Characterizing the Atmospheric Mn Cycle and Its Impact on Terrestrial Biogeochemistry

Louis Lu¹, Longlei Li², Sagar Dilipbhai Rathod³, Peter George Hess², Carmen Enid Martínez², Nicole M Fernandez², Christine Goodale², Janice E. Thies², Michelle Y Wong⁴, Maria Grazia Alaimo⁵, Paulo Artaxo⁶, Francisco Barraza⁷, África Barreto⁸, David C.S. Beddows⁹, Shankar Chellam¹⁰, Ying Chen¹¹, Patrick Y. Chuang¹², David Damien Cohen¹³, Gaetano Dongarra⁵, Cassandra J. Gaston¹⁴, Dario Gomez¹⁵, Yasser Morera-Gomez¹⁶, Hannele Hakola¹⁷, Jenny L Hand¹⁸, Roy M. Harrison⁹, Philip K. Hopke¹⁹, Christoph Hueglin²⁰, Yuan-wen Kuang²¹, Katriina Kyllönen²², Fabrice Lambert²³, Willy Maenhaut²⁴, Randall V Martin²⁵, Adina Paytan²⁶, Joseph M. Prospero¹⁴, Yenny González²⁷, Sergio Rodríguez²⁸, Patricia Smithowski¹⁵, Daniela Varrica,⁵ Brenna Walsh²⁵, Crystal Weagle²⁵, Yi-hua Xiao²⁹, and Natalie M Mahowald²

¹Duke University
²Cornell University
³La Follette School of Public Affairs, University of Wisconsin
⁴Cary Institute of Ecosystem Studies
⁵University of Palermo
⁶University of Sao Paulo
⁷Saw Science
⁸AEMET
⁹University of Birmingham
¹⁰Texas A&M University
¹¹Fudan University
¹²UC Santa Cruz
¹³ANSTO
¹⁴University of Miami
¹⁵Comisión Nacional de Energía Atómica
¹⁶Universidad de Navarra
¹⁷Finnish meteorological institute
¹⁸Colorado State University
¹⁹University of Rochester
²⁰EMPA
²¹South China Botanical Garden
²²Finnish Meteorological Institute
²³Pontifical Catholic University of Chile
²⁴Ghent University
²⁵Washington University in St. Louis
²⁶UCSC
²⁷CIMEL Electronique
Abstract

Manganese (Mn) is a key cofactor in enzymes responsible for lignin decay (mainly Mn peroxidase), regulating the rate of litter degradation and carbon (C) turnover in temperate and boreal forest biomes. While soil Mn is mainly derived from bedrock, atmospheric Mn could also contribute to soil Mn cycling, especially within the surficial horizon, with implications for soil C cycling. However, quantification of the atmospheric Mn cycle, which comprises emissions from natural (desert dust, sea salts, volcanoes, primary biogenic particles, and wildfires) and anthropogenic sources (e.g. industrialization and land-use change due to agriculture) transport, and deposition into the terrestrial and marine ecosystem, remains uncertain. Here, we use compiled emission datasets for each identified source to model and quantify the atmospheric Mn cycle with observational constraints.

We estimated global emissions of atmospheric Mn in aerosols (<10 μm in aerodynamic diameter) to be 1500 Gg Mn yr⁻¹. Approximately 32% of the emissions come from anthropogenic sources. Deposition of the anthropogenic Mn shortened soil Mn “pseudo” turnover times in surficial soils about 1-m depth (ranging from 1,000 to over 10,000,000 years) by 1-2 orders of magnitude in industrialized regions. Such anthropogenic Mn inputs boosted the Mn-to-N ratio of the atmospheric deposition in non-desert dominated regions (between \(5 \times 10^{-5}\) and 0.02) across industrialized areas, but still lower than soil Mn-to-N ratio by 1-3 orders of magnitude. Correlation analysis revealed a negative relationship between Mn deposition and topsoil C density across temperate and (sub)tropical forests, illuminating the role of Mn deposition in these ecosystems.
Characterizing the Atmospheric Mn Cycle and Its Impact on Terrestrial Biogeochemistry

Louis Lu1,2, Longlei Li1, Sagar Rathod3, Peter Hess4, Carmen Martínez5, Nicole Fernandez1, Christine Goodale6, Janice Thies5, Michelle Wong7, Maria Alaimo16, Paulo Artaxo8, Francisco Barraza9, Africa Barreto10, David Beddows11, Shankarararman Chellam12, Ying Chen13, Patrick Chuang14, David Cohen15, Gaetano Dongarrà16, Cassandra Gaston17, Dario Gómez18, Yasser Morera-Gómez19, Hannele Hakola20, Jenny Hand21, Roy Harrison11,22, Phillip Hopke23, Christoph Hueglin24, Yuan-wen Kuang25, Katriona Kyllonen20, Fabrice Lambert26,27, Willy Maenhaut28, Randall Martin29, Adina Paytan13, Joseph Prospero17, Yenny González10,30, Sergio Rodriguez10,31, Patricia Smichowski18, Daniela Varrica16, Brenna Walsh29, Crystal Weagle29, Yi-hua Xiao24, and Natalie Mahowald1

1Department of Earth and Atmospheric Sciences, Cornell University, Ithaca, NY, USA, 2Now at: Nicholas School of the Environment, Duke University, Durham, NC, USA, 3La Follette School of Public Affairs, University of Wisconsin, WI, Madison, USA, 4Biological and Environmental Engineering, Cornell University, Ithaca, NY, USA, 5School of Integrative Plant Sciences, Cornell University, Ithaca, NY, USA, 6Department of Ecology and Evolutionary Biology, Cornell University, Ithaca, NY, USA, 7Department of Ecology and Evolutionary Biology, Yale University, New Haven, CT 06511, 8Instituto de Fisica, Universidade de Sao Paulo, 05508-090, Sao Paulo, SP, Brazil, 9Saw Science, Invercargill, New Zealand, 10Izana Atmospheric Research Centre AEMET, Joint Research Unit to CSIC “Climate and Composition of the Atmosphere”, La Marina 20, planta 6, 38001, Santa Cruz de Tenerife, Spain, 11School of Geography, Earth and Environmental Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, United Kingdom, 12Department of Civil & Environmental Engineering, Texas A&M University, College Station, TX 77843-3136, USA, 13Institute of Marine Sciences, University of California, Santa Cruz, CA, USA, 14Earth & Planetary Sciences Department, University of California, Santa Cruz, CA, 95064, USA, 15Australian Nuclear Science and Technology Organisation, Lucas Heights, NSW, Australia, 16Dip. Scienze della Terra e del Mare, University of Palermo, Italy, 17Rosenstiel School of Marine and Atmospheric Science, University of Miami, Miami, FL, 33149, USA, 18Comisión Nacional de Energía Atómica, Universidad de Buenos Aires, Argentina, 19Universidad de Navarra, Instituto de Biodiversidad y Medioambiente BIOMA, Irúnarrea 1, 31008, Pamplona, España, 20Finnish Meteorological Institute, Helsinki, Finland, 21Cooperative Institute for Research in the Atmosphere, Colorado State University, Fort Collins, CO, USA, 22Department of Environmental Sciences, Faculty of Meteorology, Environment and Arid Land Agriculture, King Abdulaziz University, Jeddah, Saudi Arabia, 23Department of Chemical and Biomolecular Engineering, Clarkson University, Potsdam, NY, USA, 24Swiss Federal Laboratories for Materials Science and Technology (EMPA), CH-8600 Duebendorf, Switzerland, 25Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China, 26Geography Institute, Pontificia Universidad Católica de Chile, Santiago, 7820436, Chile, 27Center for Climate and Resilience Research, University of Chile, Santiago, Chile, 28Department of Chemistry, Ghent University, Gent, Belgium, Institute for Nuclear Sciences,
University of Gent, Belgium, 29Energy, Environmental and Chemical Engineering, Washington University, St. Louis, MO, USA, 30CIMEL Electronique, Paris, 75011, France, 31Instituto de Productos Naturales y Agrobiología IPNA CSIC, La Laguna, Canary Islands, Spain.

Corresponding author: Louis Lu (pl230@duke.edu)

†Additional author notes should be indicated with symbols (current addresses, for example).

