Source of radio emissions induced by the Galilean moons Io, Europa and Ganymede: \textit{in situ} measurements by Juno

C. K. Louis1,2,3, P. Louarn2, B. Collet4, N. Clément2,5, S. Al Saati2,6, J. R. Szalay7, V. Hue8, L. Lamy3,4, S. Kotsiaros9, W. S. Kurth10, C. M. Jackman1, Y. Wang2,11,12, M. Blanc2,5, F. Allegrini13,14, J. E. P. Connerney15, D. Gershman16

1School of Cosmic Physics, DIAS Dunsink Observatory, Dublin Institute for Advanced Studies, Dublin 15, Ireland
2IRAP, Université de Toulouse, CNRS, CNES, UPS, Toulouse, France
3LESIA, Observatoire de Paris, Université PSL, CNRS, Sorbonne Université, Université de Paris, Meudon, France
4Pythéas, Aix Marseille Université, CNRS, CNES, Marseille, France
5Laboratoire d’Astrophysique de Bordeaux, Univ. Bordeaux, CNRS, B18N, Allée Geoffroy Saint-Hilaire, 33615 Pessac, France
6CPHT, CNRS, Institut Polytechnique de Paris, Route de Saclay, 91128 Palaiseau, France
7Department of Astrophysical Sciences, Princeton University, Princeton, New Jersey, USA
8Aix–Marseille Université, CNRS, CNES, Institut Origines, LAM, Marseille, France
9Technical University of Denmark: Kgs. Lyngby, Denmark
10Department of Physics and Astronomy, University of Iowa, Iowa City, Iowa, USA
11State Key Laboratory of Space Weather, National Space Science Center, Chinese Academy of Sciences, Beijing, China.
12College of Earth and Planetary Sciences, University of Chinese Academy of Sciences, Beijing, China.
13Southwest Research Institute, San Antonio, Texas, USA
14Department of Physics and Astronomy, University of Texas at San Antonio, San Antonio, Texas, USA
15Space Research Corporation, Annapolis, MD, USA 21403
16NASA Goddard Space Flight Center, Greenbelt, MD, USA

Key Points:

• All Jupiter–moon radio emissions are shown to be similarly triggered by the CMI.
• The crossed radio sources are colocated with either MAW, RAW or TEB footprints.
• The crossed radio sources coincide with downward field–aligned currents and Alfvén perturbations.

Corresponding author: C. K. Louis, corentin.louis@dias.ie
Abstract

At Jupiter, part of the auroral radio emissions are induced by the Galilean moons Io, Europa and Ganymede. Until now, except for Ganymede, they have been only remotely detected, using ground–based radio–telescopes or electric antennas aboard spacecraft. The polar trajectory of the Juno orbiter allows the spacecraft to cross the range of magnetic flux tubes which sustain the various Jupiter–satellite interactions, and in turn to sample in situ the associated radio emission regions. In this study, we focus on the detection and the characterization of radio sources associated with Io, Europa and Ganymede. Using electric wave measurements or radio observations (Juno/Waves), in situ electron measurements (Juno/JADE–E), and magnetic field measurements (Juno/MAG) we demonstrate that the Cyclotron Maser Instability (CMI) driven by a loss–cone electron distribution function is responsible for the encountered radio sources. We confirmed that radio emissions are associated with Main (MAW) or Reflected Alfvén Wing (RAW), but also show that for Europa and Ganymede, induced radio emissions are associated with Transhemispheric Electron Beam (TEB). For each traversed radio source, we determine the latitudinal extension, the CMI–resonant electron energy, and the bandwidth of the emission. We show that the presence of Alfvén perturbations and downward field aligned currents are necessary for the radio emissions to be amplified.

1 Introduction

One of the main objectives of the Juno mission is to probe Jupiter’s auroral regions in situ (Bagenal et al., 2017) and, in particular, to search for the sources of auroral radio emission. This is made possible by a suite of instruments capable of acquiring high–quality plasma and wave measurements, such as Waves (Kurth et al., 2017), JADE–E (Jovian Auroral Distributions Experiment–Electrons, McComas et al., 2017) and MAG (Connerney et al., 2017). Imagers on–board Juno are also really useful to compare with auroral emissions in other wavelengths, such as in ultraviolet with the UVS instrument (Ultraviolet Spectrograph Gladstone et al., 2017).

These instruments provide measurements to study the radio wave amplification process, and have already been able to locate the position of the sources (Imai et al., 2017, 2019; Louis et al., 2019a) and to confirm the Cyclotron Maser Instability (CMI) as their underlying generation mechanism (Louarn et al., 2017, 2018; Louis et al., 2017a, 2020; Collet et al., 2023, and see below for more details).

The Galilean moons Io, Europa and Ganymede are known to induce auroral emissions, at radio (Bigg, 1964; Louis et al., 2017b; Zarka et al., 2017, 2018; Jácome et al.,
2022), ultraviolet (UV, Prangé et al., 1996; Clarke, 1998; Clarke et al., 2002) and infrared (Connerney et al., 1993; Mura et al., 2017, 2018) wavelengths. The motion of the moons across Jupiter’s magnetosphere in the plasma torus surrounding them (Szalay et al., 2022) generates an electric field, inducing electric currents and/or Alfvén waves (Goldreich & Lynden-Bell, 1969; Neubauer, 1980; Saur, 2004) which both accelerate electrons along the magnetic field lines in the moons’ flux tubes to kilo–electron–volts (keV) energy. Note that the case of Callisto is not studied here, even if a tentative detection of the Callisto UV footprint has been reported (Bhattacharyya et al., 2018), and hints of radio emissions have been observed to this day using Galileo and Voyager data (Menietti et al., 2001; Higgins, 2007), and not seen by Juno.

