Characteristics and mechanism of lake water changes in the Tianshan region during 2002-2022

Zhiqiang Wen¹, Shuang Yi¹, and Wenke Sun²

¹University of Chinese Academy of Sciences
²Key Laboratory of Computational Geodynamics, University of Chinese Academy of Sciences

September 11, 2023

Abstract

The variations in the lake water storage in the Tianshan region are an important indicator of climate change and play a key role in understanding the hydrological mass balance. Based on altimetry and satellite gravity, we investigated the spatiotemporal characteristics of the lake water storage changes during 2002–2022, and examined the contributions and proportions of all of the hydrological components to the mass balance. The results indicate that the total water storage of the lake complex showed an increasing rate (0.73±0.10 Gt/a). We found two abrupt wet periods in 2010 and 2016 (the regional total mass increased by 65.73 Gt and 67.35 Gt, respectively), which were reflected not only by the lake water storage but also by the soil moisture, snow water, and even GNSS displacement fields. Compared with their contributions to the mass (22% and 14%), the variations in lake area were remarkably slight (0.01% and 0.014%). Among the hydrological components, the soil moisture played a dominant role, and the contribution of the snow accumulation changes was also considerable. The mass anomalies were closely related to the precipitation caused by the increase of water vapor content, which was further associated with the occurrence of ENSO events (r=0.55, p<0.01). The results revealed that the long-term trend of the GNSS vertical displacements exhibited a better stability after the load correction was applied, which could reflect the long-term ground deformation more accurately. This study contributes to our understanding of the complex hydrological and tectonic processes in the Tianshan region.

Hosted file

Characteristics and mechanism of lake water changes in the Tianshan region during 2002–2022

Zhiqiang Wen, Shuang Yi and Wenke Sun*

College of Earth and Planetary Sciences, University of Chinese Academy of Sciences, Beijing 100049, China.

Correspondence: *sunw@ucas.ac.cn

Abstract: The variations in the lake water storage in the Tianshan region are an important indicator of climate change and play a key role in understanding the hydrological mass balance. Based on altimetry and satellite gravity, we investigated the spatiotemporal characteristics of the lake water storage changes during 2002–2022, and examined the contributions and proportions of all of the hydrological components to the mass balance. The results indicate that the total water storage of the lake complex showed an increasing rate (0.73±0.10 Gt/a). We found two abrupt wet periods in 2010 and 2016 (the regional total mass increased by 65.73 Gt and 67.35 Gt, respectively), which were reflected not only by the lake water storage but also by the soil moisture, snow water, and even GNSS displacement fields. Compared with their contributions to the mass (22% and 14%), the variations in lake area were remarkably slight (0.01% and 0.014%). Among the hydrological components, the soil moisture played a dominant role, and the contribution of the snow accumulation changes was also considerable. The mass anomalies were closely related to the precipitation caused by the increase of water vapor content, which was further associated with the occurrence of ENSO events (r=0.55, p<0.01). The results revealed that the long-term trend of the GNSS vertical displacements exhibited a better stability after the load correction was applied, which could reflect the long-term ground deformation more accurately.
This study contributes to our understanding of the complex hydrological and tectonic processes in the Tianshan region.

Plain Language Summary: Tianshan lake water storage variations are vital for climate change assessment and hydrological balance. Using altimetry and satellite gravity during 2002–2022, we studied Tianshan Lake storage changes. Total lake water storage showed an increasing trend of 0.73±0.10 Gt/a. Two wet periods occurred in 2010 and 2016, impacting not only lake storage but also soil moisture, snow water, and GNSS displacement fields. Regional mass increased by 65.73 Gt and 67.35 Gt. Lake area changes were minor (0.01% and 0.014%) but contributed significantly (22% and 14%) to mass. Soil moisture dominated among hydrological components, and snow accumulation changes were noticeable. Mass anomalies correlated closely with precipitation, linked to El Niño–Southern Oscillation events ($r=0.55$, $p<0.01$). Intensified El Niño led to increased Tianshan water vapor and precipitation. We calculated elastic vertical displacements from mass changes and corrected GNSS data. Long-term vertical displacements showed better stability after correction. This study enhances our knowledge of complex hydrological and tectonic processes in Tianshan.

Key Points

1. The lake water storage increased, and two anomalous periods occurred, as verified in other hydrological components.
2. The ENSO-related precipitation anomaly was the main cause of the two anomalous mass periods in the Tianshan region.
Load deformation correction is of great importance for maintaining the long-term stability of the GNSS displacement field.

1 Introduction

As an essential reservoir of surface water on Earth, lakes are highly sensitive to climate change, and their water storage variations are considered to be indicators of climate change (Adrian et al., 2009; Zhang et al., 2019; Woolway et al., 2020). There are a large number of lakes distributed globally, and approximately 53% of the large lakes, especially those located within continents, experienced a continuous decrease in water storage from 1992 to 2020 (Yao et al., 2023). Research findings clearly demonstrate that the fluctuations in lake water storage primarily stem from natural factors, including precipitation (Zhang et al., 2017; Wang et al., 2022a) and evaporation (Zhao et al., 2022), as well as human activities (Grant et al., 2021). Therefore, monitoring the dynamic changes in lake water storage is crucial for understanding the global water cycle and its driving factors (Xu et al., 2022b). Additionally, lakes are a significant component of regional water storage, and accurate monitoring and estimation of their mass changes contribute to a better understanding of the regional mass balance.

The Tianshan region is situated in the arid and semi-arid zone within the interior of the Eurasian continent and has a typical temperate continental climate. It is influenced by three monsoon belts, namely the southwest, Indian, and northwestern monsoons, but is primarily influenced by the northwestern monsoon. The main sources of the water storage in the lake complex in the Tianshan region are generally believed to be precipitation and glacial meltwater. The study area encompasses the entire Tianshan mountain range and its surrounding regions. In
In this study, we focused on the region enclosed by the black dashed line in Figure 1. Although this region includes numerous lakes of different sizes, for the sake of convenience, we selected eight representative large lakes, namely Balkhash, Kapchagay, Issykku l, Sasykkol, Alakol, Saysan, Ulungur, and Bosten (labeled with numbers in Figure 1), which occupied an area of ~35,000 km². These lakes contribute significantly to the total water storage of the lake complex. The study area consists of the Tianshan snow-covered area and the lake complex, which encompasses the hydrological variations within the region. This study area selection facilitated the comprehensive analysis of the high mountain snowmelt, lake water level changes, and their relationships with meteorological factors.

Figure 1. Study area (black dashed line) and geographic overview of the lake complex in the Tianshan region. 1 - Balkhash, 2 - Kapchagay, 3 - Issykkul, 4 - Sasykkol, 5 - Alakol, 6 - Zaysan, 7 - Ulungur, 8 - Bosten. The green dots denote the locations of GPS stations.

The Tianshan region in China contains a considerable number of lakes, forming a relatively...
concentrated lake complex. This area serves as a typical region for studying lake level and/or water storage variations. Research has revealed that extreme precipitation events in the Tianshan region are closely related to the Indian Ocean summer monsoon (Zhong et al., 2017) and abnormal westerly winds (Yi et al., 2016). Zhang et al. (2023) pointed out that the main sources of water of the lakes located at middle and low elevations in the Tianshan region are precipitation and glacial meltwater, while the lakes at high elevations are primarily replenished by glacial meltwater. Therefore, the lake water storage changes in the Tianshan region are directly associated with ice and snow melting caused by climate variations in the region. Additionally, lakes located in densely populated areas are more susceptible to the influence of human activities (Li et al., 2003).

