation, and sustainability of regional fisheries resources.

2 Materials and Methods

2.1 Study area

The study area is located in the Liaodong Bay, China (Figure 1. (a)), one of the main areas for stock enhancement in the Bohai Sea, with a sea area of 18,784.53 km². The Liaodong Bay is situated in the northern part of the Bohai Sea, with an average water depth of 18 m. The bay is influenced by irregular semidiurnal tides, with an average tidal range of 2.7 m. It is one of the most important spawning and breeding grounds for many commercially valuable marine species, such as *Portunus trituberculatus* and *Penaeus orientalis* (Wang et al., 2013; Xu et al., 2010). The average annual water temperature in the bay ranges from 8 to 10°C. The sea-ice season typically begins in December and ends in March of the following year, with an average duration of 112 days per year (Hou et al., 2020; Wang et al., 2021). The main species for aquaculture release in Liaodong Bay are *Portunus trituberculatus*, Chinese shrimp and *Paralichthys olivaceus*. Taking the PTL as an example, the window for stock enhancement and release is from June to July each year. This is because the larvae are prone to freeze and die before this period, while later releases may not be harvested before the onset of the ice season. In addition, the stock enhancement and release is usually carried out during the neap tide period due to the relatively stable marine environment compared to the spring tide period. With this in mind, this study focuses primarily on four neap tide periods occurring in June and July of 2019, namely, early June, late June, early July, and late July.
**Figure 1.** (a) Location of study area and distribution of observation stations. (b) The water depth and computational grids of the Liaodong Bay.

**2.2 Habitat environment model of *Portunus trituberculatus* larvae (PTL)**

Given the importance of the habitat characteristics of PTL in the context of its stock enhancement and release, a numerical model of the marine water environment
in the Liaodong Bay was developed in this study. The general model consisted of a
three-dimensional hydrodynamic model to reproduce the tidal characteristics of the
Liaodong Bay, a three-dimensional temperature and salinity model to simulate the
distribution of water temperature and salinity in the Liaodong Bay, and a wave model
to reflect the wave propagation characteristics in the Liaodong Bay. The
hydrodynamic model was based on the Reynolds-averaged Navier-Stokes equations
(RANS) simplified under the assumption of static water. The governing equations of
the hydrodynamic model are as follows:

\[
\frac{\partial u}{\partial x} + \frac{\partial v}{\partial y} + \frac{\partial w}{\partial z} = S
\]

(1)

\[
\frac{\partial u}{\partial t} + \frac{\partial u^2}{\partial x} + \frac{\partial vu}{\partial y} + \frac{\partial wu}{\partial z} = fu - g \frac{\partial \eta}{\partial x} - \frac{1}{\rho_0} \frac{\partial p_a}{\partial x} -
\]

(2)

\[
\frac{\partial v}{\partial t} + \frac{\partial v^2}{\partial y} + \frac{\partial uv}{\partial x} + \frac{\partial vv}{\partial z} = -fu - g \frac{\partial \eta}{\partial y} - \frac{1}{\rho_0} \frac{\partial p_a}{\partial y} -
\]

(3)

\[
\frac{\partial w}{\partial t} + \frac{\partial w^2}{\partial z} + \frac{\partial uw}{\partial x} + \frac{\partial vw}{\partial y} = fu - g \frac{\partial \eta}{\partial z} - \frac{1}{\rho_0} \frac{\partial p_a}{\partial z} -
\]

where \(t\) is the time; \(x, y\) are Cartesian coordinate system coordinates; \(\eta\) is the surface
elevation; \(d\) is the still water depth; \(h = \eta + d\) is the total water depth; \(u, v\) and \(w\) are
the velocity components in \(x, y\) and \(z\) directions respectively; \(f\) is the Coriolis force
coefficient, \(f = 2\omega \sin \phi\) (\(\omega\) is the angular rate of revolution, \(\phi\) is the local latitude); \(g\) is
the acceleration of gravity; \(\rho\) is the density of water; \(S_{xx}, S_{xy}\) and \(S_{yx}\) are components of
the radiation stress tensor; \(v_t\) is the vertical turbulent (or eddy) viscosity; \(p_a\) is the
atmospheric pressure; \(\rho_0\) is the reference density of water. \(S\) is the magnitude of the
discharge due to point sources and \((u_a, v_a)\) is the velocity by which the water is
discharged into the ambient water.
The model presented in this study utilized a non-structured triangular mesh (Figure 1 (b)), consisting of 14,002 grid elements with a minimum resolution of 100 meters for nearshore areas. The depth and shoreline data used in the model were obtained from the ETOPO1 database provided by the National Oceanic and Atmospheric Administration (NOAA). In addition, the model accounted for four major rivers (the Liao River, the Daliao River, the Daling River, and the Xiaoling River) flowing into the Liaodong Bay, with monthly discharge data provided for each. The predicted tidal level obtained through harmonic analysis was used to provide the open boundary tidal condition.