The Io, Europa, and Ganymede induced UV emissions are known to be produced by downgoing electrons interacting with the Jovian neutral atmosphere. These signatures are observed at the moons’ magnetic footprint and along their tails, i.e. the longitudinal extension of these spots in the downstream direction relative to the plasma flow encountering the moon (Bonfond et al., 2017a, 2017b). Recent in situ studies probed the magnetic field lines connected to these UV footprints, and found that they are consistent with production by Alfvénic interaction (Szalay et al., 2018, 2020a, 2020b; Allegrini et al., 2020). On the radio side, the moons’ induced emissions are believed to be produced by the CMI and have already been simulated and well match the observations (Hess et al., 2008; Louis et al., 2017a, 2019b). This mechanism is also responsible for the auroral radio emission (independent of the moons) and has been verified in situ by Louarn et al. (2017, involving loss–cone electron distribution functions, or EDF), Louarn et al. (2018, conics–type EDF) and Collet et al. (2023, shell–type EDF). Recently, Louis et al. (2020) showed with in situ Juno measurements that the radio emission induced by the Jupiter–Ganymede interaction is indeed produced by the CMI, from a loss cone–type EDF, i.e., a lack in the up–going electron population, with a characteristic energy of 4–15 keV.

Since Jupiter–satellite radio and UV emissions are expected/assumed to be colocated (Hess et al., 2010), the question of the link between these emissions at two different wavelengths naturally arises. In the Io case, we know that UV and radio auroral emissions are produced by Alfvénic interactions, and that the main and secondary radio emissions are respectively produced on the magnetic field lines connected to the main Alfvén wing (MAW) and reflected Alfvén wing (RAW) spots, and highly suspected for the Transhemispheric Electron Beam (TEB) spots (Hess et al., 2010; Lamy et al., 2022). But no simultaneous in situ measurements have yet been analyzed. In the Ganymede case, Louis et al. (2020) showed, extending the work of Szalay et al. (2020a), that radio emission is produced above a magnetic flux tube mapping to a UV RAW spot. Hue et al. (2022) showed
that radio emission seems to be produced above the TEB spot. Finally in the Europa case, UV emissions have been observed at the moon’s footprint and along the moon’s footprint tail (Bonfond et al., 2017a, 2017b; Allegrini et al., 2020; Hue et al., 2023; Rabia et al., 2023), but no simultaneous observation of UV and radio emissions has yet been analyzed.

This study is a follow-up of the Louis et al. (2020) analysis, focusing on the three known types of Jupiter–satellite radio emissions. In Section 2, we briefly recall the theory of the Cyclotron Maser Instability. In Section 3, we present the observations of Jupiter–Io (J–I), –Europa (J–E) and –Ganymede (J–G) radio emission source crossings and calculate the CMI growth rate (whenever possible) and determine the emission parameters. Finally, in Section 4, we summarize and discuss the results.

2 The Cyclotron Maser Instability

The CMI is known to be responsible for the production of auroral radio emission of Earth, Saturn and Jupiter (Wu & Lee, 1979; Le Queau et al., 1984a, 1984b; Wu, 1985; Pritchett, 1986; Treumann, 2006; Mutel et al., 2010; Lamy et al., 2010; Kurth et al., 2011; Louarn et al., 2017, 2018).

In a tenuous and magnetized enough plasma, i.e., wherever the electron plasma frequency f_{pe} is much lower than the electron cyclotron frequency f_{ce}, and with weakly out-of-equilibrium/non-maxwellian relativistic electrons, the CMI can directly amplify X-mode waves at a frequency close to the electron cyclotron frequency f_{ce}, along the surface of a hollow cone. The CMI is a wave–electron instability for which the resonance condition is reached when the Doppler–shifted angular frequency of the wave in the frame of the electrons ($\omega - k_\parallel v_r\parallel$) is equal to the relativistic gyration frequency of resonant electrons ($\omega_{ce}\Gamma_r^{-1}$):

$$\omega = \omega_{ce} \sqrt{1 - \frac{v_r^2}{c^2}} + k_\parallel v_r\parallel,$$

with k the wave vector and v_r the velocity of the resonant particle, and $\Gamma_r^{-1} = \sqrt{1 - v_r^2/c^2}$ the relativistic Lorentz factor. The \perp and \parallel indices represent the perpendicular and parallel components of the wave vector k or the velocity v_r with respect to the magnetic field B.

4
In the weakly relativistic case \((v_r \ll c)\), the above resonance condition can be rewritten as the equation for a resonant circle in the \([v_\perp, v_\parallel]\) velocity space:

\[
v_\perp^2 + (v_\parallel - v_0)^2 = v_r^2, \tag{2}
\]

defined by its center:

\[
v_0 = \frac{k_\parallel e^2}{\omega_{ce}}, \tag{3}
\]

and its radius

\[
v_r = \sqrt{v_0^2 - 2e^2 \Delta \omega}, \tag{4}
\]

with

\[
\Delta \omega = (\omega - \omega_{ce})/\omega_{ce} \tag{5}
\]

the frequency shift between the emission frequency and the cyclotron electron frequency.

For the CMI to amplify radio emission, the electron distribution function needs to present a positive \(\partial f / \partial v_\perp\) gradient along the resonant circle in the velocity space, and radio waves will be amplified if positive growth rates are presents.