Currently, research on the lakes in the Tianshan region has mainly focused on long-term monitoring of lake water levels and surface areas. Yi et al. (2016) studied the water level changes in the lake complex in the Tianshan region and identified a mass anomaly period in 2010. They attribute this anomaly to the dominant influence of the northwestern monsoon. Liu et al. (2019) utilized moderate resolution imaging spectroradiometer (MODIS) 500 m resolution global water body data to study the interannual and seasonal variations in the surface areas of 14 lakes in Central Asia from 2001 to 2016, as well as the influencing factors. Their results revealed that the lakes located in plain areas experienced a reduction in surface area, while the high mountain lakes exhibited expansion. Zhang et al. (2022a) used multisource satellite data to investigate the water level changes in Lake Issyk-Kul from 1958 to 2020. Their results indicate that before 1998, human activities were the main cause of the continuous decline in the water level. However, after 2000, the increases in rainfall and glacial meltwater, as well as the decrease in water usage, led to short-term recovery of the lake’s water level. The above studies indicate that there is significant
interannual variability in the water volume of the lakes in the Tianshan region. Investigating this can help us understand and explain the characteristics of climate change and human activities in the Tianshan region.

The main observational parameters reflecting lake water storage changes are the lake water level and lake surface area, both of which can be obtained through remote sensing techniques and in situ water level measurements. In situ water level monitoring is the traditional method for monitoring the water levels of reservoirs and lakes, but it can be affected by complex terrain conditions and incomplete data recording. In addition, in situ water level measurements cannot cover inland lakes located in remote and inaccessible regions, resulting in a lack of long-term and effective water level change data. With the emergence of remote sensing measurement techniques, represented by altimetry satellites, many researchers have opted to use these methods instead of traditional water level monitoring approaches due to their regular data acquisition periods and wide data coverage range (Jiang et al., 2017). Remote sensing measurements, which offer advantages such as all-weather capability, comprehensive coverage, and high efficiency, have been widely employed in lake hydrological research. Currently, there are two main types of measurement methods: geometric measurements and physical measurements. Geometric measurements refer to the use of optical imagery combined with spatial geodetic measurement techniques to obtain changes in the lake surface area. For instance, researchers use optical remote sensing data such as Landsat data to monitor global surface water area changes (Yao et al., 2019) or regional surface water area changes (Olthof et al., 2015; Zhang et al., 2017; Xu et al., 2021). They then utilize altimetry techniques to monitor changes in the lake levels (Zhang et al., 2011; Zhang et al., 2019; Xu et al., 2022), thereby obtaining the variations in the lake water storage.
Physical measurement methods refer to direct detection the mass changes of lake water storage using gravity detection satellites, such as the Gravity Recovery and Climate Experiment (GRACE) (Xu et al., 2020), as well as the gravity changes generated by variations in reservoirs (Yi et al., 2017; Tangdamrongsub et al., 2019). The results obtained from both geometric and physical measurements can mutually corroborate each other.

In addition to a lake complex, the Tianshan region contains continuously melting glaciers and snow, which are significant contributors to the lake water storage variations (Yi et al., 2016). The lake variations in the Tianshan region are closely linked to the water contributions from glacier and snow melt (Wang et al., 2013; Rinzin et al., 2023). Therefore, studying the changes in glaciers and snow enables us to gain a deeper understanding of the mechanisms behind lake variations.

Regarding glacier monitoring, because glaciers are located in high-altitude areas, there are limited results from in situ observations, which can lead to deviations. Therefore, global and regional glacier monitoring mainly relies on the following types of satellite remote sensing observation methods: high-resolution digital elevation model (DEM) differencing (Gardelle et al., 2012; Gardelle et al., 2013), estimating glacier thickness changes using altimetry satellites (Kääb et al., 2012; Kääb et al., 2015; Wang et al., 2017a), and directly obtaining mass changes using gravity satellites such as GRACE (Matsuo and Heki, 2010; Jacob et al., 2012; Yi and Sun, 2014). Additionally, changes in the snowline have been used to infer glacier variations (Barandun et al., 2021). Due to observational limitations, many researchers have primarily focused on studying the long-term trends of glaciers. For instance, Hugonnet et al. (2021) provided the longest time span for global glacier melting rates, and reported annual global glacier melting of 267 ± 16 Gt. At the regional scale, Wang et al. (2017b) and Wang and Sun (2022b) reported continuous annual glacier
elevation changes in the Asian high mountain regions, while Barandun et al. (2021) reported annual glacier mass balance results for the Tianshan region from 1999 to 2017. With the development of satellite technology, obtaining glacier mass changes with a higher time resolution will become possible.

Furthermore, the lakes in the Tianshan region exhibit significant mass fluctuations, and together with other hydrological components such as soil moisture and groundwater, they impose a substantial load effect on surface deformation observations in this region. This phenomenon is included in global navigation satellite system (GNSS) observations (Heki, 2004; Heki and Arief, 2021; White et al., 2022). This interferes with our ability to extract the signals of long-term tectonic motions. To study tectonic movements effectively, it is essential to accurately account for the effects of these surface loads (Rao and Sun, 2022). Pan et al. (2019) utilized global positioning system (GPS) and GRACE data to obtain the three-dimensional deformation field in the Tianshan region. Pan et al. (2021) presented the most comprehensive distribution of the vertical displacement field in mainland China, corrected the vertical displacement due to surface loads using GRACE data, and subsequently obtained information about tectonic movements. Wu et al. (2022) also combined levelling measurements and GNSS data to obtain high-precision vertical displacement data for the Tibetan Plateau region. Wen et al. (2023) constructed a global mass change model and used Green’s function integration method to calculate the vertical displacement due to surface loads in mainland China. They found that the GNSS vertical velocity field in the Tianshan region is primarily driven by extensive glacier melt-induced surface mass changes, which result in rapid uplift of Earth’s surface.

The above-mentioned research indicates that currently, researchers have mainly utilized
multisource space geodetic techniques to study the glacier mass balance in the Tianshan region (Farinotti et al., 2015; Brun et al., 2017; Barandun et al., 2021) or have conducted studies from the perspective of tectonic movements to investigate the three-dimensional deformation and orogenic motion in the Tianshan region (Li et al., 2022; Pan et al., 2023). However, the spatiotemporal distribution characteristics of the lake water storage changes in the Tianshan region are not yet well understood. Questions related to the hydrological components contributing to water storage changes in the lake complex, their relationship with changes in the precipitation in the region, the total mass balance of the region, and the main physical mechanisms driving water storage changes in the lake complex are all significant scientific questions that warrant attention. Therefore, the goal of this study was to utilize multisource remote sensing observation data, including altimetry and GRACE data, to investigate the spatiotemporal distribution of the water storage changes in the lake complex in the Tianshan region from 2002 to 2022. Additionally, GNSS displacement observations were employed to investigate the characteristics of the surface load deformation. The goals were to quantify and analyze the lake water changes during two anomalous periods, to quantitatively calculate the contributions of the lake water, soil moisture, snow water, glacial mass changes, and other hydrological components to the total surface mass change monitored by GRACE and finally to explore and analyze the physical mechanisms underlying the two occurrences of abnormal mass changes.

2 Datasets and methods

2.1 Datasets

2.1.1 Global surface water area dataset
To build a global mass redistribution model and calculate the load deformation, as well as to extract the relevant lake water area, in this study, we used a global surface water area dataset that includes statistical data on the location, extent, and temporal distribution of the surface water from 1984 to 2020 (Jean-Francois et al., 2016). This dataset was generated using 4,453,989 images acquired by Landsat-5, 7, and 8 satellites from March 16, 1984, to December 31, 2021, and each pixel was classified as water or non-water using an expert system. The data products are divided into two categories: monthly variations during the entire period and temporal changes during two separate periods (1984–1999 and 2000–2020). The dataset contains 442 images, one for each month from March 1984 to December 2021. In this study, we obtained the lake area changes from 2002 to 2020 using the Google Earth Engine (GEE) and fitted the water level–area relationship of altimetry data to estimate the water volume changes of the lake complex from 2002 to 2022.