Apart from the influence of current, water temperature and salinity are also significant factors that cannot be ignored in the growth of PTL (Dai et al., 2014; Xu and Liu, 2011). Based on the validated hydrodynamic model, another model was established to simulate the temperature and salinity distribution characteristics of the Liaodong Bay. The temperature and salinity boundary conditions were provided by monthly average data from the Copernicus Marine Environment Monitoring Center website (https://marine.copernicus.eu/). The model control equations are as follows:

\[ \frac{\partial T}{\partial t} + \frac{\partial u T}{\partial x} + \frac{\partial v T}{\partial y} + \frac{\partial w T}{\partial z} = F_T + \frac{\partial}{\partial z}\left(D_v \frac{\partial T}{\partial z}\right) + \hat{H} + T_s S \]  

\[ \frac{\partial s}{\partial t} + \frac{\partial u s}{\partial x} + \frac{\partial v s}{\partial y} + \frac{\partial w s}{\partial z} = F_s + \frac{\partial}{\partial z}\left(D_v \frac{\partial s}{\partial z}\right) + s_s S \]

where \( D_v \) is the vertical turbulent (eddy) diffusion coefficient. \( \hat{H} \) is a source term due to heat exchange with the atmosphere. \( T_s \) and \( s_s \) are the temperature and the salinity of the source.

On the basis of temperature and salinity, the food source depletion and flow field heterogeneity caused by wave breaking are potential factors affecting the migration and distribution of marine organisms (Hou et al., 2022). Therefore, the MIKE21-SW
model was used to calculate the wave characteristics in the Liaodong Bay, which takes into account meteorological conditions such as wind speed and provides the distribution of the significant wave height in the Liaodong Bay, which is widely used for wave characteristics simulation. The background wind field used meteorological data from the Copernicus Marine Environment Monitoring Officer website (https://marine.copernicus.eu/). The model control equations are as follows:

$$\frac{\partial N}{\partial t} + \nabla \cdot (\bar{v} N) = \frac{S}{\sigma}$$  \hspace{1cm} (6)

where $N(x, \sigma, \theta, t)$ is the action density, $t$ is the time, $\bar{x} = (x, y)$ is the Cartesian co-ordinates; $\bar{v} = (c_x, c_y, c_\theta, c_\sigma)$ is the propagation velocity of a wave group in the four-dimensional phase space $\bar{x}$, $\sigma$, $\theta$ and $S$ is the source term for the energy balance equation.

The energy source term, $S$, represents the superposition of source functions describing various physical phenomena.

$$S = S_{\text{in}} + S_{\text{nl}} + S_{\text{ds}} + S_{\text{bot}} + S_{\text{surf}}$$  \hspace{1cm} (7)

where $S_{\text{in}}$ represents the transmission of energy by wind, $S_{\text{nl}}$ is the wave energy transfer due to non-linear wave-wave interaction, $S_{\text{ds}}$ is the dissipation of wave energy due to whitecapping, $S_{\text{bot}}$ is the dissipation due to the bottom friction and $S_{\text{surf}}$ is the dissipation of wave energy due to the depth-induced breaking.

2.3 Habitat suitability model for Portunus trituberculatus larvae (PTL)

Previous studies have shown that fluid shear stress caused by waves and tides affects the transport, attachment and recruitment of marine organism larvae (Bolle et al., 2009; Hou et al., 2022; Reidenbach et al., 2009; Shanks et al., 2003; Whitman and Reidenbach, 2012), while water temperature and salinity directly affect larval feeding.
and development (McGeady et al., 2021; Nurdiani and Zeng, 2007; Zimmerman and Pechenik, 1991). Existing research and the Chinese technical specifications for the stock enhancement indicate the appropriate growth conditions for PTL (China, 2014; Ge, 2019; Wang et al., 2022), as shown in the Table 1 below.