The simplified version of the growth rate expression used by Louarn et al. (2017, 2018); Louis et al. (2020) is well adapted to the amplification of X–mode waves propagating at frequencies close to \(f_{ce}\), for a refraction index \(N = 1\) and a moderately energetic \((E \ll 511\ \text{keV})\) and low–density \((f_{pe} \ll f_{ce})\) plasma. But this expression contains an approximation at low pitch angle, and therefore applies only to growth rate calculation in the loss cone. Therefore to generalize the calculation of growth rate in the whole electron distribution function, we use the expression of Collet et al. (2023), derived from the dispersion relation in X mode from Le Queau et al. (1984b) (see Annexe A of Collet et al., 2023, for the full demonstration of the growth rate expression). They assumed that the plasma is composed of one cold population at thermodynamic equilibrium and one non–thermal energetic (or hot) population. In this study, the hot electron density is the one measured by JADE–E for electrons above 1 keV energy.

\[
\gamma = \frac{(\pi \epsilon_h)^2}{1 + (\frac{\epsilon_h}{2 \Delta \omega})^2} \int_0^\pi d\theta v_r^2 \sin^2(\theta) \frac{\partial f_h}{\partial v_\perp} (v_0 + v_r \cos(\theta), v_r \sin(\theta)) \tag{6}
\]

In this equation \(\epsilon_\alpha = \omega_{pe}/\omega_{ce}\), where \(\omega_{pe}\) is the plasma frequency of the hot \((\alpha = h)\) or cold \((\alpha = c)\) electrons. \(f_h\) is the normalized electron distribution function of hot electrons \((\int f \, dv^3 = 1)\). In practice, the factor to normalize the distribution function is \(c^3 10^{-18}/n_e\), where \(n_e\) is the electron density (in \(\text{cm}^{-3}\)).
Equation 6 means that the growth rate is obtained by integrating $\partial f_h / \partial v_\perp$ along a resonant circle in the normalized velocity space $[v_\parallel, v_\perp]$, defined by its center v_0 (Equation 3), its radius v_r (Equation 4) and the angle $\phi \subseteq [0, \pi]$ along this circle.

By calculating and maximizing the growth rate, we are able to assess the most CMI-unstable electron population and characterize the resulting amplified waves, and then obtain the characteristics of the emission (e.g., the energy of the resonant electrons and the aperture of the beaming angle).

One of the 3 anodes of JADE–E is unfortunately not functional. As a result, due to Juno’s spin and its orientation with respect to the magnetic field lines, it sometimes happens that certain pitch angles are not sampled. In order to calculate the growth rate of the wave along the different resonance circles in velocity space, JADE–E needs to sample sufficient pitch angles. If too much of the EDF measurement is missing (60% along a resonant circle), we cannot calculate the growth rate and determine the characteristics.

However, assuming that Juno is located within the radio source region (if the radio emission is observed very close to, or even below, f_{ce}), we are still able to obtain some information about the source size and the characteristics of the emission, by measuring the emission frequency observed by Juno/Waves data. If the EDF is of shell type, i.e. if $f \leq f_{ce}$, then the resonant circle is centered on $v_0 = 0$, therefore $k_\parallel = 0$ (see Equation 3), and Equation 1 can then be rewritten as:

$$\omega_{shell} = \omega_{ce} \sqrt{1 - \frac{v_r^2}{c^2}}$$

Thus, from the measurements of the local electron cyclotron frequency ($\omega_{ce} = 2\pi f_{ce}$) and the emission frequency f_{shell}, and using $E = 0.5 \times m_e v^2$ (with $m_e = 511 \text{ keV}/c^2$ the electron mass), the electron energy in keV in the shell–driven CMI case can be written as:

$$E \approx 255.5 \times \left(1 - \left(\frac{f_{shell}}{f_{ce}}\right)^2\right)^{\frac{1}{2}}.$$

In the case of a loss–cone (lc) type EDF, i.e. if $f > f_{ce}$, in the weakly relativistic case ($v_r \ll c$) the resonant equation can be rewritten as (for more details see Equations 2–12 of Louis et al., 2019b):
\[\omega_{lc} \simeq \frac{\omega_{ce}}{\sqrt{1 - \frac{v_r^2}{c^2}}} , \]
and therefore the electron energy in keV in the loss cone–driven CMI case can be written as:

\[E \simeq 255.5 \times \left(1 - \left(\frac{f_{ce}}{f_{lc}} \right)^2 \right) \]

3 Observations and Analysis of Radio Emission Sources Crossings

Due to the large extension of Io's tail (Szalay et al., 2020b) and to Juno's polar orbit, the spacecraft crossed Io's magnetic flux tubes at least twice every orbit (North, then South). However, electron fluxes connected to Io's UV aurora are not observed in appreciable or detectable amounts by Juno/JADE–E every transit of these flux tubes. Therefore, during the first 26 Juno perijoves, 18 cases of electron fluxes connected to Io’s magnetic flux tube have been reported using the JADE–E measurements (Szalay et al., 2020b). By studying the data from perijoves (PJ) #27 to #31, we report five more cases of Io’s tail flux tube crossing where electron fluxes were measured. In the Europa case, electron fluxes connected to Europa’s UV aurora were measured ten times (Allegrini et al., 2020; Rabia et al., 2023). Finally, electron flux connected to Ganymede’s UV aurora were measured only two times. The first one during PJ #20 (reported by Szalay et al., 2020a; Louis et al., 2020) and the second one during PJ #30 (studied in details by Hue et al., 2022).

For all moon’s flux tube crossings detected by JADE–E, we investigate Waves observations to look for radio emission located below 1 % the local electron cyclotron frequency \(f_{ce} \) (determined from the local magnetic field amplitude measured by the MAG instrument). We therefore considered these cases as a potential crossing of a radio source.