2.1.2 Altimetry data

Most of the lakes in the study area are covered by altimetry data, and the water level data products were obtained from several websites (https://ipad.fas.usda.gov/cropexplorer/global_reservoir/, https://dahiti.dgfi.tum.de/en/map/, http://hydrolare.net/catalogue.php). Multiple sources of altimetry satellite data were used, including data from European remote sensing satellite (ERS)-1, Geosat follow-on (GFO), ERS-2, JASON-1, ENVISAT, and others. For all of the lakes, remote sensing was utilized to obtain the lake area changes, and the water level data obtained through altimetry were combined to construct the lake-water level area curve. After data screening and outlier removal of the products from different organizations and systematic error adjustment, we obtained water level monitoring data for all of the lakes in the study area. The basic information about the lake complex is presented in
Table 1 Summary of the basic information about the lake complex in the Tianshan region

<table>
<thead>
<tr>
<th>No.</th>
<th>Lake</th>
<th>longitude (°E)</th>
<th>latitude (°N)</th>
<th>Level Method</th>
<th>Water type</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Balkhash</td>
<td>75.81</td>
<td>46.64</td>
<td>Altimetry</td>
<td>Lake</td>
</tr>
<tr>
<td>2</td>
<td>Kapchagay</td>
<td>77.63</td>
<td>43.80</td>
<td>Altimetry</td>
<td>Lake/reservoir</td>
</tr>
<tr>
<td>3</td>
<td>Issykkou</td>
<td>77.3</td>
<td>42.4</td>
<td>Altimetry</td>
<td>Lake</td>
</tr>
<tr>
<td>4</td>
<td>Sasykkol</td>
<td>80.97</td>
<td>46.59</td>
<td>Altimetry</td>
<td>Lake</td>
</tr>
<tr>
<td>5</td>
<td>Alakol</td>
<td>81.75</td>
<td>46.14</td>
<td>Altimetry</td>
<td>Lake</td>
</tr>
<tr>
<td>6</td>
<td>Zaysan</td>
<td>83.88</td>
<td>48.02</td>
<td>Altimetry</td>
<td>Lake/reservoir</td>
</tr>
<tr>
<td>7</td>
<td>Ulungrur</td>
<td>87.32</td>
<td>47.28</td>
<td>Altimetry</td>
<td>Lake</td>
</tr>
<tr>
<td>8</td>
<td>Bosten</td>
<td>87.05</td>
<td>42</td>
<td>Altimetry</td>
<td>Lake</td>
</tr>
</tbody>
</table>

2.1.3 GNSS data

To analyze the ground deformation characteristics in the Tianshan region, in this study, we utilized GNSS data from the Nevada Geodetic Laboratory (http://geodesy.unr.edu/NGLStationPages/GlobalStationList), which are in the IGS2008 reference frame. Due to various factors such as receiver malfunctions and changes in the surface environment during GPS operations, long-term GPS stations may experience data gaps. To address this issue, the TSAnalyzer software was employed to remove anomalies and outliers from the GNSS time-series data (Wu et al., 2018).

2.1.4 Precipitation data

Precipitation data were one of the key datasets used in this study. We adopted the Global Precipitation Climatology Centre (GPCC) model. The GPCC was established in 1989 in response to the World Meteorological Organization's (WMO) request and is operated by the German Meteorological Service (Deutscher Wetterdienst). The center's mission is to analyze and establish.
a global rainfall database based on observed rainfall data for daily and monthly precipitation at the Earth's surface. It is the world's largest precipitation database. All GPCC products are based on observed global land surface gridded precipitation datasets, which use a large number of station observations to compute the grid values. Several reanalysis datasets have been compared, and it has been reported that the GPCC precipitation model is better suited for long-term precipitation change studies in Central Asia (Hu et al., 2018). In this study, we utilized the GPCC-generated monthly precipitation dataset with a spatial resolution of 1°×1° from 1982 to the present (Schneider et al., 2014).

2.1.5 GRACE data

To calculate the mass balance in the study area and compare it with lake water storage changes and to investigate the contributions of the various hydrological components, in this study, we utilized the GRACE mascon products for 2002 to 2021 released by the Center for Space Research (CSR), Jet Propulsion Laboratory (JPL), and Goddard Space Flight Center (GSFC). The GRACE satellite, launched in 2002, provides monthly gravity signals resulting from surface mass redistribution, offering unprecedented spatiotemporal observation data for studying Earth's mass redistribution (Wahr et al., 1998; Tapley et al., 2019). The GRACE mascon data from the three institutions has been subjected to preprocessing, including the addition of degree one (Swenson et al., 2008) and replacement of the C20 and C30 coefficients using satellite laser ranging-based estimates (Cheng et al., 2011; Loomis et al., 2020). Additionally, to account for post-glacial rebound signals, all of the mascon products use ICE6G-D to correct for the impact of glacial isostatic adjustment (GIA) (Peltier et al., 2018). The GRACE mascon products require no further preprocessing and can be directly applied in hydrological, oceanographic, and cryospheric studies.
within watersheds. Furthermore, the JPL's mascon product provides scale factors for recovering real surface signals. To address the missing months in the GRACE data and the 11-month data gap between the GRACE and GRACE-FO satellites, in this study, we employed singular spectrum analysis (SSA) to conduct data interpolation (Yi and Sneeuw, 2021).

2.1.6 Wind field data and atmospheric water vapor data

To study the physical mechanisms of the lake water level changes, in this study, we utilized the vertical wind field data ERA5 provided by the European Centre for Medium-Range Weather Forecasts (ECMWF). ERA5 is the fifth-generation reanalysis of global climate and weather data for the past 80 years, from 2002 to 2022, with a spatial resolution of 0.25°×0.25° (Hersbach et al., 2023). The atmospheric water vapor content data are based on the measurements from the ozone monitoring instrument (OMI) from January 2005 to December 2020, providing a monthly averaged total column water vapor (TCWV) dataset with a resolution of 1°×1° (Borger et al., 2021).

2.1.7 Other hydrological models

The Tianshan region contains complex hydrological components, including soil moisture, snow water, and groundwater. Therefore, land hydrological models are essential auxiliary data for studying the mass balance in the Tianshan region. The Global Land Data Assimilation System (GLDAS) is a widely used hydrological model that provides high-precision global surface land data and has been extensively used in weather and climate forecasting, water resources applications, and hydrological investigations (Bai et al., 2016; Deng and Chen, 2017). In this study, GLDAS was employed to obtain the changes in the soil moisture in the Tianshan region.
Additionally, the snow water equivalent product provided by the ECMWF was utilized to simulate the changes in the snow water in the Tianshan region. Furthermore, the WaterGAP hydrological model was employed to assess the changes in the groundwater (Müller et al., 2021).

2.2 Methods

2.2.1 Mass recovery and load vertical deformation

To obtain the time-varying gravity field information from GRACE, based on the theory proposed by Wahr et al. (1998) and using the time-variable gravity spherical harmonic coefficients ΔC^m_l and ΔS^m_l, it is possible to estimate the density anomaly at a certain point on the Earth's surface in terms of the equivalent water height:

$$\Delta EWH(\emptyset, \theta) = \frac{a \rho_e h_1}{3 \rho_w} \sum_{l=0}^{\infty} \sum_{m=0}^{l} \bar{P}_l^m(\cos \emptyset) \left(\frac{2l+1}{1+k_l} \right) \left[\Delta S^m_l \sin(m \theta) + \Delta C^m_l \cos(m \theta) \right], \quad (1)$$

where ΔEWH is the mass change expressed as the equivalent water height, \bar{P}_l^m is the normalized associated Legendre polynomial, a is the Earth's radius, and ρ_e and ρ_w are the densities of the Earth and water, respectively. $h_1, l_1,$ and k_l are the load Love numbers. Equation (1) is the fundamental equation used to calculate surface mass changes from GRACE time-variable gravity and express them in terms of the equivalent water height.