Key Points:

- We modelled the atmospheric manganese (Mn) cycle from emission to deposition and compared our aerosol model to existing observations based on our compilation.
- Anthropogenic activity contributes to approximately one-third of global atmospheric Mn, shortening the soil Mn turnover time by 1 to 2 orders of magnitude.
- Mn correlates with topsoil carbon (C) in temperate and (sub)tropical forests, along with N deposition and other climatic factors.
Abstract

Manganese (Mn) is a key cofactor in enzymes responsible for lignin decay (mainly Mn peroxidase), regulating the rate of litter degradation and carbon (C) turnover in temperate and boreal forest biomes. While soil Mn is mainly derived from bedrock, atmospheric Mn could also contribute to soil Mn cycling, especially within the surficial horizon, with implications for soil C cycling. However, quantification of the atmospheric Mn cycle, which comprises emissions from natural (desert dust, sea salts, volcanoes, primary biogenic particles, and wildfires) and anthropogenic sources (e.g. industrialization and land-use change due to agriculture) transport, and deposition into the terrestrial and marine ecosystem, remains uncertain. Here, we use compiled emission datasets for each identified source to model and quantify the atmospheric Mn cycle with observational constraints. We estimated global emissions of atmospheric Mn in aerosols (<10 µm in aerodynamic diameter) to be 1500 Gg Mn yr⁻¹. Approximately 32% of the emissions come from anthropogenic sources. Deposition of the anthropogenic Mn shortened soil Mn “pseudo” turnover times in surficial soils about 1-m depth (ranging from 1,000 to over 10,000,000 years) by 1-2 orders of magnitude in industrialized regions. Such anthropogenic Mn inputs boosted the Mn-to-N ratio of the atmospheric deposition in non-desert dominated regions (between 5×10⁻⁵ and 0.02) across industrialized areas, but still lower than soil Mn-to-N ratio by 1-3 orders of magnitude. Correlation analysis revealed a negative relationship between Mn deposition and topsoil C density across temperate and (sub)tropical forests, illuminating the role of Mn deposition in these ecosystems.

1 Introduction

As an essential trace element and micronutrient, manganese (Mn) has been identified to be closely related to soil carbon (C) turnover because of its role of regulating soil organic matter (SOM) decomposition by enhancing the activity of lignin-decay enzymes (mainly Mn peroxidase, MnP) and hence the oxidative decomposition of lignin (Berg et al., 2007; Hofrichter, 2002). Mn limitation and the associated fungal community change from N deposition have been proposed as an explanation for the suppressing effect of long-term atmospheric nitrogen (N) deposition on SOM decomposition (Moore et al., 2021; Whalen et al., 2018).

Studies have assessed the relationship between Mn and soil C turnover using various indicators including Mn concentration in litter, rate or extent of decomposition of litter (Berg et al., 2007, 2010; Berg 2000; Davey et al., 2007; Trum et al., 2015), soil Mn and total C concentrations (Stendahl et al., 2017), MnP enzymatic activity, and fungal community structures (Kranabetter et al., 2021; Moore et al., 2021; Whalen et al., 2018). However, no previous study has examined the impact of atmospheric Mn deposition on soil C turnover, nor has such a relationship been quantified on a global scale. In fact, atmospheric deposition has been identified as a major source of metal(loid) accumulation, including Mn, in surficial soil layers (He & Walling, 1997; Kaste et al., 2003; Puchelt et al., 1993; Wang et al., 2022) where most fresh organic matter accumulates, underlining the need to characterize atmospheric Mn deposition for more advanced understanding of soil C turnover.

While atmospheric Mn deposition has not been extensively investigated, studies have shown the importance of atmospheric deposition of iron (Fe), which has similar biogeochemical properties as Mn (Canfield et al., 2005), for understanding marine biogeochemistry (Mahowald et al., 2009). In oceans, atmospheric deposition of Fe could be a stronger source of Fe than the
weathering of rock (Canfield et al., 2005); Mn deposition could act similarly as a non-negligible
source of ocean Mn which could have significant ecological relevance such as co-limitation of
phytoplankton growth with Fe (Browning et al., 2021; Mahowald et al., 2018). More recently,
Mn catalysis of organic C polymerization reactions was proposed to result in organic carbon
preservation and storage in marine sediments (Moore et al., 2023). Together, these studies show
that atmospheric Mn deposition could play an important role in the global Mn cycle and is likely
linked to functions carried out by Mn in both terrestrial and marine ecosystems.

There is a variety of natural sources of Mn, such as desert dust (the single dominant source), sea
salts, volcanoes, wildfires, and primary biogenic particles (Nriagu, 1989; Pacyna & Pacyna,
2001). In addition to natural sources of atmospheric Mn deposition, humans can perturb the
global atmospheric Mn cycle by significantly altering desert dust and adding anthropogenic
emission sources, such as combustion (Mahowald et al., 2018). Anthropogenic aerosols have the
potential to inducing a more rapid impact on ecosystems because of their higher solubility owing
to their smaller particle size, higher carbon content, chemical and surface associations, and
reactions that occur during the process of combustion (Desboeufs et al., 2005; Jang et al., 2007;
Sedwick et al., 2007; Voutsa & Samara, 2002) compared to natural aerosols.

While global budgets for many metals have been estimated previously, the spatial distribution of
Mn deposition and the overlap with N deposition are unknown. Nriagu (1989) made the first
attempt to estimate Mn emissions to the atmosphere. Nriagu (1989) and Pacyna & Pacyna (2001)
identified desert dust as the single dominant source, and estimated the contribution of
anthropogenic sources to be approximately 11%. Mahowald et al. (2018) estimated that
anthropogenic emissions represented ~1% of the total aerosol Mn sources. Uncertainties are high
due to the lack of observational data, and so far, there have been no detailed spatially explicit
studies of the atmospheric Mn cycle. Therefore, a better estimation of the Mn source budget
(both natural and anthropogenic) along with its spatial distribution is necessary for understanding
the global Mn cycle and its influence on terrestrial ecosystems.

In this study, we conducted the first 3-d modeling of the emission, atmospheric transport, and
deposition of atmospheric Mn from multiple sources including natural and anthropogenic dust,
sea salts, volcanoes, wildfires, and primary biogenic particles. We compile emission datasets for
each source and soil Mn concentration measurements for the emission modeling and model
calibration, respectively. We synthesized observational and modeling evidence to characterize
the spatial distribution of atmospheric Mn and to assess the anthropogenic perturbation to it in
both PM$_{2.5}$ and PM$_{10}$ size fractions (atmospheric particulate matter, PM, <2.5 and 10 µm in
aerodynamic diameter, respectively), which are used as common measures for aerosols in the
atmosphere and included in the model (Mahowald et al., 2014; Ryder et al., 2019). To
understand the importance of atmospheric deposition as a flux in the Mn cycle and as a source of
Mn addition to soils in terrestrial ecosystems, we interpreted soil Mn “pseudo” turnover times
and Mn-to-N ratios in deposition as well as the relationship between Mn deposition and C
density in topsoil.
2 Materials and Methods

2.1 Soil Mn Observations and Interpolation

We compiled soil observational data collected from 94 studies found using the Thomson Web of Science Core Collection on March 20, 2022 and the soil characterization database provided in National Cooperative Soil Survey (NCSS). There are 2068 individual data points in total, reporting worldwide Mn concentrations in surface soils based on several extraction and digestion methods (Data Set S1). A standard approach is HNO₃ + HCl acid digestion as outlined by the U.S. Department of Agriculture (USDA) and Natural Resources Conservation Service (NRCS) (Soil Survey Staff, 2011). If detailed geographical coordinates were not explicitly provided, we assigned the observation of the nearest latitude and longitude based on available information about its location. Two approaches (linear interpolation and extrapolation by soil type) were used to extrapolate the limited observational data to provide global estimates of Mn distributions in soils.