We then study the EDF obtained from JADE–E. Szalay et al. (2020a, 2020b); Allegrini et al. (2020); Rabia et al. (2023) studied the downward electrons and the production of UV emissions linked to these downward electron currents, as well as the presence of Alfvénic current systems capable of accelerating these electrons. We study here the CMI–unstability of measured EDF, in the continuity of Louis et al. (2020). To go further than Louis et al. (2020), we study instability in the whole EDF, to search not only for loss–cone type instabilities, but also shell type. We also study the upward and downward electrons, as well as the magnetic field perturbation, to determine the presence of field aligned currents (FAC) using Wang et al. (2021); Al Saati et al. (2022) method and Alfvén perturbations capable of accelerating electrons.
Downtail distances with respect to the main spot were recently revised using Juno/UVS data. Over 1,600 spectral images of the Io, Europa, and Ganymede UV footprint were analyzed to provide statistical positions of the main Alfvén wing spots. This allowed Hue et al. (2023) to estimate the distance from Juno to the main spot at the time of the source crossings that will be described in this Section, as well as derived observationally an estimation of the Alfvén travel time for each three moons. Note that the actual position of the main Alfvén wing spots is affected by the background magnetospheric conditions (density of the plasma sheet along the field line connected to the satellite footprint and/or magnetic field strength), and therefore shifts of the main Alfvén wing spots mapped to the equatorial region up to ±2° (Io), ±4° (Europa) and ±5° (Ganymede) are not unusual (See Hue et al., 2023, Figures 4, 5, 7). A negative distance to the main spot therefore translate either (i) a source crossing associated with a transhemispheric electron beam located much upstream of the Alfvén wing spots, or (ii) a change in the plasma condition (e.g., lower plasmasheet density and/or higher magnetic field magnitude).

3.1 Jupiter–Io radio emission source crossings

Out of the 23 cases where electron fluxes connected to Io’s tail flux tube were measured, simultaneous radio emissions below $1.01 \times f_{ce}$ were observed in only 4 cases. Figure 1 displays Juno measurements around an Io flux tube encounter, during PJ#5 on 2017–03–27 (2017 March 27th) in the Southern hemisphere (already reported by Louis et al., 2019a). Panel (A) presents the Juno/Waves measurements (in low–resolution mode, Kurth et al., 2017) around the perijove (from ~ −1.5 h before to ~ 2.5 h after). Panel (B) is a 5 min zoom–in of panel (A) using Juno/Waves high–resolution mode. The decreasing solid–black and dashed–black lines in panels (A,B) represent respectively the electron cyclotron frequency f_{ce} and $1.01 \times f_{ce}$. Panels (C)–(E) show the Juno/JADE–E measurements of (C) the electron differential number flux (or intensity), (D) the electron distribution function of upgoing electrons and (E) the partial electron density (where all the energy population < 0.1 keV is not accounted for). Figure 1F displays the FAC calculated based on Al Saati et al. (2022)’s method (see sections 1.3 and 2 of their SI for more details). This method used the residual magnetic field perturbation δB, defined as the difference between the Juno/MAG magnetic field measurements and the magnetic field values obtain from the combination of the Connerney et al. (2018) magnetic field and Connerney et al. (1981) current sheet models. The FAC are then calculated from the residual magnetic field perturbation in the azimuthal direction (δB_ϕ).

Figure 1B displays an emission very close to $1.01 \times f_{ce}$, while we observe an enhancement in the electron energy flux (panel C) at a few keV, a strong intensification

-8-
Figure 1: Juno data during Perijove 5, on 27 March 2017. Panels (A,B) display Juno/Waves data (A) in low–resolution mode and (B) in high–resolution mode. The solid–black lines represent the electron cyclotron frequency derived from the magnetic field measurements of Juno/MAG, and the dashed–black line is $1.01 \times f_{ce}$. Panels (C–D) display Juno/JADE–E measurements: (C) the electron differential number flux (or intensity) of all electrons; (D) the electron distribution function for energy in range [2–21] keV as a function of pitch angles; Panels (E) displays the normalized growth rate γ/ω_{ce} maximal value calculated using Equation 6. Panel (F) shows the partial electron density calculated from the JADE–E flux. Panel (G) shows the field aligned currents calculated based on Al Saati et al. (2022)’s method, using magnetic field fluctuations in the azimuthal direction (δB_{ϕ}) deduced from the Juno/MAG measurements. The vertical dashed black lines represent the flux tube crossing as inferred from JADE data, while vertical dashed red lines represent the time interval where positive growth rate are calculated from JADE–E measurements. Panel (H) displays a UV map of the southern hemisphere, using Juno/UVS measurements from 09:35:49 to 09:55:20. The red line indicates Juno’s trajectory, with the red dots its position at the start and end time of the measurements used for this image. Io UV footprint is highlighted by the red ellipse.

in the distribution function (panel D), an increase of the electron density (panel F) and a clear upward current surrounded by downward FAC (panel G). Figure S1 in Supporting Information displays the magnetic field fluctuations for all the magnetic field components in spherical coordinates. The magnetic field perturbation associated to the FAC shows clear fluctuations in the transverse component (perpendicular to B, corresponding to δB_{ϕ} and δB_{θ}) while no fluctuations are observed in the radial component (δB_{r}). The fluctuations are therefore confined to the transverse components, which is indicative of a lack of horizontal current, and therefore indicative of FAC (displayed Figure 1F). Moreover, no fluctuations are seen in the total magnetic field magnitude $\delta |B|$, indicating that these variations are Alfvénic in nature (Gershman et al., 2019; Kotsiaros et al., 2019).