The vertical displacement of the surface mass change, Δh, can be calculated using the following formula (Fu and Freymueller, 2012):

$$\Delta h(\emptyset, \theta) = a \sum_{l=1}^{\infty} \sum_{m=0}^{l} \bar{P}_l^m(\cos \emptyset) \left(\frac{h_1}{1+k_l} \right) \left[\Delta S^m_l \sin(m \theta) + \Delta C^m_l \cos(m \theta) \right]. \quad (2)$$

It should be noted that due to the certain orbital altitude of gravity satellites, the gravity field
signal attenuates with increasing altitude, making it difficult for GRACE to observe higher-degree gravity field components. Therefore, the time-variable gravity products have to be truncated at lower degree. The GRACE data has a spherical harmonic coefficient truncation at 60°, and the summation term in Equation (2) is limited to 60°. As a result, Equation (2) cannot be used to calculate the full-spectrum load displacement field. Furthermore, the GRACE time-variable gravity signal includes not only surface hydrological mass changes but also the influences of non-hydrological (tectonic) signals (Rao and Sun, 2022). When calculating the load deformation, the non-hydrological signals need to be removed. Therefore, the vertical displacement caused by the surface mass change \(\Delta m \) at the calculation point can be calculated using the following formula (Farrell, 1972; Erikson and MacMillan, 2014):

\[
U_h = \int \int \Delta m(\theta', \varphi') G_R(\alpha) \cos \varphi' d\theta' d\varphi',
\]

where \(\alpha \) is the angular distance between the load point and the load source, and \(G_R(\alpha) \) is the vertical displacement Green’s function, which is typically based on the preliminary reference Earth model (PREM) (Farrell, 1972).

2.2.2 Estimation of lake water storage changes

To calculate the changes in the lake water volume over a period of time, in this paper, altimetry data are utilized to obtain the lake water surface elevations and remote sensing data are utilized to obtain the lake surface areas. Furthermore, following the method proposed by Taube (2000), we can estimate the changes in the lake water volume:

\[
\Delta V = \frac{1}{3} (L_2 - L_1) \times (S_1 + S_2 + \sqrt{S_1 S_2}),
\]

where \(\Delta V \) is the change in the lake water volume (\(km^3 \)), \(L_1 \) and \(L_2 \) are the water levels in two
consecutive time periods, and S_1 and S_2 are the corresponding areas. Calculating the lake water storage change typically involves computing the difference between two consecutive time periods.

2.2.3 Analysis of time series

To investigate the periodic variations in the Tianshan region, Fourier transformation was utilized to analyze the periodic spectral characteristics of the various mass components. Subsequently, a least-squares method is applied to fit the time series and obtain the long-term trend and periodic components. The specific fitting method can be expressed as follows:

$$f(t) = a + bt + \sum_i A_i \cos \left(\frac{2\pi}{T_i}(t - \phi_i)\right) + \epsilon,$$ \hspace{1cm} (5)

where $T_1 = 1$ is a one-year period; $T_2 = 0.5$ is a half-year period; A_i and ϕ_i are the amplitude and phase, respectively; and ϵ is the fitting residual.

2.2.4 Composition analysis

Composition analysis is the process of combining or synthesizing two different states or characteristics of meteorological variables. By calculating the sample means of both variables, it allows us to compare whether there are significant differences between the two states. The significance level is determined using t-tests:

$$t = \frac{\bar{x}_1 - \bar{x}_2}{\sqrt{(n_1 - 1)s_1^2 + (n_2 - 1)s_2^2 \left(\frac{1}{n_1} + \frac{1}{n_2}\right)}} \cdot \sqrt{\frac{1}{n_1} + \frac{1}{n_2}},$$ \hspace{1cm} (6)

where \bar{x}_1 and \bar{x}_2, s_1^2 and s_2^2, and n_1 and n_2 are the means, variances, and sample sizes of the two states (1 and 2), respectively. This equation follows a t-distribution, and the degrees of freedom (df) are equal to $n_1 + n_2 - 2$.

16
3 Results

3.1 Long-term and seasonal variations in water levels in the Tianshan lake complex

We utilized lake water level data products derived from multisource altimetry satellite data released by various institutions to obtain a time-series of the water level changes in the lake complex within the study area (Figure 2a). The trends in the water level changes of the lakes in the Tianshan region exhibited distinct characteristics, and the roles of glacier melting and anthropogenic factors cannot be overlooked in these lake level variations. Taking Lake Bosten’s water level changes as an example, its water level variation differed significantly from those of the other lakes. Lake Bosten’s water level has been continuously decreasing since 2002, reaching a minimum in 2014, followed by a gradual recovery after 2016. The overall water level change trend was V-shaped. This is attributed to the accelerated glacier retreat in the region after 2016 (Yi et al., 2016), which led to significant replenishment of Lake Bosten’s water source. The lake's water level reached its peak around 2020 and has been declining since then. This implies that, in the long term, glacier melting could adversely impact the ecological environment around Lake Bosten. Moreover, the inconsistent characteristics of the water level changes of the different lakes primarily arise from the differences in their geographic distribution. Taking Lake Kapchagay and Lake Balkhash as examples, the Ili River provides 70–80% of the runoff from Kapchagay Lake to Lake Balkhash (de Boer et al., 2021). These lakes rely on precipitation and snowmelt for their water supply. The water storage in Kapchagay Lake affects the water level of Lake Balkhash, and changes in Kapchagay Lake's water level precede those of Lake Balkhash (red and blue solid lines in Figure 2a).
All of the lakes within the lake complex exhibit significant annual, semi-annual, and medium- to long-term periodic signals, which are manifested by the presence of approximately 6.9-year periodic signals in the frequency spectra of most of the lakes (Figure 2b). Chen et al. (2017) analyzed the strength and time-frequency characteristics of nearly 65 years of El Niño–Southern Oscillation (ENSO) events from January 1951 to May 2016, using indices such as the Oceanic Niño Index (ONI), the Southern Oscillation Index (SOI), and the multivariate ENSO index (MEI). They reported 22 warm events (El Niño) and 13 cold events (La Niña) during this period. Frequency analysis of ENSO characteristics revealed a higher occurrence of strong El Niño months compared to strong La Niña months. The ENSO cycle primarily exhibited a periodicity of 2–7 years and also exhibited a decadal variability of 10–16 years. Thus, the 6.9-year periodic signal observed in this study is consistent with the findings of Chen et al. (2017), suggesting that the underlying physical mechanism behind the lake water storage variations in the Tianshan region is fundamentally influenced by the ENSO. Additionally, Yi and Sun (2014) identified a 5-year cycle in the Pamir and Kunlun regions, while Wen et al. (2023) used longer-span data to identify a cycle of close to 6.6 years. The 6.9-year periodicity observed in our study of the lake complex seems to encompass the range of 5–7 years and is likely influenced by the Arctic Oscillation and El Niño–Southern Oscillation.

From 2002 to 2022, the long-term trend of the water level changes in the lake complex in the Tianshan region (weighted by the area of all of the lakes) was 0.01 m/a (0.73±0.10 Gt/a). Figure 2c presents the spatiotemporal distribution of the annual variations in the water levels of the individual lakes in the Tianshan region from 2002 to 2022. The change periods of the different lakes are indicated based on the month of the peak water levels. Among the eight lakes studied,
four lakes in the northeast exhibited rising water levels, with an average rate of increase of 0.06±0.001 m/a (ranging from 0.004 to 0.082 m/a). In contrast, four lakes in the southwest experienced declining water levels, with an average decrease rate of −0.006±0.00003 m/a (ranging from −0.0182 to −0.01 m/a). The seasonal variation cycle of the eight lakes in the Tianshan region shows that the peak water levels occurred in May, June, and July, but Lake Bosten’s peak water level occurred in March. This spatial heterogeneity in the timing of the lake level changes highlights the variability in the lake cycles.