2.1.1 Linear Interpolation

Our first approach was to linearly interpolate observed soil Mn concentrations according to their geographical coordinates and extrapolate them on a global map (Figure 1a) using inverse distance method in GRIDDATA function on board with Interactive Data Language. Because directly extrapolating all available soil Mn data is straightforward, the constructed soil map from linear interpolation was a fairly good representation of observations ($r = 0.66$; Figure 1a). Nonetheless, the correlation was weaker than one would expect for linear interpolation due to the model grid resolution and the fact that many observational sites clustered in a single grid. Because ice and glaciers were not considered as soil, and available observations near the poles were lacking, Mn concentrations in glaciated areas (mostly Greenland and Antarctica) were masked and assigned a minimum value.
Figure 1. (a) Map of estimated global soil Mn concentration constructed from linear interpolation and (b) by soil-order extrapolation. The base map is compared to 2068 individual observational points (mg kg⁻¹ Mn in surface soils), which are spatially averaged and plotted as circles filled with colors corresponding to their Mn concentration (Abanda et al., 2011; Alfaro et al., 2015; Alongi et al., 2004; Andruszczak E., 1975; Asawalam & Johnson, 2007; Becquer et al., 2010; Beygi & Jalali, 2018; Bibak et al., 1994; Boente et al., 2017; Bradford et al., 1996; Buccolieri et al., 2010; Burt et al., 2011; Cabrera et al., 1999; Cancela et al., 2002; Cassol et al., 2020; Chen et al., 1991; Chen et al., 1999, 2000; da Silva Costa et al., 2017; da Silva et al., 2015; Dantu, 2010a, 2010b; Darwish & Poellmann, 2015; de Souza et al., 2015; do Nascimento et al., 2018; Dolan et al., 1990; Fernandes et al., 2018; Foulds, 1993; Franklin et al., 2003; Ghaemi et al., 2015; Haynes & Swift, 1991; Hsu et al., 2016; Hua et al., 2013; Ikem et al., 2008; Imran et al., 2010; Inigo et al., 2011; Ivezic et al., 2011; Jahiruddin et al., 2000; Joshi et al., 2017; Kassaye et al., 2012; Kloss et al., 2014; Lavado & Porcelli, 2000; Lindell et al., 2010; Ma et al., 1997; Mashi et al., 2004; McKenzie, 1957; Michopoulos et al., 2004, 2017; Mikkonen et al., 2017; Miko et al., 2003; Morales Del Mastro et al., 2015; Nalovic & Pinta, 1969; Nanzyo et al., 2002; Natali et al., 2009; Navas & Lindhorfer, 2005; Nguyen et al., 2018; Njofang et al., 2009; Nygard et al., 2012; Papadopoulos et al., 2009; Papastergios et al., 2011; Patel et al., 2015; Paye et al., 2010; Preda & Cox, 2002; Rashed, 2010; Rekasi & Filep, 2012; Richards et al., 2012; Roca et al., 2012; Roca-Perez et al., 2004, 2010; Rusjan et al., 2006; Saglam, 2017; Sako et al., 2009; Salonen & Korkka-Niemi, 2007; Sheikh-Abdullah, 2019; Sheppard et al., 2009; Skordas et al., 2013; Smeltzer et al., 1962; Stajković-Srbinović et al., 2018; Stankovic et al., 2012; Stehouwer et al., 2010; Steinnes et al., 2000; Sterckeman et al., 2006a; Sterckeman et al., 2006b;
2.1.2 Extrapolation by Soil Type

In our second approach, we categorized Mn concentration observations according to their soil taxonomic classification. Using the same method as in Wong et al. (2021), we processed Mn concentration from 1574 (out of 2068) data points which provided in-situ soil classification information in either the United States Department of Agriculture (USDA), Food and Agriculture (FAO) taxonomic system, or the World Reference Base for Soil Resources (WRB) (the latter two were converted into USDA classification). A median value was assigned for each of the 12 USDA soil orders and the Mn concentration was extrapolated to the $1^\circ \times 1^\circ$ USDA-NRCS Global Soil Regions map based on a reclassification of the FAO-UNESCO Soil Map of the World (Figure 1b) (Batjes, 1997). In addition to the 12 soil orders, the map also identified lands that were not covered by soils, including ice/glaciers, moving sands, rocky terrains, and water bodies, whose Mn concentration was masked and set to the minimum.

Nonetheless, because the Mn variability within soil orders were shown to be on the same level as that between soil orders (Figure S1), Mn concentration might not be well-distinguished in different soil orders. In addition, the number of available soil measurements varied greatly between different orders (Table S1) so that in cases where very few observations existed (e.g. gelisol), the median value of the soil Mn concentration would be much less representative. Our soil data inventory reflected the heterogeneous nature of the spatial distribution of the soil and its Mn content, which could not be well-represented by soil-type extrapolation. Overall, the soil-order based map did not compare as well to the in-situ soil Mn observations as the linear interpolation (Figure 1d). Therefore, the soil map and model simulations constructed using linear interpolation were primarily considered in data analysis and interpretation, with results obtained by soil-type extrapolation listed in supplementary materials and minorly concerned. Given the scarce nature of soil Mn observations, we kept the soil-type extrapolation method, as it might still be a reasonable approach to estimate and constrain soil Mn values, especially in regions lacking direct observations, such as the higher latitudes.

2.2 Atmospheric Modeling
We simulated global atmospheric Mn emissions, transport, and deposition using the Community Atmosphere Model, version 6 (CAM6), the atmospheric component of the Community Earth System Model (version 2; CESM2) developed at the National Center for Atmospheric Research (NCAR) (Hurrell et al., 2013; Liu et al., 2011), with the four-mode (Aitken, accumulation, coarse, and primary) modal aerosol model (MAM4) (Liu et al., 2016). Three out of the four modes contain dust aerosols which are modeled as eight different types of dust mineral components (Liu et al., 2011; Scanza et al., 2015; Hamilton et al., 2019; Li et al., 2021, 2022). Model simulations were conducted for four years, with the last three years (2013-2015) used for analysis (Computational and Information Systems Laboratory, 2019). We nudged the model toward MERRA2 meteorology fields (Gelaro et al., 2017).

The model simulates three-dimensional transport and wet and dry deposition for gases and particles which are internally/externally mixed within/between the modes. The dry deposition parameterization follows Petroff and Zhang (2010) as previously implemented in CAM6 (Li et al., 2022; see descriptions therein for the wet deposition scheme as well). We modified the model to allow for the advection of Mn from different sources. Both natural and anthropogenic sources were determined to possess large uncertainties in strength. We used a first estimate assuming that the full uncertainty range is one order of magnitude. Therefore, we included a range of values (typically a factor of 10) for the Mn contribution from each source (Table 1). To better fit the observational data, we “tuned” the model making a particular effort to adjust anthropogenic emissions both because of their larger uncertainties compared to natural emissions and because the largest discrepancies occurred over industrialized regions (see below). The choice of the “tuning” for each source was done using a trial-and-error method using observational evidence. In addition, we report our best estimates and assume a large uncertainty: in most cases at least one order of magnitude because of the limited data as previous studies suggest (e.g. Nriagu, 1989; Mahowald et al., 2018).

Table 1

| Mn Emission Factor (composition) in Sources and Atmospheric Mn Budgets Based on Simulations from the Community Atmosphere Model (CAM) (v6) | 258 | 259 | 260 |
Desert dust sources of Mn refer to mineral particles entrained into the atmosphere by strong winds at the soil surface in arid unvegetated or loosely vegetated regions, where soils are prone to wind erosion, and play a major role in the global aerosol budget (Vandenbussche et al., 2020; Boucher et al., 2013; Zender et al., 2003). The emissions, transport, and deposition of dust aerosols, including seasonal and interannual variability, are all prognostic in the model. We applied the same dust emission scheme (Kok et al., 2014a, 2014b) as in Wong et al. (2021), and tuned the model to obtain a global mean aerosol optical depth (AOD) of 0.03 (Li et al., 2022) based on observational estimates (Ridley et al., 2016). Transport and deposition of Mn were simulated separately according to the size mode (Liu et al., 2016), following treatment on dust aerosols as described in Albani et al. (2014). In addition, to improve the simulation of aerosols in the coarse and accumulation modes, we modified the model by using the geometric median diameter (GMD) as that initialized in CAM5 and geometric standard deviation as well as the edges of the predicted coarse-mode GMD following Li et al. (2022).

<table>
<thead>
<tr>
<th>Source</th>
<th>Mn composition</th>
<th>Composition citation</th>
<th>Global source Mn (Gg yr⁻¹) [ranges] (% fine)</th>
<th>Global source Mn (Gg yr⁻¹) from reference*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Desert dust</td>
<td>0.1-5479 mg kg⁻¹</td>
<td>This study</td>
<td>950 [290-4800] (1.7)</td>
<td>42-400ᵃ</td>
</tr>
<tr>
<td>Agricultural dust</td>
<td>0.1-5479 mg kg⁻¹</td>
<td>This study</td>
<td>390 [120-1900] (1.7)</td>
<td>900ᵇ</td>
</tr>
<tr>
<td>Sea-salt aerosols</td>
<td>95 μg kg⁻¹</td>
<td>Nriagu (1989)</td>
<td>0.26 [0.13-1.3] (3.3)</td>
<td>0.02-1.7ᵃ</td>
</tr>
<tr>
<td>Volcanoes</td>
<td>12E-4 Mn/S</td>
<td>Nriagu (1989)</td>
<td>3.9 [2.0-20] (47)</td>
<td>4.2-80ᵇ</td>
</tr>
<tr>
<td>Primary biogenic particles</td>
<td>60 mg kg⁻¹</td>
<td>Nriagu (1989)</td>
<td>2.0 [1.0-10] (2.3)</td>
<td>4-50ᵃ</td>
</tr>
<tr>
<td>Wildfires</td>
<td>Fine: 0.23 mg g⁻¹ Coarse: 10.58 mg g⁻¹</td>
<td>This study</td>
<td>43 [21-210] (94)</td>
<td>1.2-45ᵃ</td>
</tr>
<tr>
<td>Industrial dust</td>
<td>0.01-0.05 Mn/Fe</td>
<td>Rathod et al. (2019)</td>
<td>73 [36-360] (54)</td>
<td>10ᵃ</td>
</tr>
</tbody>
</table>

Note. Desert and agricultural dust Mn budget values were obtained from the dust model simulations which used as input the Mn composition of soils constructed using linear interpolation from Section 2.1.1. Alternatively, soil-type extrapolation yielded 570 Gg yr⁻¹ and 230 Gg yr⁻¹ for desert dust and agricultural dust, respectively. ⁿNriagu (1989). ⁿMahowald et al. (2018).
Because desert dust is generated from soil, we assumed that the soil Mn concentration is the same as the Mn in the dust, regardless of particle size, as we had no information on the size segregation of the soil Mn. With linear interpolation, we derived the amount of Mn emissions to be 950 Gg yr\(^{-1}\), which was higher than 570 Gg yr\(^{-1}\) resulting from the soil map extrapolated (Table 1). Both exceeded the range (42-400 Gg yr\(^{-1}\)) provided in Nriagu (1989) and the former is comparable to the value (900 Gg yr\(^{-1}\)) given by Mahowald et al. (2018). This result indicated the high uncertainty in the amount of Mn from dust rising from different interpolation methods and the large variability in soil observations; therefore, a large range of 290-4800 Gg Mn yr\(^{-1}\) was assigned.