<table>
<thead>
<tr>
<th>Environmental factors</th>
<th>Suitable range</th>
</tr>
</thead>
<tbody>
<tr>
<td>Water temperature (℃)</td>
<td>16 ~ 28</td>
</tr>
<tr>
<td>Salinity (%o)</td>
<td>20 ~ 32</td>
</tr>
<tr>
<td>Velocity (m/s)</td>
<td>&lt; 1.0</td>
</tr>
<tr>
<td>Significant wave height (m)</td>
<td>&lt; 0.5</td>
</tr>
</tbody>
</table>

In the suitability model for the habitat of PTL, it is initially believed that flow velocity, water temperature, salinity, and significant wave height are the main limiting factors for the habitat of PTL. The single-factor Habitat Suitability Index ($HSI$) was used to quantify the suitability of the target organism in a particular factor. The $HSI$ ranges from 0 (least suitable) to 1 (most suitable), indicating that the factor has no restriction on the survival of the target organism when the $HSI$ index is 1. The Comprehensive Suitability Index ($CSI$) was calculated based on the $HSI$ of each habitat factor and the main limiting factors for the survival of the organism. The $CSI$ ranges from 0 to 1. In this assessment, it was considered that larvae could settle and survive when the $CSI$ was greater than 0.95. The single-factor habitat suitability index ($HSI$) and the comprehensive suitability index ($CSI$) of the larvae on the day of stock enhancement can be expressed as:

$$HSI(V, Tem, Sat, SWH) = \frac{t_i(V, Tem, Sat, SWH)}{24}$$ (8)
where \( i \) is the \( i \)-th grid cell, \( t_i \) is the total time in the \( i \)-th grid cell that a single suitable condition is met within a day; \( n \) is the number of habitat factors that affect the growth of individual organisms; \( V_i, Tem_i, Sat_i \) and \( SWH_i \) are the flow velocity, water temperature, salinity and significant wave height, respectively, which are environmental factors characterizing the unit \( i \). These features are calculated by the habitat environment model. \( HSI_{v_i}, HSI_{Tem_i}, HSI_{Sat_i} \) and \( HSI_{SWH_i} \) are the habitat suitability index based on flow velocity, water temperature, salinity and significant wave height at unit \( i \), respectively.

The Weighted Usable Area (WUA) is calculated by simulating the suitability of larvae to hydrological factors. Specifically, WUA is defined as the summation of the product of the area of each control unit \( (a_i) \) and the CSI within the study region.

\[
WUA = \sum_{i=1}^{n} CSI(HSI_{v_i}, HSI_{Tem_i}, HSI_{Sat_i}, HSI_{SWH_i})a_i \quad CSI > 0.95
\]

### 2.4 Migration model of *Portunus trituberculatus* larvae (PTL)

During the early stage of stock enhancement and release, the movement of PTL is largely determined by ocean currents, due to their small size and weak self-swimming ability (Ge, 2019; Ma et al., 2021). To predict the migration and distribution of the larvae, we developed a particle tracking numerical model. This model considers the larvae as particles (600 in total) moving in dependence on the water mass points. After being released within the initial suitable area identified by the habitat suitability model, the transport and diffusion of the larvae follows the following principles:

\[
dX_i = a(t, X_i)dt + b(t, X_i) \xi_i
\]
where \(a\) is the drift term; \(b\) is the diffusion term; \(\xi\) is the random number. To compute the trajectory of \(Y\) for a given time discretization, we set the initial value as \(Y_0 = X_0\) and recursively solve for \(Y\) using the following equation.

\[
dt Y_{n+1} = Y_n + a(t, X_n)Y_n \Delta t + b(t, X_n)Y_n \Delta W_n
\]

(12)

where \(n = 1, 2, 3, \ldots\), the value of \(n\) is contingent upon the Euler drift coefficient \(a\) and the diffusion coefficient \(b\). \(\Delta W = W_t - W_s \in N (\mu = 0, \sigma^2 = \Delta_n)\) is within the continuous time period \((\tau_n \leq t \leq \tau_{n+1})\), based on the Gaussian increment of the Wiener process.

We utilized a particle tracking model to assess the migration characteristics of larvae and the likelihood of their persistence within suitable habitats during a specified duration following their release.

**2.5 Error statistics**

The root mean square error (RMSE) is a commonly used evaluation metric for testing the reliability of models.

\[
RMSE = \sqrt{\frac{1}{N} \sum_{i=1}^{N} (S_i - O_i)^2}
\]

(13)

where \(S_i\) is the modeling series, \(O_i\) is the observation series, and \(N\) is the total number of data in the series. Given that error measures may not always be indicative of optimal performance for numerical models that simulate natural phenomena such as atmospheric dynamics, ocean circulation, or wave generation and propagation, the concept of the skill model has been introduced to enhance evaluation (Hou et al., 2021).
where $M$ is the modeling series, $D$ is the observation series, $\bar{D}$ is the average of the observation data, and $N$ is the total number of data in the series. Performance levels are categorised as: larger than 0.65 excellent; between 0.65 and 0.5 very good; between 0.5 and 0.2 good; smaller than 0.2 poor.