Importantly, there were two significant instances of anomalous water level changes in the lake complex. These occurred around 2010 and 2016. The primary sources of the water input to the Tianshan lake complex were precipitation, ice melting, and anthropogenic factors, and precipitation was the fundamental factor. By performing a singular spectrum decomposition on the time series of the water level changes for each lake and selecting the first component for differencing, the rate of change of the lake water levels was obtained (Figure 2d). The differenced lake water level changes clearly highlight the impact of increased precipitation on the lake water levels. Abnormal precipitation occurred in both the 2008–2010 and 2014–2016 periods, leading to noticeable water level anomalies across all of the lakes, albeit with distinct time lags. Notably, Lake Kapchagay (Lake 2, blue line) exhibited synchronized peaks and three periods of increased precipitation in 2010, 2013, and 2016. In contrast, Lake Zaysan (Lake 6, green line) exhibited a peak in 2013, instead of in 2016. This suggests that Lake Zaysan’s water level changes were affected by anthropogenic factors and reflect the implementation of flood prevention measures. The spatiotemporal characteristics of these two instances of anomalous lake water level changes will be further analyzed in the subsequent section.
Figure 2. (a) Time series of water level changes and corresponding precipitation variations for the lake complex within the study area from 2002 to 2022. The lake numbers are the same as in Figure 1. (b) Spectral transformations of water level changes for the eight lakes. (c) Peaks in lake level variations. Spatial distribution of peaks in lake level variations in the Tianshan region and the water level change trend for each lake. The lengths of the dashed arrows are not proportional to the other lakes' water level changes. (d) Differenced lake water level changes of the first component after singular spectrum analysis (SSA) decomposition. The curves of the same color represent the same lake, and the green shaded regions denote the two anomalous periods.
In addition to the long-term trends in the lake water levels, in this study, we further investigated the seasonal trends of the lake levels. The seasonal trends capture the changes during specific months of the year within the study period (e.g., the trend for spring covers March–May each year). We divided the year into four seasons: spring (March–May), summer (June–August), autumn (September–November), and winter (December–February). Figure 3 illustrates the seasonal trends of the water levels of the individual lakes within the Tianshan region from 2002 to 2022. The seasonal interannual trends of the eight lakes in the Tianshan region exhibited similar patterns, with a rate of 0.0128±0.001 m/a in spring, 0.0141±0.001 m/a in summer, and 0.0073±0.001 m/a in autumn and winter. Furthermore, lakes Alakol, Zaysan, and Ulungur all exhibited increasing seasonal water level trends, while Lake Issyk-Kul and Lake Bosten exhibited decreasing trends. Lake Balkhash exhibited an increasing trend in summer and a decreasing trend during the other seasons, contributing to the overall long-term decreasing trend of the lake. Lake Kapchagay exhibited an increasing trend in spring and a decreasing trend in the other seasons. The water level changes of Lake Balkhash and Lake Kapchagay exhibited opposite trends in spring and summer.
Figure 3. Spatiotemporal characteristics of the seasonal trends of the lake water levels of the lakes in the Tianshan region from 2002 to 2022: (a) Spring (MAM); (b) Summer (JJA); (c) Autumn (SON); and (d) Winter (DJF). The time series of the water-level changes for all of the lakes in each season are shown in the insets, the black line is the area-weighted lake level time series, and the numbers above the insets are the overall trends based on the area-weighted water level trends. Please note that the arrows of different colors indicate different magnitude levels.

3.2 Spatiotemporal variations in lake water storage during two anomalous periods

In the previous section, the long-term and seasonal trends of the lake water level changes in the Tianshan region were analyzed. In particular, two instances of anomalous fluctuations in water levels were identified. Lakes respond to precipitation not only through changes in water levels but also through variations in their surface areas. Using the GEE, we obtained information about the
changes in the lake surface areas in the Tianshan lake complex during the two anomalous periods.

Similar to the changes in the water levels, the variations in the lake surface areas also exhibited two transition periods. During the first anomalous period, except for Lake Balkhash's contraction (decrease from 959.68 km² to 931.87 km², i.e., by 28.81 km²), the surface areas of the other lakes increased. The total lake surface area for the entire region changed an 35,230.15 km² to 35,345.55 km², i.e., an increase of 115.4 km². In the second anomalous period, the surface areas of all of the lakes increased, and the total lake area increased from 35,425.56 km² to 35,580.55 km², i.e., a total increase of 154.99 km². To further analyze the spatial changes in the lakes, Figure 4a displays subfigures that highlight the spatial patterns of the area changes for Kapchagay Lake, Zaysan Lake, and Lake Balkhash. Kapchagay Lake exhibited significant area changes from 2008 to 2010, while Zaysan Lake and Lake Balkhash exhibited evident changes during the second anomalous period. Notably, the lakes with pronounced area changes were mainly located in the low-lying areas where rivers flowed into the lakes. In addition to the clearly visible area changes during the two anomalous periods, each lake experienced maximum and minimum area values during the entire study period (Table 2). During the entire study period, from 2002 to 2021, Zaysan Lake exhibited the largest area change, reaching 779.45 km², while Sasykkol Lake exhibited the smallest change (7.57 km²). The maximum area change for each lake is presented in Table 2.

Table 2. Comparison of maximum and minimum areas of the lakes in the Tianshan lake complex from 2002 to 2021

<table>
<thead>
<tr>
<th>No.</th>
<th>Lake name</th>
<th>Maximum area (km²)</th>
<th>Minimum area (km²)</th>
<th>Area change (km²)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Balkhash</td>
<td>17118.95</td>
<td>16821.48</td>
<td>297.47</td>
</tr>
<tr>
<td>2</td>
<td>Kapchagay</td>
<td>1256.46</td>
<td>1094.31</td>
<td>162.15</td>
</tr>
<tr>
<td>3</td>
<td>Issyku</td>
<td>6214.51</td>
<td>6205.74</td>
<td>8.77</td>
</tr>
</tbody>
</table>
Estimating the variations in the lake water storage is crucial for studying the mass balance in the Tianshan region. By utilizing lake water level changes obtained from altimetry data and lake area changes obtained from remote sensing imagery, we established water level-area relationships for each lake and then estimated the water volume changes for all of the lakes (Figure 4a). The calculation results reveal that from 2003 to 2022, most of the lakes experienced two anomalous periods, during which significant water volume changes occurred. At the annual scale, the cumulative water volume change results (orange solid line in Figure 4a) indicate that there were distinct variations during the anomalous periods. To study the overall water volume changes in the entire region, in this study, we summed the water volume changes for all of the lakes. Figure 4b presents the mass variations of the total water storage in the Tianshan lake complex. Two distinct periods of water volume increase can be identified. During the two-year period from 2010 to 2011, the total mass of the lake water mass increased by 25.07 Gt, and during the two-year period from 2016 to 2017, the total water mass increased by 14.66 Gt. It should be noted that after 2018, the total lake water mass in the study area decreased continuously, with a reduction of greater than 10 Gt/a after 2020.
Figure 4. (a) Time series of water storage changes (blue) and cumulative water storages (orange) for the various lakes in the Tianshan region from 2002 to 2022. The lake area changes for Kapchagay Lake, Zaysan Lake, and Bosten Lake during 2008–2010 and 2014–2016 are indicated by the red arrows. (b) Time series of total water storage changes for all of the lakes in the study area. The red bars represent the annual water storage changes in the lake complex, and the orange solid line represents the cumulative change in the water storage. The pink and green shaded areas represent the dry and wet periods, respectively.

To study the impact of the anomalous lake water storage during the two anomalous periods on the regional mass balance, we obtained total mass change data for the Tianshan region from the GRACE satellite mission. Zhang et al. (2019) assessed the suitability of using GRACE mascon data for the Tianshan region and reported good agreement with GRACE spherical harmonic products across the entire area. Hence, in this study, we utilized GRACE mascon data provided by
three major institutions (CSR, JPL, and GSFC) to derive the total mass change rates for the study area from 2002 to 2021, which were -7.41 ± 0.35 Gt/a, -7.51 ± 0.34 Gt/a, and -9.56 ± 0.37 Gt/a, with an average rate of change of -8.16 ± 0.36 Gt/a. It is important to note that during the study period, these mass change results also contained two anomalous periods, which corresponded with the anomalous periods of the water level changes in the lake complex discussed earlier. During the two anomalous periods, the total mass increased by 65.73 Gt and 67.35 Gt, respectively. The changes in the lake surface area during these periods constituted merely 0.01% and 0.014% of the entire study area, but the contribution of the mass changes during the two anomalous periods accounted for 22% and 14%, respectively. This indicates that the lake water storage variations had a significant influence on the regional mass balance during the anomalous periods.