2.2.2 Agricultural Dust
Agricultural land use and land cover change induced by human activities can boost mineral dust emissions through various mechanisms that increase soil erodibility, such as increasingly exposing soil surface and altering hydrologic cycles (Ginoux et al., 2012; Webb & Pierre, 2018). Satellite-based analysis suggests that it represents 25% of global dust emissions (Ginoux et al., 2012). To account for agricultural dust, we applied datasets of crop fraction of present agricultural land from the Coupled Model Intercomparison Project Phase 5 (CMIP5) datasets (Hurtt et al., 2011). We separately computed the crop sources of dust (identified using the above dataset) and tuned these sources for each region to match those estimated from satellites, with the exception of Australia, where we assumed only 15% of the dust is anthropogenic, consistent with other studies (e.g., Bullard et al., 2008; Mahowald et al., 2009; Webb & Pierre, 2018). The discrepancy in Australia between the results of Ginoux et al. (2012) and other studies (Table S2) may be caused by the large drought during the time period studied by Ginoux et al. (2012). No clear evidence indicated that agriculture significantly alters the Mn concentration at the soil surface. Therefore, we assumed the same Mn fraction as desert dust and used the same approaches for estimation, deriving a global emissions of 390 Gg Mn yr\(^{-1}\) with a range of 120-1900 Gg Mn yr\(^{-1}\) (Table 1).

2.2.3 Sea spray
Sea spray aerosols are produced by the bubble-bursting process typically resulting from whitecap generation under high wind conditions in the boundary layer (O'Dowd & de Leeuw, 2007). We used prognostic sea spray included in CAM6 (Liu et al, 2011) and assumed a constant concentration of 95 μg Mn kg\(^{-1}\) in sea-spray aerosols (Nriagu, 1989). Sea-spray aerosols were estimated to emit 0.26 Gg Mn yr\(^{-1}\) with an uncertainty range of 0.13-1.3 Gg Mn yr\(^{-1}\) (Table 1), falling within the range given by Nriagu (1989).

2.2.4 Volcanoes
Studies have shown that volcanoes can be an important contributor to trace elements in aerosols, such as Mn, through eruptive activities and degassing (Mahowald et al., 2018; Sansone et al., 2002). We assumed only non-eruptive sources for this study (Spiro et al., 1992), with a constant...
source across the time periods. For volcanic sources, the concentration of trace elements is commonly expressed using their ratio to sulfur (S). We adopted a mass-based ratio of 12×10^{-4} Mn/S from Nriagu (1989) and multiplied it with the concentration of sulfur given in the data set (Spiro et al., 1992) to derive Mn. We estimated non-eruptive volcanic emissions to be 3.9 Gg Mn yr$^{-1}$ with a range of 2.0-20 Gg Mn yr$^{-1}$, lying at the lower end of the range provided by Nriagu (1989) (Table 1).

2.2.5 Primary Biogenic Particles
Primary biogenic particles (PBPs) are a diverse group of airborne particles such as bacteria, fungal spores, pollen, viruses and algae that are directly released from the biosphere into the atmosphere (China et al., 2020; Després et al., 2012). Like volcanoes, they are not explicitly simulated in the default CAM6 model but act as a non-negligible aerosol metal source (Mahowald et al., 2018). Following Brahney et al. (2015), we adopted parameterized PBP data that are temporally constant and based on the assumption of a leaf area index dependent source for vegetative and insect debris. We also included a pollen source based on (Heald & Spracklen, 2009) and a bacteria parameterization (Burrows et al., 2009). The emission, transport, and deposition of PBPs were simulated using a separate tracer. We assumed the Mn fraction to be 60 mg kg$^{-1}$ in PBPs (Nriagu, 1989) and estimated its emission to be 2.0 Gg Mn yr$^{-1}$ with a range of 1.0-10 Gg Mn yr$^{-1}$ (Table 1).

2.2.6 Wildfires
Aerosols emitted from wildfires can significantly contribute to atmospheric Mn (Nriagu, 1989), especially in densely forested regions that are fire-prone (Krawchuk et al., 2009). Various emission datasets that use satellite-based remote sensing or other black carbon (BC) proxies are available for wildfires (van der Werf et al., 2004; Van Marle et al., 2017). Here, we employed the Coupled Model Intercomparison Project (CMIP6) wildfire dataset as the source of BC emissions (Van Marle et al., 2017), taking advantage of its coverage of both natural fires and human influence on wildfires, including deforestation fires and control of current wildfires. To convert BC to Mn concentrations, we calculated the Mn to BC ratios in coarse (PM10) and fine (PM2.5) fractions (similar to Mahowald et al., 2005; Hamilton et al., 2022) using observational data at specific sites located in the Amazon rainforest and upper southern Africa dominated by wildfires (Maenhaut et al. 1999, 2000, 2002). We derived a ratio of 10.58 mg g$^{-1}$ for the coarse fraction and 0.23 mg g$^{-1}$ for the fine fraction and estimated global wildfire contributions to be 43 Gg Mn yr$^{-1}$ with a range of 21-210 Gg Mn yr$^{-1}$ (Table 1). These values are higher than those reported in Nriagu (1989) based on more observations.

2.2.7 Industrial Emissions
Industrial emissions of Mn include anthropogenic fossil-fuel combustion, biomass burning, and related activities. Because Mn has many biogeochemical properties similar to those of Fe (Canfield et al., 2005), we assumed the co-occurrence of Mn with Fe and used an updated
detailed Fe emission inventory for 2010 developed using a Speciated Pollutant Emissions Wizard (SPEW) (Bond et al., 2004; Rathod et al., 2020). This inventory covers Fe emission from fossil fuel burning, wood combustion, and smelting in the industrial, transport, and residential sectors globally (Alves et al., 2011; Arditosoglou et al., 2004; Block & Dams, 1976; Córdoba et al., 2012; Davison et al., 1974; de Souza et al., 2010; Dreher et al., 1997; Hansen et al., 2001; Huffman et al., 2000; Koukouzas et al., 2007; Linak et al., 2000a, 2000b; Machado et al., 2006; Mamane et al., 1986; Martinez-Tarazona et al., 1990; Meij, 1994; Querol et al., 1995; Schmidl et al., 2008; Smith et al., 1979; Steenari et al., 1999; Stegemann et al., 2000; Tsai & Tsai, 1998; Watson et al., 2001; Zhang et al., 2012). We then used estimates of the ratio of Mn to Fe in each type of source to obtain a new emission inventory for Mn (Table S3). Detailed data and citations are provided in Data Set S3. We estimated the global industrial emission to be 73 Gg Mn yr\(^{-1}\) with a range of 36-360 Gg Mn yr\(^{-1}\) (Table 1). There is still a large uncertainty in these first estimates of Mn, and we consider elevated sources as well in later sections to better match the observational data.

2.3 Atmospheric Observations

Atmospheric observations of Mn concentrations in particulate matter (PM) were compiled and compared with the model output to assess the performance and tune the model. We compiled atmospheric Mn observational data from a variety of global dataset networks and sites (Wiedinmyer et al., 2018). The available data were collected using a variety of time periods and using different chemical speciation analyses as described in detail in each study (Data Set S2). Most of the data were collected with size segregation between PM\(_{2.5}\) and PM\(_{10}\) size categories (e.g. Hand et al., 2019). Some observational studies used coarse (PM\(_{10-2.5}\) with aerodynamic diameter between 2.5 and 10 μm) and fine (PM\(_{2.5}\)) size categories instead (e.g. Maenhaut et al. 1999, 2000, 2002). In this case, the two sizes were summed to compute PM\(_{10}\) for model comparison. X-ray fluorescence is the most frequently used detection method to measure Mn concentrations. The Mn quantification was unavailable at some stations if concentrations were lower than their method detection limit (MDL). In other sites Mn was measured using Inductively coupled plasma mass spectrometry (ICP-MS). In total, we obtained more data points for PM\(_{2.5}\) (N = 699) than PM\(_{10}\) (N = 204) because many sites focused only on PM\(_{2.5}\), such as from the Interagency Monitoring of Protected Visual Environments (IMPROVE) remote/rural network in the US (Hand et al., 2017; Hand, 2019). Detailed descriptions of site and method, as well as other elemental/total Mn PM data can be found within each referenced study (Data Set S2). While there exists limited deposition elemental data, there was not enough data to warrant detailed comparisons here, and the absolute values of dry deposition were often difficult to measure (Prospero et al., 1996; Schutgens et al., 2016). We ignored particles larger than 10 μm in aerodynamic diameter here, because of the limited data, although the missed fraction of aerosols could be important for biogeochemistry in some regions (Adebiyi et al., 2023).