Figures 2A–B display the electron distribution function in the velocity space measured by Juno/JADE–E at (A) 09:30:52 and (B) 09:31:00. From these data and Equation 6 we can calculate the normalized growth rate of the emission along different resonant circles to determine the unstable electron population. Figures 2C–D show the estimated normalized growth rate γ/ω_{ce} along resonant circles in the whole EDF, calculated for different centers (x–axis) and different radii (y–axis). Figures 2E–F displays the growth rate γ as a function $\Delta \omega$ for each resonant circle displaying a positive growth rate.

Positive growth rates are obtained for the EDF of Figure 2A, and not for the EDF of Figure 2B. Only resonant circles inside the theoretical loss cone show positive growth rate (blue circles and orange stars in Figure 2E), while no positive growth rate are found for shell–type resonant circles (green diamonds). By doing this calculation before, dur-
Figure 2: Caption on next page
Figure 2: Panels (A,B): electron distribution function in the velocity space $[v_\|, v_\perp]$ measured by JADE–E on 2017–03–27 at (A) 09:30:52 (inside the Io tail radio source) and (B) 09:31:00 (outside the Io tail radio source). In that case, the $v_\| < 0$ part of the EDF represents upgoing electrons, while $v_\| > 0$ represents downward electrons. The colorbar and the isocontours are shown using a logarithmic scale in units of $s^3 km^{-6}$. The radial red thick line indicates the theoretical loss cone value. The blue circular half-circle in panel (A) display the resonant circle with the highest growth rate. Panels (C,D): Normalized growth rate (γ/ω_ce) estimates for different resonant circles at different centers v_0 and radii v_r. Panels (E,F): Normalized growth rate as a function of the frequency shift $\Delta \omega$ between the emission frequency and the cyclotron electron frequency (see Equation 11 for all resonant circle with positive growth rate γ. Blue circles represent growth rate for resonant circles tangential to the theoretical value of the loss cone. Orange stars represent growth rate growth rate for resonant circle inside the theoretical loss cone. Both are considered as loss–cone type instabilities. Green diamonds represent growth rate for resonant circles of shell-type.

...ing and after the crossing of the Io’s tail flux tube (see Figure 1E), we are able to determine when Juno is in the source, and thus determine its size and the characteristics of the emission. In this case, positive growth rate are obtained along loss–cone type resonant circles from 09:30:51 to 09:30:59 (±1 sec). This time interval is indicated in Figure 1 by the two vertical dashed red lines. Juno’s velocity being ~ 45 km/s during this time, we determined that the source size is 360 ± 45 km. From the growth rate calculation, we can determine that the energy of the resonant electrons responsible for this emission is in the range $[1–15]$ keV, with an opening angle θ of the beaming cone in the range $[74^\circ–85^\circ]$. To determine this value, we used Equation 7 of Louis et al. (2020):

$$\theta = \acos(\beta_0/(1 + \Delta \omega)) \quad ,$$

based on the assumptions of Section 2.

It is interesting to note that enhanced electron fluxes are observed for the period of 09:30:51 to 09:31:02 (determined as the flux tube crossing, Szalay et al., 2020b), while the J–I radio source is only crossed from 09:30:51 to 09:30:59 (determined from the growth rate calculation), which corresponds to the time where Juno is inside a downward current (corresponding to upward electrons). When Juno is located inside an upward current (i.e., downward electrons), no positive growth rate are obtained.

The same method is applied to the data from PJ#6 (North) on 2017–05–19, during which a J–I radio source is crossed between 05:39:31 and 05:39:39 (see Figure S2), and to PJ#29 (North) on 2020–09–16 during which a J–I radio source is crossed between 02:00:34 and 02:00:36 (see Figure S3). For the crossing of the J–I radio source that occurs in the northern hemisphere during PJ#5 on 2017–03–26 around 08:34:40 (see Fig-
ure S4), we do not have JADE–E measurements of the upgoing electrons, and we therefore can not calculate the growth rate. Since no radio emission is observed below \(f_{ce} \), we therefore assume that loss–cone EDF remain the prominent source of free energy for the CMI, and we therefore use Equation 10 to determine the electron energy. The results for these three crossings, i.e., radio source size, resonant electron energy, \(f_{\text{emission}} \) and opening angle of the beaming cone, are summarized Table 1.

As for PJ#5 (South), FAC and Alfvénic perturbations are observed during PJ#5 (North) and PJ#29 (North) Io’s flux tube crossing (see Figures S4 and S3, respectively), with perturbations in the transverse components of the magnetic field (\(\delta B_\phi \) and \(\delta B_\theta \)) while no perturbation is observed in the radial (\(\delta B_r \)) and compressive (\(\delta |B| \)) components. Furthermore, as for PJ#5 (South), the radio source is not crossed anywhere inside Io’s flux tube, but only when Juno is located inside a downward current (i.e., upward electrons). During PJ#6 (North), nothing is observed in the magnetic field perturbations, which could be due to the fact that the electron density is very low (< 1 cm\(^{-1}\)), which could induce a perturbation too weak for the MAG instrument to detect.

Based on the recalculation of the downtail distance to the main spot of Io \(\Delta \lambda_{\text{Alfvén}} \) (Hue et al., 2023), the J–I radio emission source crossings of PJ#5 North, PJ#5 South, PJ#6 South are all associated with a Reflected Alfvén Wing (RAW) spot downtail of Io. The intensity of the radio emission seems to be quite similar for crossings occurring close to the main spot, with an intensity of 2–3\(\times 10^{-6} \) V\(^2\).m\(^{-2}\).Hz\(^{-1}\) when 3.3\(^{\circ}\) < \(\Delta \lambda_{\text{Alfvén}} \) < 10.8\(^{\circ}\). The intensity seems to be lower when \(\Delta \lambda_{\text{Alfvén}} \) is large, with an intensity of 8\(\times 10^{-8} \) V\(^2\).m\(^{-2}\).Hz\(^{-1}\) for \(\Delta \lambda_{\text{Alfvén}} = 87.4^{\circ} \).