3 Results

3.1 Model validation and results analysis

A series of field data were initially collected for the validation of the model reliability, which included tide gauge data from two stations (S1, and S2) obtained from continuous 25-hour measurements on May 25, 2022, provided by the China National Marine Information Center; current data from three stations (C1, C2, and C3) measured using a current meter on September 18, 2021; water temperature and salinity from monthly average data from two stations (T1 and T2) for 2021, obtained from the Copernicus Marine Service website (https://marine.copernicus.eu/); and wave data from one station (W1), obtained from a fixed acoustic wave gauge over a 30-hour continuous observation period on May 14, 2016.

Based on the comparison between the on-site observation data and the results obtained from model calculations (Figure 2 and Figure 3), it can be concluded that the modeled tidal flow values are consistent with the characteristics of tidal propagation under natural conditions. The simulated results of sea water temperature, salinity, and waves were also found to be in good agreement with the measured data.
Figure 2. Tidal current validation process
Figure 3. Water temperature, salinity and wave validation process

The results of the error analysis (Table 2) indicate that the calculated root mean square error (RMSE) of the tidal level has an average value of 0.08 m, while the RMSE of the flow velocity and flow direction has an average value of 0.07 m/s and 15.61°, respectively. The RMSE of the water temperature and salinity are 1.05°C and 1.21%, respectively. The RMSE of the significant wave height and period are 0.11 m and 0.08 s, respectively. Overall, the observed and simulated values show good agreement, and the RMSEs are within an acceptable range. In addition, the skill model evaluation results for the tidal level, flow velocity, temperature, salinity, significant wave height (SWH), and significant wave period (SWP) are 0.93, 0.90, 0.90, 0.91, 0.88, and 0.90, respectively, indicating excellent performance of the
established habitat environment model. Consequently, we conclude that the
established numerical model was capable of describing the water environment
characteristics (tidal flow, water temperature, salinity, and waves) in the Liaodong
Bay.

Table 2. Statistical analysis of model errors

<table>
<thead>
<tr>
<th>Item</th>
<th>Stations</th>
<th>RMSE</th>
<th>skill</th>
</tr>
</thead>
<tbody>
<tr>
<td>Water level (m)</td>
<td>S1</td>
<td>0.07</td>
<td>0.94</td>
</tr>
<tr>
<td></td>
<td>S2</td>
<td>0.09</td>
<td>0.92</td>
</tr>
<tr>
<td></td>
<td>C1</td>
<td>0.10</td>
<td>0.85</td>
</tr>
<tr>
<td>Velocity (m/s)</td>
<td>C2</td>
<td>0.05</td>
<td>0.93</td>
</tr>
<tr>
<td></td>
<td>C3</td>
<td>0.06</td>
<td>0.92</td>
</tr>
<tr>
<td></td>
<td>C1</td>
<td>17.21</td>
<td>0.89</td>
</tr>
<tr>
<td>Direction (°)</td>
<td>C2</td>
<td>13.25</td>
<td>0.92</td>
</tr>
<tr>
<td></td>
<td>C3</td>
<td>16.36</td>
<td>0.91</td>
</tr>
<tr>
<td>Temperature (°C)</td>
<td>T1</td>
<td>0.91</td>
<td>0.92</td>
</tr>
<tr>
<td></td>
<td>T2</td>
<td>1.18</td>
<td>0.88</td>
</tr>
<tr>
<td>Salinity (‰)</td>
<td>T1</td>
<td>1.20</td>
<td>0.92</td>
</tr>
<tr>
<td></td>
<td>T2</td>
<td>1.22</td>
<td>0.90</td>
</tr>
<tr>
<td>Significant wave height (m)</td>
<td>W1</td>
<td>0.11</td>
<td>0.88</td>
</tr>
<tr>
<td>Significant wave period (s)</td>
<td>W1</td>
<td>0.08</td>
<td>0.90</td>
</tr>
</tbody>
</table>

3.2 Habitat characteristics of *Portunus trituberculatus* larvae (PTL)

According to the joint calculation results of the numerical model of water
environment and the habitat suitability model in the Liaodong Bay (Figure 4), the
habitat suitability index of flow velocity ($H_{SI_v}$) in the Liaodong Bay during the four neap tide periods showed a gradual increase from the sea to the land. Among them, the flow velocity suitability index of the coastal waters on the north side of Liaodong Bay was generally above 0.95, and other suitable areas were sporadically distributed in shallow waters on both sides of Liaodong Bay, where the flow velocity was relatively low due to the dumpening effect of topographical factors. In the southeastern waters of Liaodong Bay, the flow velocity suitability index was less than 0.20. This was mainly due to the large flow velocity caused by the water depth exceeding 30 meters and the tortuous coastline. The habitat environment model results showed that the maximum flow velocity in this area during the four periods is 1.87 m/s, which occurred in early June.