Hand et al. (2019) reported that collocated sites from the US Environmental Protection Agency (EPA) and IMPROVE recorded different coarse aerosol mass (PM\(_{10-2.5}\)), with the value at EPA
sites being 10% higher than at IMPROVE sites and a 28% difference between these estimates, suggesting that different samplers could have different acuteness of size fractionation for PM$_{10}$ and PM$_{2.5}$ (Hand et al., 2019). Overall, with a correlation coefficient of 0.9 and a slope of 0.9, the two sets of sites agreed with each other, but the difference brought by sampler biases should still be noted during later analysis and evaluation (Hand et al., 2019).

For comparison with the model, we computed annual means of atmospheric Mn concentration for each site. Particulate Mn has very low concentrations (< 1 μg·m$^{-3}$), and therefore in many cases the data can be below the detection limit. We applied the same procedure used by Wong et al. (2021) to correct for this potential bias. If a site had more than half of its data values above the detection limit, we set the value of any samples below MDL at this site to be one-third of the MDL (shown in dataset S2). If more than 50% of the data was below the MDL at a site, we did not include it in comparison to the model. These data were instead used to compute an upper bound based on their respective detection limits. Since many sites were close together in regions such as Europe and US, to better display the data and show the model comparison, observational data from different sites were averaged spatially within a grid cell that was two times the model resolution, or $\sim 2^\circ \times 2^\circ$ (Schutgens et al., 2016).

2.4 Estimation of “Pseudo” Turnover Time
The importance of atmospheric Mn deposition to the soil Mn reservoir was evaluated by calculating the soil Mn turnover time, which is defined as the total mass of soil Mn (estimated to 1 m depth) in each grid cell divided by the estimated atmospheric deposition flux from simulation. The Mn mass was calculated using the Mn concentration from both estimated soil maps multiplied by an average bulk density of soil, 1.4 g·cm$^{-3}$ (Yu et al., 1993). The turnover time estimated here is “pseudo-turnover time” (Wong et al., 2021) because we could not assume soil Mn to be in a steady state. The characterization of the turnover time and comparison on a global scale allowed us to assess the ecological significance of atmospheric Mn deposition in the soil Mn reservoir in units of years (Okin et al., 2004).

2.5 Correlation Analysis and Interpretation of Ecological Relevance
Whalen et al. (2018) suggested Mn limitation as a mechanism for reduced decomposition under enhanced atmospheric N deposition, therefore, it might be helpful to consider Mn deposition together with N deposition. We adopted a modeled annual N deposition dataset ($2^\circ \times 2^\circ$) (Brahney et al., 2015b) and re-gridded our model output of the Mn deposition onto its resolution ($2^\circ \times 2^\circ$), followed by raster calculation of the ratio of atmospheric Mn deposition to N deposition, which might provide useful insights for the relative susceptibility of soil to Mn limitation following N deposition. We compared the Mn over N ratio in deposition to the concentration ratio in soils using total N concentration data at available NCSS sites. The ratio was computed using both natural Mn deposition and total Mn deposition (natural + anthropogenic) to understand how and where human activities altered this ratio.
To examine how atmospheric Mn deposition potentially influences the Mn limitation that could be related to decomposition and soil C storage in forest ecosystems (Kranabetter et al., 2021; Moore et al., 2021; Stendahl et al., 2017; van Diepen et al., 2015; Whalen et al., 2018), we performed a spatial correlation analysis between Mn deposition and topsoil (0-5 cm) C density derived from SoilGrids 2.0, a digital soil database that includes 230,000 soil profile observations from the WoSIS and applies machine learning methods (Poggio et al., 2021) to map the global distribution of soil properties at 250 meters, resampled to our model resolution (1° × 1°). We identified the ecosystem type at each grid cell using the plant functional types in the Community Land Model, version 5 (Lawrence et al., 2019), taking the rubric of having more than 80 percent of the area covered by forest biomes. Because different forest ecosystems may have distinct soil Mn status and limitation conditions (Berg et al., 2010), they were divided into three subsystems: temperate forests, tropical forests, and boreal forests, with the correlation analysis conducted both combinedly and separately.

Because soil organic matter decomposition has long been understood to be controlled by a combination of several different factors, Mn deposition cannot be interpreted separately from other commonly outlined predictors such as precipitation (moisture), temperature, and N deposition (Berg & Matzner, 1997a; Frey et al., 2014; Hartley et al., 2021; Sierra et al., 2015; Woo & Seo, 2022; Zak et al., 2017; Zhang et al., 2019; Zhao et al., 2021b). To include these potential constraints, simple and multilinear regression analyses were carried out with the addition of the 3 other factors: precipitation, temperature (long-term mean data from Terrestrial Air Temperature and Precipitation: 1900-2014 Gridded Monthly Time Series data provided by the NOAA PSL, Boulder, Colorado, USA, from their website at https://psl.noaa.gov), and N deposition to test the significance of Mn deposition on topsoil C storage. The multilinear regression was calculated following the ordinary least squares (OLS) method.

3 Results

3.1 Mn Concentration in Atmospheric Particulate Matter (PM)

Mn in the model output was compared with the Mn concentration in atmospheric PM observation on a global scale. Here, we present three cases (Figures 2 and 3) for the simulation with dust emission schemes created by linear interpolation (Section 2.1.1) to better examine the model sensitivity to anthropogenic emissions. We used the bounded observational data (Section 2.3) for all comparisons and scatter plots.

The natural case (Figure 2a) was simulated without any emission from anthropogenic sources (industrial emission + agricultural dust). With only natural contributions, the model underestimated Mn concentration significantly in the PM_{10} size fraction (Figure 2b), especially over industrialized regions in Asia, Europe, and southern Africa, where the world’s largest Mn mining industry is located (U.S. Geological Survey, 2022). The model also poorly simulated the
relatively high Mn concentrations reported by several sites across North America. Only close to
dust desert dominated regions in North Africa does the model simulate the concentrations well (Figure 2a). The spatial distribution of Mn in western North Africa agrees with the observations on the location Mn rich dust sources (Rodríguez et al., 2020).

When anthropogenic sources were added, using the default values described in Section 2.2, the model improved the simulation in industrialized regions (Figure 3b). The value of the correlation coefficient (r) increased 3-fold with root mean squared error on the same level (RMSE) (r = 0.089, RMSE = 0.025 in Figure 2b; r = 0.27, RMSE = 0.023 in Figure 3b), suggesting that the model performance improved with the addition of anthropogenic contributions. However, Mn concentrations at the major proportion of sites were still underestimated compared with the observations. Using trial and error, we found that the atmospheric concentrations were best matched when we increased the anthropogenic emissions by a factor of 2. In comparison, adjusting natural sources only had a minimal effect on improving the overall model performance and could sometimes lower the accuracy. Natural sources other than desert dust and wildfires contributed little to the total aerosol budget (Table 1), and the most underestimated industrial regions were barely subjected to aerosol deposition associated with desert dust or wildfires. We define our “best case” as the case with elevated anthropogenic emissions (Figures 3a and b) and denoted the unmodified scenario the “low anthro” case (Figure 3c). While some stations were overestimated in the best estimate case, much fewer stations were, and the data spots were distributed more uniformly along the 1:1 line of the scatter plots, with r increased to 0.36. In many of the sites, there was a mismatch between the date of the measurement and the model simulation because of limited observations.
Figure 2. (a) Global distribution of the atmospheric Mn concentration at the surface in the PM$_{10}$ size fraction from the model simulation results (contours) using only natural sources with a dust scheme constructed by linear interpolation and from bounded observations (circles). Observations were spatially averaged to a $\sim 2^\circ \times 2^\circ$ grid and compared to the Community Atmosphere Model (CAM) (v6) results. (b) Scatterplot comparison of model simulated atmospheric concentration with observations in the natural case ($n = 203$, $r = 0.089$, RMSE = 0.025). Colors of points indicate the locations of studies listed in the legend.