Changes in lake water storage are part of the regional mass variations and are closely connected to changes in the soil moisture, snow water, and groundwater. The characteristics of the changes in the other components will be analyzed specifically in the discussion section.

3.3 Physical mechanism behind the two anomalous periods

In the previous section, we calculated and analyzed the long-term and seasonal variations in the lake water and the variations in the two anomalous period in the Tianshan region. The occurrence of two anomalous periods in the Tianshan region, reflected by the lake water levels and area changes, was significantly influenced by the abnormal variations in the precipitation. Therefore, understanding the physical causes behind the anomalies in the precipitation is crucial. Figures 5a and 5b display the strong correlation between the annual average precipitation in the Tianshan region and the ENSO ($r=0.55$, $p<0.01$). To further analyze the connection between the
lake water storage in the two anomalous periods and precipitation, in this section, we employ a composite analysis method to delve into the physical mechanisms underlying the abnormal precipitation. Similar methodologies have also been applied to study the responses of lakes on the Qinghai–Tibet Plateau to climate (Lei et al., 2019). Figure 5c indicates that during El Niño-dominated years (1994, 1997, 2002, 2004, 2006, 2010, and 2016), the precipitation in the Tianshan region tended to increase.

Figure 5. (a) Annual average precipitation in the Tianshan region; (b) ENSO index; (c) Precipitation anomalies during El Niño-dominated years (1994, 1997, 2002, 2004, 2006, 2010, and 2016) relative to the average climatic state from 1979 to 2021. The dotted areas indicate significant values at the 90% confidence level determined using the student's t-test.

As one of the world's largest mid-latitude arid regions, the Tianshan area is susceptible to the
impacts of global climate change (Zhang et al., 2022b). The occurrence of precipitation requires
the convergence of significant amounts of water vapor, and the distribution of the water vapor
affects the formation of clouds and precipitation, aerosol growth, and other phenomena, thereby
playing a crucial role in meteorological phenomena and climate conditions (Grossi et al., 2015).
We observed that the spatial distribution of the precipitation anomalies in 2010 and 2016 (Figures
6c, d) closely resembled the spatial distribution of the total atmospheric water vapor content
(Figures 6a, b). This correspondence indicates that the water vapor content in the study area
increased during these years, creating favorable conditions for precipitation. Notably, the water
levels of the lakes in the Tianshan region peaked in 2006, which was an El Niño year. To validate
the increase in precipitation during these years, we compared the precipitation amounts in 2006,
2010, and 2016 with the climatic average. Figure 6e shows that the precipitation in 2006 did not
pass the significance testing, suggesting that the water level increase in 2006 may have been
caused by other factors, such as snowmelt. In contrast, the years with two instances of anomalous
mass changes (2010 and 2016) exhibited more pronounced increases in precipitation compared to
the El Niño-dominated years (1994, 1997, 2002, 2004, 2006, 2010, and 2016) (Figure 5c), with
significance demonstrated at the 90% confidence level (Figures 6c, d). Furthermore, during the
anomalous periods in 2010 and 2016, the vertical wind field intensity at 500 hPa also exhibited
enhancement along the Tianshan mountain range (Figure 6f). This intensified vertical motion
facilitated the convergence of more water vapor in the study area, leading to increased
precipitation. Consequently, the Tianshan region experienced two significant mass anomalies in
2010 and 2016 due to these pronounced shifts in precipitation.
Figure 6. Distribution of atmospheric total water vapor anomalies during the two anomalous mass change periods in the study area: (a) 2010 and (b) 2016. Anomalies in average precipitation in (c) 2010 and (d) 2016. (e) Anomalies in average precipitation in 2006; (f) Anomalies in the 500-hPa vertical wind field during the two El Niño years: 2010 and 2016. The dotted areas indicate significant values at the 90% confidence level determined using the student's t-test.

4 Discussion

In this study, multisource remote sensing observations were utilized to investigate the water storage changes in the lake complex in the Tianshan region in China. Building upon the computation and analysis of the spatiotemporal distribution characteristics of the water storage changes in the lake complex, we identified two major anomalous periods (2010 and 2016).
Considering the presence of various other hydrological components in the Tianshan region, further discussion is warranted regarding the spatiotemporal distribution characteristics of the quality changes in the different hydrological components, their variations during the two anomalous periods, and the resulting load deformation effects on the surface GNSS observations.

4.1 Characteristics of changes in various hydrological components and their relationship with lake water storage variations

The total mass changes in the Tianshan region were highly complex, and the variations in the lake water storage represent only one facet of the hydrological changes in the surrounding area. These variations were closely related to other hydrological components such as glaciers, soil moisture, groundwater, and the snowmelt equivalent. However, it remains unclear to what extent each hydrological component contributed to the changes in the lake water storage, that is, what proportion of the total mass changes each component accounted for in the study area. This warrants further exploration and analysis. To address this, we initially employed GRACE satellite gravity data to deduce the overall mass changes across the study area. Then, by utilizing a range of remote sensing observations and hydrological models to separate individual hydrological components, we analyzed the contribution of each component to the variations in the lake water storage within the context of the regional mass changes. The variations in each hydrological component encompassed long-term trends and periodic fluctuations. Once these variations were effectively isolated, further research and analysis could be conducted to delve into the characteristics of the changes in each hydrological component during the two anomalous periods of lake water fluctuations.

Using the data provided by Barandun et al. (2020) and Hugonnet et al. (2021), we calculated...
the glacier melting rates in each sub-region of the Tianshan region (Figure 7). The results indicate that significant glacier mass loss occurred. Furthermore, the results show that the glacier melting time series of Barandun et al. (2020) and Hugonnet et al. (2021) for the western Tianshan and eastern Tianshan regions were consistent, while in the central Tianshan, Barandun et al. (2020) estimated a slightly faster glacier melting rate. Barandun et al. (2020) estimated the annual glacier melting rate in the Tianshan region to be -3.78 Gt/a from 2000 to 2018. Hugonnet et al. (2021) estimated the glacier mass change time series for the Tianshan region and obtained a glacier melting rate of -3.53 Gt/a from 2000 to 2021, which is close to the trend derived by Yi et al. (2016) using ICESat data (-3.4 Gt/a). The two estimated glacier melting rates are quite consistent. However, considering the periodic variations in the glaciers, in this study, we selected the glacier change results of Hugonnet et al. (2021) for use in the subsequent research analysis.

Figure 7. Cumulative glacier change time series for the western, central, and eastern sub-regions of the Tianshan region calculated using the data provided by Barandun et al. (2020) and Hugonnet et al. (2021). The background shows the long-term trend of the mass changes in the Tianshan region obtained using GRACE data.
In addition, we considered the changes in the soil moisture, canopy, snow water equivalent, and groundwater. We used the GLDAS Noah hydrological model to calculate the soil moisture changes in the Tianshan region. The results indicate a long-term increasing trend with a rate of 0.46±0.25 Gt/a. The changes in the canopy and its long-term trend were both close to zero, so the effect of the canopy was neglected in this study. Furthermore, we extracted the trend of the snow water equivalent (−0.06±0.11 Gt/a) from the ECMWF model, and the groundwater change rate (−0.08±0.04 Gt/a) from the WGHM model. The time series of the mass changes for these hydrological components after being subjected to a 1-year moving average are presented in Figure 8a. The results show that all of the hydrological components exhibited two periods of exceptional fluctuations. These periods were consistent with the anomalous periods of lake water level variations. The long-term trends of the snow water, groundwater, and glaciers were continuous decreasing trends, while the soil moisture and lake water exhibited increasing trends. Based on these findings, we infer that the ongoing melting of the glaciers in the Tianshan region contributed to the increases in the lake water and soil moisture.