Under flow velocity constraints, the optimal growth area for PTL in late June was found to be the largest, approximately 1488.06 km$^2$, accounting for 7.92% of the total area of Liaodong Bay. Conversely, the optimal area was found to be the smallest in early June, at approximately 1337.49 km$^2$, accounting for 7.12% of the total area. The suitable area in early July was 1371.96 km$^2$ and in late July was 1472.04 km$^2$, and the flow rate suitable area accounted for about 7.30% and 7.84% of the whole Liaodong Bay area, respectively. It is evident that under the influence of tidal current stress, the habitat in late June is relatively more conducive to the growth of PTL.
Figure 4. Distribution of the habitat suitability index for flow velocity ($HSI_v$) during various periods in the Liaodong Bay. (a) Early June. (b) Late June. (c) Early July. (d) Late July.

The computational model results showed apparent temporal variations in water temperature within the Liaodong Bay. The water temperature exhibited a significant increase from June to July. At the spatial scale, the water temperature gradually decreased from the land towards the ocean. The suitability analysis results (Figure 5) indicated that there were unfavorable temperatures for the growth of PTL in the early June and late July, while the habitat suitability index of water temperature ($HSI_{tem}$) for the entire Liaodong Bay was 1.0 in late June and early July, indicating that water temperature was highly suitable for the growth of PTL in late June and early July.

In early June, the water temperature in the southern waters of the Liaodong Bay
was below 16°C, which limited the growth of the PTL, resulting in $HSI_{Tem}$ of less than 0.1 in the region. However, in late July, the water temperature in the nearshore waters of the northern part of the Liaodong Bay exceeded 28°C. At this time, the excessively high temperature impaired to the growth of the PTL. As a result, the suitability index for this area was lower. Under the constraint of water temperature, in early June, the suitable growth area for the PTL was 11873.52 km², accounting for 63.21% of the entire Liaodong Bay area. In late July, the suitable growth area for the PTL was 18591.48 km², accounting for 98.97% of the entire Liaodong Bay area. In late June and early July, the proportion of suitable area reached 100%. Therefore, it can be seen that under high temperatures, the entire Liaodong Bay is suitable for the growth of the PTL in late June and early July.

**Figure 5.** Distribution of the habitat suitability index for water temperature ($HSI_{Tem}$)
during various periods in the Liaodong Bay. (a) Early June. (b) Late June. (c) Early July. (d) Late July.

According to the distribution of the suitability index for salinity ($HSI_{Sat}$), the majority of the areas in the Liaodong Bay were highly suitable for the growth of PTL. The areas with lower suitability were mainly located in the coastal waters on the north and south sides of the Liaodong Bay. In the nearshore areas on the northern side of the Liaodong Bay, the influx of freshwater from rivers resulted in localized areas of water with a salinity of less than 20‰. On a temporal scale, the $HSI_{Sat}$ was inversely proportional to the river discharge (Table 3). In early June, the relatively low river discharge led to relatively high salinity levels in the estuarine area. In early June, the relatively small river discharge resulted in relatively higher salinity in the estuarine area. However, with the onset of the rainy season, the increasing river discharge gradually reduced the salinity in the nearshore estuarine area, with the maximum river discharge in late July resulting in the lowest $HSI_{Sat}$ in the northern nearshore area of Liaodong Bay. In contrast, on the southern side of Liaodong Bay, due to the deeper water depth, the salinity exceeds 32‰, which limited the growth of PTL.