We noticed that a few sites with high Mn concentrations across North America including several peaks in the central United States, were still missed by the model in the best estimate case, suggesting that our estimation of anthropogenic source contributions could be lower than the actual in this region. Overall, our model agreed on the same order of magnitude of Mn concentration in atmospheric PM$_{10}$ as the observations and had the ability to, at least, partially represent the variability in their spatial distribution.
Figure 3. (a) Global distribution of the atmospheric Mn concentration at the surface in the PM$_{10}$ size fraction from the model simulation results (contours) using the dust scheme constructed by linear interpolation in the best estimate case and from bounded observations (circles). Observations were spatially averaged to a $\sim 2^\circ \times 2^\circ$ grid and compared to the Community Atmosphere Model (CAM) (v6) results. (b) Scatterplot comparison of model simulated atmospheric concentration with observations in the best estimate case (n = 203, r = 0.36, RMSE = 0.025). Colors of points indicate the locations of studies listed in the legend. (c) Same as (b), except for the low anthropogenic model case (n = 203, r = 0.27, RMSE = 0.023).

Despite the dominance of the PM$_{10}$ size fraction of the atmospheric Mn budget due to the coarse nature of dust (Table 1), Mn in atmospheric PM$_{2.5}$ is also important because of the high percentage of fine fraction in wildfires and industrial dust (Table 1) and the potential health risks that could be induced by inhalation of Mn in PM$_{2.5}$ in ambient air (Cavallari et al., 2008; Expósito et al., 2021). Generally, we obtained similar global distribution patterns and results of the model-observation comparison as in PM$_{10}$. With a more than tripled number of atmospheric Mn observations in the PM$_{2.5}$ size fraction, especially in the U.S., the model simulation better matched the observations across North America (Figure 4a). The highest observation values...
were reported over industrialized regions in Europe and Asia and regions affected by desert dust generated in North Africa. Our model showed elevated atmospheric Mn levels in Europe and Asia compared to the Americas. Similarly, atmospheric Mn over industrialized regions was underrepresented by the model simulations in the natural case (Figure S2), and we derived our best estimate by tuning the level of anthropogenic emissions towards the higher end by a factor of 2. With the best estimate case, our model showed a moderately good representation of the observations (Figure 4b and c). Having more observational sites might explain the slightly better performance of the comparison in the PM$_{2.5}$ size fraction than in the PM$_{10}$ size fraction.

Figure 4. Same as Figure 3, but for the PM$_{2.5}$ size fraction. (a) Global distribution of the atmospheric Mn concentration at the surface from the model simulation results (contours) using the dust scheme constructed by linear interpolation in the best estimate case and from bounded observations (circles). Observations were spatially averaged to a \sim2° × 2° grid and compared to the Community Atmosphere Model (CAM) (v6) results. (b) Scatterplot comparison of model simulated atmospheric concentration with observations in the best estimate case ($n = 698$, $r = 0.53$, RMSE = 0.006). Colors of points indicate the locations of studies listed in the legend. (c) Same as (b), except for the low anthropogenic model case ($n = 698$, $r = 0.53$, RMSE = 0.005).
We performed the same analysis using model simulations with a percent Mn in dust using soil-type extrapolation (Section 2.1.2) and found the results changed quantitively but not qualitatively (Figure S3). Both methods produced simulation results that were on the same order of magnitude as the observations.

3.2 Atmospheric Mn Budget and Source Apportionment

Our model predicted the global total Mn emission to be 1500 Gg Mn yr\(^{-1}\) with a range of 460-7300 Gg Mn yr\(^{-1}\) due to the uncertainty in each source (Table 1). The estimate was similar in magnitude to the reference value of 1000 Gg Mn yr\(^{-1}\) given by Mahowald et al. (2018). The model-simulated budget for each source was within or close to the estimated range from previous studies (Mahowald et al., 2018; Nriagu, 1989). The model estimated that 1000 Gg Mn yr\(^{-1}\) was emitted from natural sources with a range of 310-5000 Gg Mn yr\(^{-1}\), while 460 Gg Mn yr\(^{-1}\) was emitted from anthropogenic sources with a range of 150-2300 Gg Mn yr\(^{-1}\) (Table 1), suggesting that approximately 32% (best estimate case) of the atmospheric Mn arose from anthropogenic contribution.

While anthropogenic sources contributed to a significant portion of the total atmospheric Mn budget, our model suggested that their main influence was in the Northern Hemisphere, where the ratio of total to natural deposition was significantly greater than 1 (Figure 5), and there was a high percentage of anthropogenic or industrial dust (Figures 6c and d), especially over industrialized regions in Asia, Europe, and the northeastern U.S. Hot spots in the Southern Hemisphere included eastern and southeastern Brazil, Peru, Chile, and southern Africa. High ratios of total to natural deposition in these regions indicated strong human perturbations (up to 10 times higher) on the Mn deposition rates (Figure 5c). Industrial emissions were responsible for major regions dominated by anthropogenic deposition, while the distribution of agricultural deposition was more dispersed, with a wider coverage of cultivated areas worldwide (Figures 6c and d).

Desert dust represented over 90% of all natural sources of the atmospheric Mn deposition (Table 1). It dominated deposition within major deserts in North Africa, inland Australia, and Asia as well as regions that were affected by the transportation of desert dust produced in these systems (Kellogg & Griffin, 2006). For example, the intercontinental transport of African dust to South America has been identified as an important source of new atmospheric deposition of P in the Amazon and could have a fertilization effect (Okin et al., 2004; Ridley et al., 2012; Yu et al., 2015). The dominance of desert dust and other natural sources (sea salts and volcanoes, which represented a very small fraction) was complementary with anthropogenic sources: desert dust dominated most of the Southern Hemisphere but became less influential at higher latitudes in the Northern Hemisphere as anthropogenic emissions concentrated there (Figure 6a).
Figure 5. (a) Global pattern of the current (anthropogenic + natural sources) atmospheric Mn deposition (μg m\(^{-2}\) yr\(^{-1}\)) as simulated in the Community Atmosphere Model (CAM) (v6) in the best estimate case. (b) Same as (a), except for including natural sources of emissions only. (c) Ratio of total atmospheric Mn deposition to natural deposition.

Although wildfires have a much lower budget than desert dust, they are the second-largest natural source of atmospheric Mn (Table 1). Together with primary biogenic particles, they dominated regions such as the Amazon rainforest, upper southern Africa (and Madagascar), Indonesia, northern Canada and Alaska (Figure 6b). Wildfires can displace large amounts of nutrients, including Mn, from terrestrial ecosystems (Kauffman et al., 1995; Mahowald et al., 2005) which were then replenished by transported dust and sea salts, as well as anthropogenic depositions, similar to what was reported by Wong et al. (2021) in the case of molybdenum (Mo).
Figure 6. Source apportionment of the atmospheric Mn deposition in the best estimate case shown by percentage of different sources in the Community Atmosphere Model (CAM) (v6): (a) desert dust, sea sprays, and volcanoes, (b) primary biogenic particles and wildfires, (c) combined anthropogenic aerosols (agricultural dust + industrial emissions) and (d) industrial aerosols.

3.3 Soil Mn “Pseudo Turnover” Times

The “pseudo” turnover time provides a metric of the ecological importance of atmospheric Mn deposition to the topsoil Mn reservoir (Okin et al., 2004). Using the two approaches (Section 2.1), we divided the estimated soil Mn concentration by the model simulated Mn deposition rates to compute “pseudo” turnover times in topsoils (Okin et al., 2004). The estimated soil Mn “pseudo” turnover time varied spatially, ranging from 1,000-10,000 years in regions dominated by desert dust to over 10,000,000 years at higher latitudes (Figures 7a and b). We found that anthropogenic sources significantly shortened the soil Mn “pseudo” turnover times in industrialized regions regardless of the interpolation method. For example, the atmospheric deposition sourced from anthropogenic emissions shortened the soil Mn “pseudo” turnover time by 1-2 orders of magnitude from millions of years to as low as tens of thousands of years in eastern China and across Europe (Figures 7a and c; b and d). These trends indicate that human perturbation has the potential to accelerate Mn turnover in different terrestrial systems if the amount of anthropogenic activity remains at the same level or even rises in the future.
Figure 7. “Pseudo” turnover times (kiloyears) of the surface soil Mn from current (natural + anthropogenic sources) atmospheric Mn deposition as simulated in the Community Atmosphere Model (CAM) (v6) using the dust scheme constructed from (a) linear interpolation (and calculated using the linear-interpolated soil Mn map) and (b) soil order extrapolation (and calculated using the soil-order extrapolated soil Mn map). (c and d) Same as (a and b) except for the inclusion of only natural Mn deposition in the calculation of turnover times.