3.2 Jupiter–Europa radio emission

During the 26 first perijoves, enhanced electron fluxes connected to Europa’s UV aurora were measured ten times (Allegrini et al., 2020; Rabia et al., 2023). A radio source was crossed only during PJ#12 on the Northern hemisphere, on 2018–04–01 around 08:15:44.

Figure 3 displays Juno/Waves (panels A–B), Juno/JADE–E measurements (panels C–E) and Juno/UVS (panel F) during the crossing of flux tube connected to a Europa’s downtail UV footprint (Allegrini et al., 2020). During the time of the flux tube crossing, determined by the enhancement of the electron flux in JADE–E measurements (Figures 3C–D), a radio emission is observed below 1.01 \(\times f_{ce} \) (Figure 3B). However, the JADE–E instruments did not record data of upgoing electrons in the loss cone during this time. We therefore cannot calculate the loss–cone or shell CMI growth rate for this EDF. Since no radio emission is observed below \(f_{ce} \), we therefore assume that loss–
Figure 3: Panels (A,B) display Juno/Waves data (A) in low–resolution mode and (B) in high–resolution mode. The solid–black lines represent the electron cyclotron frequency derived from the magnetic field measurements of Juno/MAG, and the dashed–black line is $1.01 \times f_{ce}$.

Panels (C–E) display Juno/JADE–E measurements: (C) the electron differential number flux (or intensity) of all electrons; (D) the electron distribution function for energy in range [2–21] keV only for pitch angles [0°–60°] corresponding to up–going electrons; (E) partial electron density calculated from the JADE–E flux. Panel (F) displays a UV map of the northern hemisphere, using Juno/UVS measurements from 08:50:24 to 09:10:20. The red line indicates Juno’s trajectory, with the red dots its position at the start and end time of the measurements used for this image. Europa UV footprint is highlighted by the red ellipse.
cone EDF remain the prominent source of free energy for the CMI. We then apply Equation 10 to estimate the energy of the resonant electron. Looking at the Juno/Waves measurements (Figure 3B), we determine that the radio emission observed during Europa’s flux tube crossing is emitted at a frequency between 0.7 and 1.5% above the electron cyclotron frequency f_{ce} (solid dark line). This frequency measurement leads to an energy of the resonant electrons in the range [3–8] keV, and an opening angle of the beaming cone in the range [79°–84°].

The MAG measurements of the magnetic field perturbation show no strong variation of the different components. Once again, as in the case of PJ#6N for Io, the electron density is very low ($\sim 2 \text{ cm}^{-1}$) which could induce perturbations too weak and/or too short for the MAG instrument to detect.

Based on the latest work of Rabia et al. (2023) and the recalculation of $\Delta \lambda_{\text{Alfvén}}$ (Hue et al., 2023), we can conclude that the J–E radio source crossed during PJ#12 is associated with a Transhemispheric Electron Beam (TEB) spot uptail of the main Europa UV spot.

3.3 Jupiter–Ganymede radio emission

So far, flux tubes connected to Ganymede footprint tail aurora have been crossed twice: the first one during PJ #20 on 2019–05–19 between 07:37:14 and 07:37:32 (reported by Szalay et al., 2020a; Louis et al., 2020) and the second one during PJ #30, on 2020–11–08 around 02:55:02 (Hue et al., 2022).

We already reported the PJ#20N crossing in Louis et al. (2020), but at that time, we did not look at the Juno/MAG measurements, which was done by Szalay et al. (2020a) (and plotted in Figure S5). During this Ganymede footprint tail aurora flux tube crossing, fluctuations in the transverse components (δB_ϕ and δB_θ) were observed, while no fluctuations were measured in the radial (δB_r) and compressive ($\delta |B|$) components, which indicates the presence of field aligned currents and Alfvénic perturbations. As for the J–I radio emission sources, it should be noted that the radio source is only crossed when Juno is in a downward current (i.e., upward electrons). Based on Szalay et al. (2020a); Louis et al. (2020), this radio emissions is associated with a RAW UV spot (with a $\Delta \lambda_{\text{Alfvén}} = 8^\circ$). However, based on the recent work of Hue et al. (2023), for this J–G radio source, $\Delta \lambda_{\text{Alfvén}} = -1.8^\circ$. Therefore, due to the error of 5° on the position of the MAW for Ganymede (due to possible change in the in situ plasma condition, see penultimate paragraph of Section 1), it appears that the J–G radio source crossed during PJ#20, is connected not to the RAW spot, but to the MAW spot.
Concerning the second case, during PJ#30 on 2020–11–08 (northern hemisphere), Ganymede footprint tail aurora flux tube was crossed around 02:55:02, with radio emission tangent to $1.01 \times f_{ce}$ at the same time (see Hue et al., 2022). Unfortunately, JADE–E did not measure the upward electrons during Ganymede flux tube crossing. Therefore, we can only estimate the electron energy using Equation 10 (as no radio emission is observed below f_{ce}). Around 02:55:02, Waves measured a radio emission between 1.804 MHz and 1.894 MHz. Based on the Juno/MAG measurements of the magnetic field amplitude, $f_{ce} = 1.7857$ MHz. These values of the emission frequency lead to an estimation of the resonant electron energy in the range $[5.1–28.5]$ keV, and an aperture angle of the beaming cone in the range $[70^\circ–81^\circ]$, provided that Juno actually flew through the radio source. During the crossing, MAG measurements show a ~ 10 nT perturbation in δB_{ϕ}, while no perturbation is observed in the radial δB_r and compressive $\delta |B|$ components, which indicates again the presence of Alfvénic perturbations and field aligned currents, with an upward current equatorward of a downward current.