Table 3. Multi-year monthly average runoff of four major rivers in Liaodong Bay

<table>
<thead>
<tr>
<th></th>
<th>Liao River</th>
<th>Daliao River</th>
<th>Daling River</th>
<th>Xiaoling River</th>
</tr>
</thead>
<tbody>
<tr>
<td>Early June</td>
<td>$1.85\times10^8$ m$^3$</td>
<td>$1.88\times10^8$ m$^3$</td>
<td>$0.28\times10^8$ m$^3$</td>
<td>$0.02\times10^8$ m$^3$</td>
</tr>
<tr>
<td>Late June</td>
<td>$2.43\times10^8$ m$^3$</td>
<td>$2.10\times10^8$ m$^3$</td>
<td>$0.31\times10^8$ m$^3$</td>
<td>$0.03\times10^8$ m$^3$</td>
</tr>
<tr>
<td>Early July</td>
<td>$2.01\times10^8$ m$^3$</td>
<td>$3.16\times10^8$ m$^3$</td>
<td>$0.25\times10^8$ m$^3$</td>
<td>$0.24\times10^8$ m$^3$</td>
</tr>
<tr>
<td>Late July</td>
<td>$2.17\times10^8$ m$^3$</td>
<td>$3.34\times10^8$ m$^3$</td>
<td>$0.28\times10^8$ m$^3$</td>
<td>$0.25\times10^8$ m$^3$</td>
</tr>
</tbody>
</table>

Under salinity restriction, the optimal growth area of PTL was largest in late June.
(Figure 6), with an area of approximately 18775.53 km², accounting for 99.95% of the entire Liaodong Bay. In early June, the optimal growth area was approximately 18740.61 km², while in early July, it was approximately 18772.20 km², and in late July, it was approximately 18646.65 km², accounting for 99.77%, 99.93%, and 99.27% of the entire Liaodong Bay, respectively. Overall, the salinity of water in Liaodong Bay had little effect on the growth of PTL in June and July.

![HSI Sat](image)

**Figure 6.** Distribution of the habitat suitability index for water salinity ($HSI_{Sat}$) during various periods in the Liaodong Bay. (a) Early June. (b) Late June. (c) Early July. (d) Late July.

When considering the growth restriction of PTL by waves alone, we found that the suitability index for waves ($HSI_{SWH}$) in the Liaodong Bay was 1 in all four periods, meaning that the significant wave height (SWH) was less than 0.5 m. This indicates...
that wave conditions in the entire Liaodong Bay are suitable for larval growth during these four periods. Therefore, we regarded waves as a non-primary limiting factor when calculating the comprehensive suitability index (CSI).

### 3.3 Suitable growth areas for *Portunus trituberculatus* larvae (PTL)

The results of the habitat suitability model (Figure 7) showed that under the combined effects of flow velocity, water temperature, salinity, the suitable areas for the stock enhancement of PTL were mainly distributed in the north of Liaodong Bay. In both June and July, the CSI of PTL showed a trend of gradually increase from sea to land. The CSI of nearshore areas generally exceeded 0.85, indicating that the milder natural conditions in nearshore areas were adequate for the survival of PTL. Based on the results of the CSI, the suitable growth area (CSI>0.95) for the PTL was more concentrated in late June, mainly in the northern waters of the Liaodong Bay.

In terms of suitable PTL growth area, it was largest in late June, reaching 3217.77 km², while the suitable areas in early June, early July, and late July were 2503.89 km², 2253.51 km², and 2121.73 km², respectively. Therefore, it can be inferred, based on the consideration of the operational space for stock enhancement, the best period for stock enhancement is during the neap tide of late June because it presents the largest suitable area for such a purpose. Subsequently, we initially identified suitable area by determining those with a CSI greater than 0.95 in late June.
Figure 7. Distribution of the comprehensive suitability index (CSI) for stock enhancement of PTL during various periods in the Liaodong Bay. (a) Early June. (b) Late June. (c) Early July. (d) Late July.

3.4 Migration characteristics of *Portunus trituberculatus* larvae (PTL)

After determining the initial suitable area, our interest lied in ascertaining the true survival rate of the larvae placed within it. This was because the distribution of the suitable area in real environments is subject to dynamic changes in environmental factors. Thus, it is crucial to determine whether the larvae will detach from the suitable area during the process of migration along with currents after being released.

Within the initial suitable area (Figure 7. (b) and Figure 8. (a)) identified by the habitat suitability model, larvae were released at even intervals of 2400 meters. The migration trajectory model subsequently predicted the migration positions of these
larvae on the 10th, 20th, and 30th days (Figure 8. (b), (c) and (d)). It should be noted that each larva represents the migratory characteristics within a range of 2400m x 2400m around its initial location. The results indicate that 10 days after release, the suitable area decreased, with 26.35% of PTL located outside the suitable area. The overall depth of larvae decreased compared to the initial time, with an average depth of about -2.12 m. After 20 days of release, PTL tended to aggregate in the nearshore area, with an average depth of about -0.89 m; approximately 32.67% of the larvae were located outside the suitable area at this time. When the larvae were released for 30 days, with the shrinking of the suitable area, more larvae were detached from it, accounting for approximately 46.81% of the total number of larvae.