Compared to the Mo “pseudo” turnover time of 1,000-2000,000 years (Wong et al., 2021), the estimated range of soil Mn “pseudo” turnover times was wider, and the mean turnover time was longer, which is closer to the estimated range of P “pseudo” turnover time (~10^4 to ~10^7 years) in Okin et al. (2004). In the Amazon region, the soil Mn “pseudo” turnover time ranged from hundreds of kiloyears in the northeast corner, which was subject to deposition from transported African dust, to thousands of kiloyears moving toward the central and southwestern regions. Compared to the turnover times from other studies of macronutrients, the estimated Mn “pseudo” turnover time here was orders of magnitude longer than the N turnover time of 177 years globally (Rosswall, 1976) and the P turnover time of 50 years averaged across several stations in the Amazon rain forest (Mahowald et al., 2005), which was accelerated by human-induced land use change such as deforestation and biomass burning (Andela et al., 2017; Hansen et al., 2013). Overall, these comparisons illustrate the spatial variability of the soil Mn “pseudo” turnover times and suggest that atmospheric deposition of Mn may play a non-negligible role in the terrestrial surface Mn cycle in many regions world-wide.
3.4 Linkage to N deposition and C storage

3.4.1 Mn to N Ratio in Deposition

In addition to characterizing the atmospheric Mn cycle itself, it is important to look at its linkage to the biogeochemical cycles of two major elements, C and N. The Mn limitation has been proposed to explain the reduced organic matter decomposition in soils under chronic atmospheric N deposition (Moore et al., 2021; Whalen et al., 2018), which has the potential to regulate carbon sequestration in forest soils. Therefore, using the N deposition/concentration ratio to normalize the Mn deposition/concentration ratio (deriving Mn-to-N ratios) could make our results more interpretive in such a way that it could reveal the soil’s vulnerability to the Mn limitation (if N is sufficient) and thus relates to soil C dynamics. As anthropogenic emissions have significantly perturbed the cycling of atmospheric N (Dentener et al., 2006; Galloway et al., 2014; Kanakidou et al., 2016) and Mn, it is likely that humans have also altered this ratio of Mn to N, affecting soil C accumulations and introducing further feedbacks on climate.

The ratio of Mn to N in the atmospheric deposition varies globally by several orders of magnitude. It could be as low as 5×10^{-5} in the northern latitudes and over 0.02 in desert dust dominated regions, where there is little nitrogen fixation in soils, and the dust composition is almost entirely of mineral nature (Davies-Barnard & Friedlingstein, 2020). Anthropogenic emissions increased the depositional ratio of Mn to N in most parts of the world (even in Antarctica), with the impact in industrialized regions being the most substantial (Figure 8a). When only considering the natural sources, we estimated that the Mn-to-N ratio is moderately low in major industrialized regions including northern Europe, eastern China, and the northeastern U.S., with the U.S. having lower ratios than Asia and Europe in general (Figure 8b). Anthropogenic sources enhanced the Mn-to-N ratio in all these regions, with a stronger effect in China and Europe than in the U.S. Other areas with low Mn-to-N ratio under current deposition were either around the equator, where much nitrogen fixation occurred (Davies-Barnard & Friedlingstein, 2020), or at higher latitudes. These regions were generally affected only by desert and anthropogenic dust and had relatively large wildfire and PBP contributions in deposition (Figure 6b). This could be best illustrated in the Amazon forest, where the northernmost portion influenced by African dust transportation (Ridley et al., 2012) had a much higher Mn-to-N ratio than the central part (Figures 8a and b).
Figure 8. (a) Ratio of Mn to N in atmospheric deposition calculated using the current Mn deposition simulated in the Community Atmosphere Model (CAM) (v6) and the N deposition from Brahney et al. (2015b). (b) Same as in (a), except for the inclusion of only natural Mn deposition in the calculation. (c) Box plot showing the Mn-to-N ratio in surficial soils at available sites and in depositions (current + natural).

We compared the M-to-N ratio in atmospheric deposition to the in-situ ratio of Mn to N concentration in surficial soils at 1319 available sites (mainly across the U.S.). For example, Kranabetter et al. (2021) reported 541 mg kg$^{-1}$ Mn and 0.77% total N in surficial soils in a temperate forest located on southern Vancouver Island. With the measurements in the abovementioned study, we calculated the in-situ Mn-to-N ratio in soil to be 0.068, which was over two orders of magnitude larger than the depositional Mn-to-N ratio of 0.00052 calculated using our gridded model output and the N deposition dataset (extracting the value of the grid in which Vancouver Island was located). Considering all available soil observational sites that contained valid measurements of Mn and N concentrations (mainly from the NCSS dataset), we obtained a median depositional Mn-to-N ratio of 0.00042 versus a median soil Mn-to-N ratio of 0.21. We found that the current depositional ratio was typically one to three orders of magnitude lower than the soil concentration ratio, and the difference was larger with natural deposition (Figure 8c). Considering the relatively higher Mn-to-N ratio in soils, regions with disproportionally low Mn-to-N ratios in atmospheric deposition were interpreted to be the most vulnerable to potential Mn limitation (if deposition makes soil N sufficient), such as temperate...
and boreal forests in northeastern U.S., Canada, and northern Europe, in agreement with current field experimental results (Kranabetter et al., 2021; Stendahl et al., 2017; Whalen et al., 2018).

3.4.2 Correlation with Topsoil C Density

To test the significance of atmospheric Mn deposition in removing soil Mn limitation and thus facilitating decomposition in forest ecosystems on a global scale, we correlated our simulated atmospheric Mn deposition with the topsoil (0-5 cm) C density derived from SoilGrids 2.0 (Poggio et al., 2021), with both values extracted from grid cells where the plant functional type was identified as (sub)tropical, temperate, or boreal forest. In each case, a simple linear regression between topsoil C density and each of the four factors was carried out, including Mn deposition. Our results revealed fairly good negative correlations ($r < -0.5$) between C density and Mn deposition in temperate ($r = -0.67$) and (sub)tropical forests ($r = -0.54$; Figure 9a). A similar negative relationship was determined between C density and N deposition in temperate forests ($r = -0.69$; Figure 10b), where a significant positive relationship was obtained in the case of precipitation ($r = 0.71$; Figure 10d). In addition, a negative correlation between C density and temperature was found only in subtropical forest, though relatively weaker ($r = -0.46$; Figure 10c). When we combined the three forest ecosystems for simple regression analysis, all factors showed statistically significant correlation, with Mn deposition ($r = -0.37, p < 0.0001$) having the third strongest coefficient of determination (Table 2).

![Scatterplots with simple linear regression lines between topsoil (0-5 cm) C density (hg m$^{-3}$) and (a) Mn in current atmospheric deposition (μg m$^{-2}$ yr$^{-1}$), (b) N in current atmospheric deposition (mg m$^{-2}$ yr$^{-1}$), (c) long-term mean temperature (°C), and (d) long-term mean annual precipitation (cm).](image-url)
precipitation (cm) in temperate, boreal, and tropical forests. “$P = 0.0$” legend suggests a p-value < 0.0001.

Results from multilinear regression confirmed the negative relationship between C density and Mn deposition to remain statistically significant along with the inclusion of the other factors into the model (Table 2). Overall, the R-squared value of the OLS model reached 0.434, with the skew (-0.115), kurtosis (3.033), and Jarque-Bera test (1.506, $p = 0.471$) likely indicating normally distributed residuals. To check for multicollinearity, we computed a correlation matrix (Table S4) and found a positive correlation between Mn deposition and N deposition ($r = 0.61, p < 0.0001$), providing the possibility that the negative correlation between C storage and Mn deposition was a “byproduct” of the positive correlation between Mn and N deposition. A calculation of variance inflation factors (VIF) obtained values < 2 for all individual variables (Table S4), suggesting that variables were only moderately correlated with each other, and multicollinearity was likely not problematic. Therefore, it is reasonable to conclude that the Mn deposition could be a predictor of topsoil C density along with N deposition and other climatic factors in forest ecosystems (predominantly temperate and tropical). In fact, Mn addition to soils has been shown to increase C losses (e.g., CO₂ and dissolved organic carbon) during litter decomposition, suggesting increased Mn supply could result in decreased soil C storage (Trum et al., 2015; Jones et al., 2020).

Table 2

<table>
<thead>
<tr>
<th>Variable Name</th>
<th>Simple linear regression</th>
<th>multilinear regression</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>r</td>
<td>p-value</td>
</tr>
<tr>
<td>Intercept</td>
<td>-0.372</td>
<td>< 0.0001</td>
</tr>
<tr>
<td>Mn deposition</td>
<td>-0.493</td>
<td>< 0.0001</td>
</tr>
<tr>
<td>N deposition</td>
<td>0.270</td>
<td>< 0.0001</td>
</tr>
<tr>
<td>Temperature</td>
<td>0.472</td>
<td>< 0.0001</td>
</tr>
<tr>
<td>Precipitation</td>
<td>-0.372</td>
<td>< 0.0001</td>
</tr>
</tbody>
</table>

4 Discussion

4.1 Model-observation Discrepancy

Although our model simulation results had a moderately good representation of the atmospheric observations under the best estimate scenario, many stations were still under- or over-predicted (Figures 4 and 5). The discrepancy between the model and observations could arise from a variety of processes, with errors in the sources, deposition or transport pathways all contributing (Mahowald et al., 2011; Loosmore, 2003). For example, we were not able to include the emissions from direct volcanic eruptions due to the lack of data and thus constrained to apply non-eruptive degassing data only. Errors in estimates of dust deposition are thought to be of order of a factor of 10 (Mahowald et al., 2011). Because we derived Mn from industrial sources
from a correlation with Fe (since these are the only spatially explicit mining emissions available: Rathod et al., 2019), emissions from nonferrous industries such as silico-manganese alloy, synthetic pyrolusite, and Mn chemical manufacturing plants were neglected (Parekh, 1990). Estimates of fugitive emissions from mining are not available, and thus not included in this study.