Based on the work of Hue et al. (2022), we can also conclude that the J–G radio emission source crossed during PJ#30 is associated with a Transhemispheric Electron Beam (TEB) spot uptail of the main Europa UV spot.

The results for these two J–G radio source crossings are summarized in Table 1.

4 Summary and Discussion

Table 1: Results for the Jupiter–Io, Jupiter–Europa and Jupiter–Ganymede radio emission source crossings. Is given for each crossing: the name of the moon; the hemisphere of the emission; the associated perijoves; the date and time interval of the radio source crossing as inferred from growth rate calculation when JADE data were available; the JADE data availability; the minimal frequency reached by the radio emission (in MHz); the frequency bandwidth of the emission (in percentage above f_{ce}); the maximum intensity (in $V_m\cdot m^{-2}\cdot Hz^{-1}$) of the emission; the electron energy (in keV); the opening half–angle of the beaming cone (in $^\circ$); the radio source size (in km); the downtail distance to the Main Alfvén Wing spot $\Delta \lambda_{Alfvén}$ (Hue et al., 2023); the associated UV emission at the footprint of the magnetic field line associated to the source (MAW: Main Alfvén Wing; RAW: Reflected Alfvén Wing; TEB: Transhemispheric Electron Beam).

<table>
<thead>
<tr>
<th>Moon</th>
<th>Hemisphere</th>
<th>Io</th>
<th>Europa</th>
<th>Ganymede</th>
</tr>
</thead>
<tbody>
<tr>
<td>Perijove</td>
<td></td>
<td>P15</td>
<td>P16</td>
<td>P120</td>
</tr>
<tr>
<td>JADE data</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>f_{ce} (MHz)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Intensity max. ($V_m\cdot m^{-2}\cdot Hz^{-1}$)</td>
<td>3–18 x 10^{-3}</td>
<td>3–29 x 10^{-3}</td>
<td>2–14 x 10^{-3}</td>
<td>4–10 x 10^{-3}</td>
</tr>
<tr>
<td>Opening angle</td>
<td>74–85°</td>
<td>77–86°</td>
<td>73–84°</td>
<td>79–84°</td>
</tr>
<tr>
<td>Radio source size (km)</td>
<td>369 ± 45</td>
<td>500 ± 100</td>
<td>290 ± 50</td>
<td>200 ± 49</td>
</tr>
<tr>
<td>$\Delta \lambda_{Alfvén}$ (°)</td>
<td>3.3°</td>
<td>10.8°</td>
<td>8.7°</td>
<td>7.8°</td>
</tr>
<tr>
<td>Associated UV emission</td>
<td>RAW</td>
<td>RAW</td>
<td>RAW</td>
<td>TEB</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Io</th>
<th>North</th>
<th>North</th>
<th>North</th>
<th>North</th>
<th>North</th>
<th>North</th>
</tr>
</thead>
<tbody>
<tr>
<td>JADE data</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>f_{ce} (MHz)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Intensity max. ($V_m\cdot m^{-2}\cdot Hz^{-1}$)</td>
<td>3–18 x 10^{-3}</td>
<td>3–29 x 10^{-3}</td>
<td>2–14 x 10^{-3}</td>
<td>4–10 x 10^{-3}</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Opening angle</td>
<td>74–85°</td>
<td>77–86°</td>
<td>73–84°</td>
<td>79–84°</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Radio source size (km)</td>
<td>369 ± 45</td>
<td>500 ± 100</td>
<td>290 ± 50</td>
<td>200 ± 49</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$\Delta \lambda_{Alfvén}$ (°)</td>
<td>3.3°</td>
<td>10.8°</td>
<td>8.7°</td>
<td>7.8°</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Associated UV emission</td>
<td>RAW</td>
<td>RAW</td>
<td>RAW</td>
<td>TEB</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Europa</th>
<th>North</th>
<th>North</th>
<th>North</th>
<th>North</th>
</tr>
</thead>
<tbody>
<tr>
<td>Time interval (HH:MM:SS)</td>
<td>02:00:34–36</td>
<td>around 09:14</td>
<td>07:47:25–30</td>
<td>around 02:55:02</td>
</tr>
<tr>
<td>JADE data</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>f_{ce} (MHz)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Intensity max. ($V_m\cdot m^{-2}\cdot Hz^{-1}$)</td>
<td>3–18 x 10^{-3}</td>
<td>3–29 x 10^{-3}</td>
<td>2–14 x 10^{-3}</td>
<td>4–10 x 10^{-3}</td>
</tr>
<tr>
<td>Opening angle</td>
<td>74–85°</td>
<td>77–86°</td>
<td>73–84°</td>
<td>79–84°</td>
</tr>
<tr>
<td>Radio source size (km)</td>
<td>369 ± 45</td>
<td>500 ± 100</td>
<td>290 ± 50</td>
<td>200 ± 49</td>
</tr>
<tr>
<td>$\Delta \lambda_{Alfvén}$ (°)</td>
<td>3.3°</td>
<td>10.8°</td>
<td>8.7°</td>
<td>7.8°</td>
</tr>
<tr>
<td>Associated UV emission</td>
<td>RAW</td>
<td>RAW</td>
<td>RAW</td>
<td>TEB</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Ganymede</th>
<th>North</th>
<th>North</th>
</tr>
</thead>
<tbody>
<tr>
<td>Date (Year–Month–Day)</td>
<td>2018–04–01</td>
<td>2018–05–29</td>
</tr>
<tr>
<td>Time interval (HH:MM:SS)</td>
<td>02:00:34–36</td>
<td>around 09:14</td>
</tr>
<tr>
<td>JADE data</td>
<td></td>
<td></td>
</tr>
<tr>
<td>f_{ce} (MHz)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Intensity max. ($V_m\cdot m^{-2}\cdot Hz^{-1}$)</td>
<td>3–18 x 10^{-3}</td>
<td>3–29 x 10^{-3}</td>
</tr>
<tr>
<td>Opening angle</td>
<td>74–85°</td>
<td></td>
</tr>
<tr>
<td>Radio source size (km)</td>
<td>369 ± 45</td>
<td></td>
</tr>
<tr>
<td>$\Delta \lambda_{Alfvén}$ (°)</td>
<td>3.3°</td>
<td></td>
</tr>
<tr>
<td>Associated UV emission</td>
<td>RAW</td>
<td>RAW</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Ganymede</th>
<th>South</th>
</tr>
</thead>
<tbody>
<tr>
<td>Date (Year–Month–Day)</td>
<td>2020–11–08</td>
</tr>
<tr>
<td>Time interval (HH:MM:SS)</td>
<td>around 02:55:02</td>
</tr>
<tr>
<td>JADE data</td>
<td></td>
</tr>
<tr>
<td>f_{ce} (MHz)</td>
<td></td>
</tr>
<tr>
<td>Intensity max. ($V_m\cdot m^{-2}\cdot Hz^{-1}$)</td>
<td>3–18 x 10^{-3}</td>
</tr>
<tr>
<td>Opening angle</td>
<td>74–85°</td>
</tr>
<tr>
<td>Radio source size (km)</td>
<td>369 ± 45</td>
</tr>
<tr>
<td>$\Delta \lambda_{Alfvén}$ (°)</td>
<td>3.3°</td>
</tr>
<tr>
<td>Associated UV emission</td>
<td>RAW</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Gulfstream</th>
<th>RAW</th>
<th>RAW</th>
<th>RAW</th>
<th>TEB</th>
<th>TEB</th>
</tr>
</thead>
</table>
Concerning the characteristics of the radio emission, the results are similar for the three Galilean moons Io, Europa and Ganymede, in terms of driving mechanism (CMI), electron energy, and beaming. The in situ measurements by JADE–E show that the radio emission is triggered by the Cyclotron Maser Instability, driven by a loss–cone electron distribution function. No unstable shell–type electron distribution function are detected in JADE–E measurements. The energy of the resonant electrons is in the range [1–20] keV, and the half–opening cone angle is in the range [74°–86°].