The aforementioned observation implies that despite having selected regions with superior environmental suitability for stock enhancement and initial release, dynamic fluctuations in environmental conditions may cause the PTL to struggle to survive outside the favorable area. Therefore, our initial estimation of the suitable area may have been overestimated. In the light of this, we evaluated the actual available area for stock enhancement of PTL.
**Figure 8.** Migration location and distribution depth of PTL within 30 days after release. (a) Early June. (b) Late June. (c) Early July. (d) Late July.

### 3.5 The actual available area for stock enhancement of *Portunus trituberculatus* larvae (PTL)

In reality, the survival probability of the PTL is only greater when they stay within the suitable habitat for a sufficiently long period of time. Here, we present a joint water environment model and particle tracking model to evaluate the actual suitable area for initial larvae release, by estimating the time that larvae stayed in the suitable area within 30 days of release. Specifically, the probability of larvae escaping from the suitable area after initial release indicates whether the surrounding area of 2400m×2400m around the initial location of the larvae is truly suitable for stock
enhancement. If the larvae stay in the suitable area for more than 95% of the time within 30 days after release, the area of 5.76 km² represented by the initial release location is considered as the true available area for natural proliferation of larvae and release of additionally reared ones.

For the purpose of quantification, we tabulated the total initial areas that can be utilized for larval stock enhancement when the proportion of time that larvae spend within the suitable area during a 30-day period reaches 50%, 75%, 95%, and 100%, respectively (Figure 9). The results indicate that a total of 424 larvae satisfied the condition of spending 50% of their time in the suitable area, corresponding to a viable area for growth and release of approximately 2442.24 km², which represents 75.89% of the initial suitable area and 13.00% of the entire Liaodong Bay area. When the percentage of time spent in the suitable area was 75%, the available area for stock enhancement decreased to about 2004.48 km², accounting for 62.29% of the initial suitable area and 10.67% of the entire Liaodong Bay. Nevertheless, when the percentage of time spent in the suitable area reached 95%, only 33.67% of larvae (202 individuals) met the conditions, and the actual available area for stock enhancement decreased to 1163.52 km², which accounted for 36.16% of the initial suitable area and 6.19% of the entire Liaodong Bay. After being released at their initial area, 147 larvae remained within the suitable area throughout the entire observation period. The actual available area for stock enhancement was only 846.72 km², accounting for 26.31% of the initial suitable area and 4.51% of the entire Liaodong Bay.
**Figure 9.** The relationship between the percentage of time that larvae stay in the suitable area and the number of larvae as well as the actual available area for stock enhancement.

### 4 Discussion

In view of the importance of the marine environment for carrying out stock enhancement, it was developed a comprehensive aquatic environmental model of the Liaodong Bay. This model can simulate the bay temperature, salinity, tides, currents, and wave characteristics. Based on a habitat suitability model, this study comprehensively evaluated the environmental suitability of the Liaodong Bay during the neap tide in June and July 2019, and identified suitable areas for the stock enhancement of PTL. A combined analysis of habitat suitability and environmental models demonstrates that flow velocity and water temperature in the Liaodong Bay have significant effects on the growth of the PTL, while the effects of wave and salinity are relatively minor. Previous studies have shown that there are significant differences in water temperature among different seasons, which have also constrained larvae distribution, and the implementation of stock enhancement and release (Gilbert et al., 2010; Han et al., 2016; Lin and Nozawa, 2023; Nozawa, 2012;...
Teodosio et al., 2016). Generally, water temperature in summer is significantly higher near the coast than in the open sea (Han and Wang, 2022; Yang et al., 2004). This study also confirms that suitability of water temperature in June and July exhibits different spatial distributions, with relatively higher temperature near the coast. Meanwhile, tidal and ocean currents are affected by the coastline and seafloor topography, showing considerable spatial variations.

Based on considerations of the success rate of the stock enhancement, this study employed a combination model to reveal the environmental suitability of PTL. Specifically, the study provides a reference for the suitable area and time for proliferation and release activities in the Liaodong Bay. In accordance with the results of this study, the optimal time for stock enhancement was found to be late June, when the largest area for implementation was available. The recommended stock enhancement sites were primarily concentrated in the northern waters of the Liaodong Bay and the coastal waters, with the areas near Jinzhou, Panjin, and Yingkou were identified as the best release locations within the study area (Ge, 2019; Wang et al., 2013). Additionally, it should be noted that different species have varying degrees of adaptability to environmental factors, thus suitable stock enhancement timing and locations should be selected based on the specific species in question.