Another limitation was that, except for desert and agricultural dust, we used a constant emission factor for each source because we did not have sufficient data to assess the spatial variability of the Mn emission factors from different sources such as PBP, sea sprays, and volcanoes, which could vary within the ranges given in Nriagu (1989). For example, trace element composition can vary in materials formed by biological production in different water masses (Kuss & Kremling, 1999). With the constant emission factor assumption, our model could over- or underestimate the observations, depending on the location of the site and its source apportionment.

Our regression model was not able to determine a statistically significant negative correlation between topsoil C density and our simulated atmospheric Mn deposition in boreal forests. This seems contradictory with the results from a direct observational study carried out in northern Swedish boreal forests, where Mn was found to act as a critical factor regulating C accumulation (Stendahl et al., 2017). This apparent discrepancy might be attributed to the limited number of soil observations within the boreal regime, introducing large uncertainty at the higher latitudes in our linear-interpolated soil map, thus reducing the model’s ability to accurately predict the relationship in boreal ecosystems on a global scale. With most soil observations located around the middle latitudes, it would not be surprising that our model has the greatest confidence there.

4.2 Anthropogenic Perturbation and Implications for C Cycling

Our model and observations suggest that anthropogenic perturbations played an important role in global atmospheric Mn cycling, for which 32% of the total emissions were attributed to anthropogenic sources. As the dominant contributor of emissions in most industrialized regions, the influence of anthropogenic sources could be equal to or exceed that of natural sources, especially in the northern hemisphere (Figure 7), where they significantly accelerated the Mn turnover times in surficial soils by enriching the atmospheric deposition in which the Mn-to-N ratio was boosted. Human activities, including industrialization and agricultural practices, likely alter Mn cycles by a factor of two or more in many associated areas (Figure 6), on the same order of magnitude as the perturbation to the cycling of other metals such as Mo, aluminum (Al), lead (Pb), mercury (Hg), and vanadium (V) (Rauch & Pacyna, 2009; Schlesinger et al., 2017; Selin, 2009; Sen & Peucker-Ehrenbrink, 2012; Wong et al., 2021).

Our results reinforce the negative correlation between Mn and soil C storage in temperate and boreal forests on a global scale (Kranabetter et al., 2021; Stendahl et al., 2017), indicating that the Mn availability is likely a limiting factor on the soil organic matter decomposition that
consumed C from storage in these ecosystems. This implies that if atmospheric deposition is the major source of Mn in surficial soil layers, it has the potential to facilitate oxidative C decomposition by removing the limitation by Mn, and in regions that are sensitive to anthropogenic activities, humans might indirectly alter the C cycle by releasing aerosols composed of Mn into the atmosphere through industrial and agricultural activities. While a significant proportion of global C is stocked in the soils and vegetation of boreal and temperate forests in combination (IPCC, 2000), increased C emissions in these systems from decomposition promoted by Mn addition could be important to global C dynamics and climate feedbacks, exacerbating the ongoing escalating C emissions in boreal forests subjected to wildfires (Phillips et al., 2022; Zhao et al., 2021a).

However, to quantitatively characterize the extent of the Mn deposition’s influence on C cycling, more field measurements and experimental studies are required. For example, our current understanding would be improved if soil organic matters at different stages of decomposition could be distinguished. Berg et al. (2007) points out that Mn addition has a stronger effect on late-stage decomposition by enhancing lignin-degrading enzymes because microbes tend to decompose lignin after the more labile organic substrates (Berg, 2014; Berg & Matzner, 1997). In addition, we focused on modelling the total extractable and/or acid digested Mn in soils and atmospheric deposition and did not consider Mn bioavailability explicitly, which is crucial to the microorganisms that are responsible for decomposition and can be regulated by the cycling of Mn in different oxidation states (Keiluweit et al., 2015). Incorporation of mechanisms constraining the bioavailability, mobility, and reactivity of Mn (Keiluweit et al., 2015) in future model calibrations is essential for a more accurate interpretation. Finally, our estimated “pseudo” turnover time and the Mn-to-N ratio could only partially represent the Mn status in soils because we did not include fluxes from other reservoirs in the Mn cycle. For instance, release of Mn(II) from clay mineral weathering and Mn(III, IV)-oxide reduction (Canfield et al., 2005) could increase the available Mn concentration in soils, creating the gap between the Mn-to-N ratio in deposition and in soils.

4.3 Limitations of the Observational Data

Our collected atmospheric observations of Mn are spread over 6 out of 7 continents, but high spatial coverage is mostly restricted to industrialized countries. To improve our understanding of atmospheric contribution to the Mn cycle, more observations of the concentration and deposition in currently less-observed areas such as the polar regions are needed to further constrain the tuning of the model.

There are more locations with soil Mn measurements than atmospheric observations, but they are concentrated mostly in Europe and the U.S. Because of the uneven distribution of the soil observations and the limited number of them across many countries, we are not able to capture the variability of the soil Mn concentration at small scale. For example, we did not include
measurements of Mn concentration at metal-contaminated sites associated with mining or other industries (Lv et al., 2022) in either interpolation approach. With the currently available soil data, the linear interpolation approach is uncertain in areas where in-situ soil observations are sparse and less representative, whereas the problem with soil order extrapolation is that several soil orders show a lack of sufficient measurements to calibrate the median value. While we gained a better estimation of the dust emission scheme with a soil order extrapolation in our specific case, many studies (Baize, 2010; Wong et al., 2018; Okin et al., 2008) have shown that soil orders, which are the highest level of taxonomic classification, are typically inadequate when dealing with trace element concentrations in soils, and the intra-order variation could be large. Better estimation might be achieved with more refined classification at lower taxonomic levels such as suborders and great groups, or even quantitatively with particle size distribution. However, fewer sites specify the abovementioned information, and at such levels, the conversion between different classification systems is more complex.

5 Conclusions

In this study, we present, for the first time, a spatially explicit estimation of the global atmospheric Mn sources, distribution, and deposition using a combined model-observation approach. We estimate that anthropogenic sources (390 Gg Mn yr⁻¹) represent approximately 32% of the total atmospheric Mn budget (1500 Gg Mn yr⁻¹). Including this portion of Mn emissions in the model enhanced Mn deposition in many industrialized regions, which could accelerate soil Mn turnover as high as 100-fold and boost the Mn-to-N ratio in atmospheric deposition. Deposition of the anthropogenic Mn from human activities have a high potential to facilitate SOM decomposition in temperate and (sub)tropical forest ecosystems, thus influencing C storage and the global C cycle. Given the sparsity of observations and limited understanding of atmospheric Mn sources, uncertainties are high in these estimations. We need more atmospheric and soil observations across different landscapes to refine our model in the future and thus quantification of the global Mn cycle.

Acknowledgments

NMM and LL would like to acknowledge the support of DOE grant: DE-SC0021302. SR acknowledges the support of grants AEROEXTREME PID2021-125669NB-I00, AEROATLAN CGL 2015-66299-P & POLLINDUST CGL2011-26259 funded by ERDF and the Research State Agency of Spain.

Data Availability Statement

Observational synthesis available in the supplemental materials, while model results are available at the Cornell eCommons repository.
References

https://doi.org/10.1016/j.jafrearsci.2015.06.018

https://doi.org/10.1016/j.atmosenv.2006.09.011

https://doi.org/10.1007/BF00341336

https://doi.org/10.1016/S1352-2310(02)00902-0

https://www.proquest.com/scholarly-journals/concentrations-distributions-eleven-metals/docview/197389221/se-2?accountid=10267

https://doi.org/10.1016/S0168-583X(01)01050-3

Phillips, C. A., Rogers, B. M., Elder, M., Cooperdock, S., Moubarak, M., Randerson, J. T., & Frumhoff, P. C. (2022). Escalating carbon emissions from North American boreal forest...
wildfires and the climate mitigation potential of fire management. *Science Advances, 8*(17), eabl7161. https://doi.org/10.1126/sciadv.abl7161

During the 1997 to 2001 El Niño/La Niña Period. Science, 303, 73-76.

Voutsa, D., & Samara, C. (2002). Labile and bioaccessible fractions of heavy metals in the airborne particulate matter from urban and industrial areas. Atmospheric Environment, 36(22), 3583-3590.