Regarding the long-term trends of the various hydrological components, the glacier melting exhibited a significant rate of change, while the trends of the other hydrological components were almost stable. Table 3 presents the long-term trends, annual amplitudes, and phases of the changes in the hydrological components. The results show that the contribution of the lake water storage changes to the total GRACE signal was negligible. Among the components, the glaciers exhibited the largest rate of decrease, while the mass changes of the other hydrological components were relatively stable. In particular, the two periods of exceptional fluctuations better reflect the impact of each hydrological component on the overall mass balance in the Tianshan region. Although the
trend of the lake water changes was small, its contributions during the two anomalous periods were 22% and 14%, respectively, indicating significant increases in its contribution. The soil moisture and snow water signals predominantly contributed during the first period of change, accounting for 93.98% and 14.67%, respectively. During the second anomalous period, the contributions of the soil moisture and snow water were 69.25% and 20.83% (Figures 8b, c).

During the two periods of mass anomalies, the soil moisture contributed significantly, while the changes in the snow and lake water made comparable contributions.

Figure 8d presents the interannual mass changes of each hydrological component. The snow water accumulated during the winter and spring and reached its peak in March. As temperature increased in summer, the snow gradually melted, and the soil moisture reached its peak in May, while the groundwater and lake water reached their peaks in July. In addition, the annual amplitudes of the snow water and soil moisture contributed significantly to the annual amplitude of the GRACE signal. This suggests that the total annual mass changes observed in the study area by GRACE were mainly driven by the snowmelt and the annual fluctuations in the soil moisture.

Figure 8. Mass change time series of the various hydrological components from 2002 to 2021: (a) Smoothed mass
change time series of each component. The dashed lines represent the mass differences during the two mass anomaly periods from 2008 to 2010 and from 2014 to 2016. (b) The total mass and the increase in mass of each hydrological component during the two mass anomaly periods. (c) The percentage contribution of each hydrological component to the total mass increase during the two mass anomaly periods. (d) The intra-annual mass variations of each hydrological component in the study area.

Table 3 Mass change rate of each hydrological component within the study area

<table>
<thead>
<tr>
<th>Mass component</th>
<th>Annual amplitude (Gt)</th>
<th>Phase (days)</th>
<th>Trend (Gt/a)</th>
<th>Mass change during the first anomaly (Gt)</th>
<th>Mass change during the second anomaly (Gt)</th>
</tr>
</thead>
<tbody>
<tr>
<td>GRACE</td>
<td>32.87</td>
<td>98.60</td>
<td>−8.16±0.36</td>
<td>65.73</td>
<td>67.35</td>
</tr>
<tr>
<td>Soil moisture</td>
<td>10.56</td>
<td>94.53</td>
<td>0.46±0.25</td>
<td>61.77</td>
<td>46.64</td>
</tr>
<tr>
<td>Lake</td>
<td>5.24</td>
<td>168.69</td>
<td>0.73±0.10</td>
<td>14.54</td>
<td>9.36</td>
</tr>
<tr>
<td>Snow</td>
<td>31.71</td>
<td>36.95</td>
<td>−0.06±0.11</td>
<td>9.64</td>
<td>14.03</td>
</tr>
<tr>
<td>Glacier</td>
<td>-</td>
<td>-</td>
<td>−3.53</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Groundwater</td>
<td>5.61</td>
<td>197.4</td>
<td>−0.08±0.04</td>
<td>6.82</td>
<td>-</td>
</tr>
</tbody>
</table>

The spatial distributions of the precipitation, total mass changes monitored by GRACE, soil moisture, and snow water equivalent during the two anomalous mass change periods are presented in Figure 9. The spatial distribution of each hydrological component during these periods reflects the geographic variation in the precipitation. During the first anomalous mass change period, the largest total mass changes occurred in the western Tianshan region and the northern part of the study area, forming a strip-like pattern along the Tianshan Mountains. In contrast, during the second transition period, the mass increases were mainly concentrated in the lake region. The
spatial distribution of the mass increased during both anomalous periods (Figures 9c, d) and closely corresponded to the spatial distribution of the increase in precipitation (Figures 9a, b), suggesting that the increased precipitation led to a corresponding increase in the soil moisture, resulting in an overall mass increase across the study area. By comparing the spatial distributions of the soil moisture (Figures 9e, f) and the snow water equivalent (Figures 9g, h), we found that the areas with increased soil moisture were primarily located within the lake region. By comparing the changes in the snow water and lake water shown in Figure 8a, we inferred that the interannual lake water level changes were not solely driven by direct rainfall. With increasing temperature, the accumulated snow began to melt and slowly infiltrated into the soil, leading to an increase in the soil moisture. The increase in the soil moisture was subject to a certain time delay in response to the changes in the snow water. Liu et al. (2022) reported that a substantial amount of rainfall needs time to saturate the soil after falling and subsequently enters the lakes via surface runoff. Hence, the peak water levels of the lakes occurred during the troughs of the snow water distribution.
Figure 9. Spatial distribution of the changes in precipitation (a, b), the total hydrological mass changes observed by GRACE (c, d), the soil moisture (e, f), and the snow water equivalent (g, h) during the two anomalous mass change periods within the study area. The left column (a, c, e, g) corresponds to the first anomalous mass change period in 2010, while the right column (b, d, f, h) corresponds to the second anomalous mass change period in 2016.

4.2 Load correction and its impact on GNSS observations

The aforementioned changes in the lake complex and the various hydrological components, as well as the two instances of precipitation anomalies, were invariably associated with the significant mass anomalies, which were evident in the time-variable gravity signals inferred from
GRACE. These mass change signals undeniably induced surface loading effects on the solid Earth's surface, which should also be reflected in the surface displacement field. To verify whether this signal was captured in the vertical displacements monitored via a GNSS, we employed GNSS data provided by the Nevada Geodetic Laboratory (http://geodesy.unr.edu/NGLStationPages/stations/) to calculate the surface displacements. Due to the temporal coverage of the GNSS data, we selected GNSS stations with time series that encompassed the mass anomaly periods. To derive the vertical displacements induced by the surface mass changes, we removed the contributions of the global atmospheric loading and non-tidal ocean loading effects from the vertical displacements at these GNSS stations. The resulting residual signals were then used to analyze the surface mass changes. We employed the empirical mode decomposition (EMD) method to filter and smooth the GNSS signals (He et al., 2020). After corrections for atmospheric and non-tidal ocean loading effects, the selected GNSS stations provided time series that clearly exhibited changes in the vertical surface displacements due to the mass anomalies during the two wet-to-dry transition periods (left column in Figure 10). The results show that during the first mass anomaly period in 2010, GNSS station SELE exhibited a significant jump in the vertical displacement, while stations CHUM and TALA exhibited downward trends during both mass anomaly periods. This suggests that the magnitudes of the mass changes generated by the two mass anomalies were sufficient to induce noticeable surface deformations that could be detected by the GNSS.
Figure 10. Time series of vertical displacements at GNSS stations in the Tianshan region (left column) and the changes in the sliding trends at the corresponding stations (right column). The sliding long-term trends have been corrected for the vertical displacement due to the loading effects obtained by integrating GRACE mascon data with Green's functions.