Hydrodynamic models based on individual behavioral characteristics are widely used to predict larval transport (Christensen et al., 2008; Kim et al., 2010; Metaxas and Saunders, 2009; Zhong et al., 2023). The results of the migration model for PTL suggested that during their migration process, they move out of suitable areas and do not survive. This migration loss is inferred based on the assumption that the larvae lack autonomous swimming ability. As the larvae grow, they gradually acquire the ability to swim autonomously. Swimming behaviors could contribute significantly to
the overall larval transport potential since they are always responding to the stimuli provided by changes in depth (Baptista et al., 2019; Gallager et al., 1996; Silva et al., 2016). Therefore, when considering the growth model of the larvae, it is necessary to take into account a certain period of time after they are released, which is one of the reasons why our migration trajectory model does not simulate a longer period of time. In addition, considering the characteristics of the larvae behaviour in pursuing food sources (Feehan et al., 2018; Fenaux et al., 1994), the abundance of food in the marine environment is a factor worth to be refined some time after the larvae were released. This study did not take into account the potential effects of food limitation on larvae, as food is generally abundant during the early stages of larval development.

Rational stock enhancement of aquatic organisms facilitate rebuilding conservation of fishery resources. The results of this study held significant implications for the management of offshore aquatic resources and ecological conservation. Furthermore, the proposed model and evaluation methods presented in this paper provided valuable references for the research of stock enhancement in other marine areas, and the selection of suitable habitats for marine organisms in general. These results contribute to the achievement of sustainable utilization of aquatic resources, and ecological conservation.

5 Conclusions

The focus of this study identify the suitable environment stock enhancement of PTL in the Liaodong Bay. Firstly, the $H_{SI}$ of the basic environment factors (including tidal current, temperature, salinity and waves), was identified by combining the habitat environmental model and the habitat suitability model. The results indicated that the main limiting factors for the stock enhancement of PTL were flow velocity and water temperature, while waves were considered as a non-primary limiting factor.
and were not considered in the calculation of the CSI. Secondly, the habitat suitability model showed that late June was the most suitable time to carry out the stock enhancement of PTL by considering multiple factors. The preliminary estimated suitable habitat area was 3,217.77 km². Finally, based on the migration model of PTL, the deviation position of larvae leaving the suitable area and the actual available area for stock enhancement were further determined after releasing larvae within the initial suitable area. Only 33.67% of the larvae fulfilled the criteria of remaining within the suitable habitat for 95% of the time, resulting in an effective available area of 1,163.52 km² for stock enhancement purposes. This area accounts for 36.16% of the initial suitable habitat and 6.19% of the entire Liaodong Bay. This means that the actual area available for stock enhancement is likely to be a very small portion of the entire bay, and more precise release of larvae will be necessary to ensure survival rates after release. Based on these results, our study actually provides a methodological framework for the identification of suitable environment of stock enhancement as well. This methodology can provide technical guidance for the stock enhancement of marine larvae with same applicability for other bays, which in turn contributes to the sustainable use of marine ecosystem services and fisheries resources.

Data Availability Statement

The MIKE21-SW model is available due to the fact that Dalian Ocean University has purchased the rights to the software. Tide level data from two stations (S1, and S2) obtained from continuous 25-hour measurements on May 25, 2022, provided by the China National Marine Information Center; current data from three stations (C1, C2, and C3) measured using a current meter on September 18, 2021; water temperature and salinity from monthly average data from two stations (T1 and T2) for 2021, obtained from the Copernicus Marine Service website (https://marine.copernicus.eu/) product is: https://doi.org/10.48670/moi-00021; and wave data from one station
(W1), obtained from a fixed acoustic wave gauge over a 30-hour continuous observation period on May 14, 2016. Figures and analysis of the data were made with MATLAB version: 9.14.0 (R2023a). Water depth data can be downloaded from the International Bathymetric Chart of the Bohai sea Version 2 (IBCSo v2) (Ma et al., 2021, https://doi.org/10.1016/j.aquaculture.2021.736598)

Acknowledgements

The work was funded by the National Natural Science Foundation of China (Grant No. 31302232).

References


https://doi.org/10.1111/j.0022-1112.2005.00809.x


Xie, Z., Qiu, S., Hou, C., Jin, X. (2014). Recapture Rates of Swimming Crabs (Portunus Trituberculatus)