When analyzing the impact of the surface mass changes on the GNSS displacement field, scientists often calculate the loading effect of the surface mass migration rate on the GNSS displacement field (Rao and Sun, 2022; Wen et al., 2023). However, constructing a surface mass change model is an extremely challenging task as it requires considering solid crustal displacement, the mass migration associated with surface erosion/deposition, and more accurate hydrological models (especially for groundwater). Since we focused solely on the surface mass migration, particularly the two anomalous mass changes and their impacts on the GNSS displacement field, in this study, we selected the GRACE mascon data as the global mass change...
model and used the Green's function integration method to calculate the vertical displacement caused by these loads at the three GNSS stations in order to explore the effect of correcting the surface mass changes on the GNSS vertical displacements. By considering the time span of the GNSS time series at each station, we then selected 100 months, 120 months, and 120 months of GNSS time series for the SELE, CHUM, and TALA stations, respectively. We applied a moving window with a monthly step to calculate and correct the loading vertical displacements. As a result, we obtained the long-term trend of the displacement variations at the GNSS stations with the sliding window changes (right column in Figure 10). The results presented in Figure 10 show that after the loading correction, the stability of the vertical displacement trend variations at the three stations (CHUM, SELE, and TALA) were all improved. Specifically, the standard deviation of the sliding trend at CHUM, SELE, and TALA stations decreased by 33%, 27%, and 35%, respectively. This indicates that the surface mass changes had a non-negligible impact on the GNSS displacement field. After correcting for the mass change loading, the true crustal displacement field was restored and was represented more accurately. Therefore, when studying regional tectonic movements, it is essential to perform surface mass loading corrections.

4.3 Error Analysis of Mass Balance in the Tianshan Region

It is important to note that in Section 4.1, the calculated GRACE total mass change did not perfectly match the sum of the contributions of the various hydrological components, indicating that there were some uncertainties in the mass changes calculations for each hydrological component. To investigate the sources of these uncertainties, we truncated the GRACE mascon data and the multisource land surface mass change rate model to 60° and applied Gaussian 300 km
filtering and P4M6 decorrelation filtering. By comparing Figures 11a and 11b, it can be seen that both the GRACE data and the land surface model agree well in the central and western Tianshan regions, but there are significant discrepancies in the eastern Tianshan region (Figure 11c). The reasons for these discrepancies are rather complex. Upon careful analysis, we found that the regions with residual signals in Figure 11c contain densely distributed cities and also include oil and gas extraction areas (such as the Karamay oilfield). Therefore, the groundwater in these regions may experience significant depletion, and the current hydrological models are believed to severely underestimate the changes in the groundwater (Döll et al., 2012; Scanlon et al., 2019), which could be one of the uncertainties. Furthermore, the problem of solid mass migration in the Tianshan region is highly complex (Rao and Sun, 2022; Wen et al., 2023), and research on factors such as erosion, sedimentation, and crustal movement needs to be further improved and refined. In conclusion, the various hydrological models used in this study contain significant uncertainties. Future research on regional mass balance will rely on continually refining hydrological and surface solid mass models.
5 Conclusions

In this study, we utilized multiple remote sensing datasets and hydrological models to investigate the spatiotemporal distribution characteristics of the lake water storage changes in the Tianshan region from 2002 to 2022. Two significant periods of water storage anomalies were identified during the study period. Additionally, we analyzed and calculated the contributions and proportions of the various hydrological components in the study area, and we discussed the influencing factors and physical mechanisms behind these hydrological changes. The main conclusions of this study are as follows.

The results of this study revealed that the lake water storage in the Tianshan region exhibited...
a long-term increasing trend with a rate of 0.73±0.10 Gt/a. We also identified two periods of water
storage anomalies during 2008–2010 and 2014–2016. The results indicate that all of the lakes
exhibited significant annual and semi-annual periodic variations, as well as medium- to long-term
signals of approximately around 6.9 years, while Zaysan Lake exhibited a 4.1-year periodicity,
which was possibly due to the influence of anthropogenic factors. The 6.9-year periodic signal
was associated with the melting of ice and snow, which was influenced by the Arctic Oscillation
and El Niño–Southern Oscillation. The seasonal interannual trends of the lake complex in the
Tianshan region exhibited similar patterns, with rates of 0.0128±0.001 m/a in spring,
0.0141±0.001 m/a in summer, and 0.0073±0.001 m/a in autumn and winter. In addition, during the
two-year periods of 2010–2011 and 2016–2017, the total lake water storage in the Tianshan region
increased by 25.07 Gt and 14.66 Gt, respectively. However, after 2017, the total lake water storage
in the study area began to decrease continuously, with annual reductions of over 10 Gt in 2020 and
2021. This trend requires further observation and investigation.

In addition, the contributions and proportions of the various hydrological components in the
GRACE signal were calculated and separated. The results revealed that the soil moisture, snow
water equivalent, lake water, and vertical displacements observed by the GNSS all reflected the
two mass change anomalies. During the two anomalous periods, the changes in the lake area
accounted for only 0.01% and 0.014% of the total area, but the contributions of the lake water
increased significantly, by 22% and 14%, respectively. The contributions of the soil moisture and
snow water during the first anomalous period were 93.98% and 14.67%, respectively, while their
contributions during the second anomalous period were 69.25% and 20.83%, respectively. During
the two anomalous periods, the soil moisture was the primary contributor, and the snow changes
and lake water storage made roughly equal contributions. The annual water level changes in the lake complex were not only directly affected by rainfall but also significantly influenced by ice and snow meltwater.

We also identified a close correlation between the two mass change anomaly periods and the ENSO events ($r=0.55$, $p<0.01$). During El Niño–dominated years, the atmospheric water vapor content in the Tianshan region generally increased, leading to corresponding increases in precipitation. In the two anomaly years (2010 and 2016), the increase in precipitation was even more pronounced, and the vertical wind field was strengthened. These conditions led to more water vapor descending and converging in the study area, providing favorable conditions for precipitation and resulting in the occurrence of the two mass change anomalies.

By considering the lake water storage changes in conjunction with the other hydrological components, this study provides a new perspective for investigation of the mass balance in the Tianshan region. The research results highlight the need to focus on the impact of extreme climate events on the regional mass balance in the context of global climate change.

CRediT authorship contribution statement

Zhiqiang Wen: Conceptualization, Data curation, Formal analysis, Writing – original draft.

Wenke Sun: Conceptualization, Funding acquisition, Writing – review & editing. **Shuang Yi**: Conceptualization, Funding acquisition, Investigation, Writing – review & editing.

Declaration of competing interest

The authors declare that they have no known competing financial interests or personal
relationships that could have appeared to influence the work reported in this paper.

Data Availability Statement

GNSS data: http://geodesy.unr.edu/NGLStationPages/stations/; **Lake level data**: https://nsidc.org/data/icesat-2/products, https://eocat.esa.int/sec/#data-services-area, http://hydrolare.net/catalogue.php; **GPCC Precipitation**: https://opendata.dwd.de/climate_environment/GPCC/html/download_gate.html; **Wind field data**: https://cds.climate.copernicus.eu/cdsapp#!/dataset/reanalysis-era5-pressure-levels?tab=overview; **Atmospheric water vapor data**: https://doi.org/10.5281/zenodo.5776718; **Groundwater datasets**: https://doi.pangaea.de/10.1594/PANGAEA.918447

Acknowledgments

This study was supported by grants from the National Natural Science Foundation of China (grant numbers 42174097, 41974093, and E3ER0402A2) and the University of Chinese Academy of Sciences Research Start-up Grant (110400M003). We thank NASA for providing GLDAS (https://ldas.gsfc.nasa.gov/gldas/), GRACE/GRACE-FO Mascon data are available at http://grace.jpl.nasa.gov, http://www2.csr.utexas.edu/grace and https://earth.gsfc.nasa.gov/geo/data/grace-mascons.

References

assentinels of climate change. Limnology and Oceanography, 54(6), 2283–2297.

Hersbach, H., Bell, B., Berrisford, P., Biavati, G., Horányi, A., Muñoz Sabater, J., Nicolas, J., Peubey, C., Radu, R., Rozum, I., Schepers, D., Simmons, A., Soci, C., Dee, D., Thépaut, J-N. (2023): ERA5 hourly data on pressure levels from 1940 to present. Copernicus Climate Change
Service (C3S) Climate Data Store (CDS)(Accessed on 30-Apr-2023).

Olthof, I., Fraser, R. H., and Schmitt, C. (2015). Landsat-based mapping of thermokarst lake dynamics...

of Lake Poyang from multi-mission satellite data and hydrological models. Journal of Hydrology, 590, 125229.