These values are in agreement with those recently obtained using ground–based radio observation, such as the Nançay Decameter Array or NenuFAR, such as the recent work of Lamy et al. (2022) who determined for Io an opening angle $\theta(f)$ in the range [70°–80°] and electron energies in the range [3–16] keV. For Europa, Lamy et al. (2023) measured on an unique detection an opening angle in the range $\theta = [80°–86°]$ and an electron energy in the range [0.5–3] keV. For Ganymede, the observations of three emissions lead them to a determination of a beaming angle in the range $\theta = [71°–87°]$ and an electron energy in the range [0.5–15] keV.

The radio sources have a latitudinal extent of a few hundreds of kilometers. In the cases where we are able to constrain the radio source location (provided that we have JADE–E measurement of the up–going electrons), the sources were not crossed anywhere in the flux tube, but only in the downward Field Aligned Currents.

Based on the previous works of Szalay et al. (2020a, 2020b); Louis et al. (2020); Hue et al. (2022); Rabia et al. (2023) and the recalculated downtail distances from the UV moon main spot using Hue et al. (2023), we also concluded that in the case of Io, all radio source crossed were associated with a RAW UV spot. These crossed radio sources are therefore associated with the secondary radio emissions observed in the usual dynamic spectrum.

In the case of Europa, the only case of radio emission source so far is associated with a TEB spot. Finally, for Ganymede, one radio source is associated with a MAW spot, while the second one is associated with a TEB spot. Even if we didn’t detect any radio emission above TEB for Io, these results are is in agreement with the interpretation of the first identification of some Io–DAM linked to the TEB spot analyzed in Lamy et al. (2022).

The maximal intensity is quite similar between all cases close to the main UV spot, with a value of $2–3 \times 10^{-6} \ V^2.m^{-2}.Hz^{-1}$ in a interval $3.3^\circ < \Delta \lambda_{\text{Alfvén}} < 10.8^\circ$, with a decrease of the intensity with long distance downtail ($8\times10^{-8} \ V^2.m^{-2}.Hz^{-1}$ for the case at $\Delta \lambda_{\text{Alfvén}} = 87.4^\circ$). But with only one case very far downtail, we can’t produce
a fit of this decrease as a function of $\Delta \lambda_{\text{Alfvén}}$. However, the maximal intensity of the emission is quite smaller for the radio source crossed above a TEB spot ($10^{-9} - 10^{-7} \text{ V}^2 \cdot \text{m}^{-2} \cdot \text{Hz}^{-1}$). This could be related to the type of electron distribution, which seems different near tail (non–monotonic) than far tail (broadband), at least for Europa with a separation at $\Delta \lambda_{\text{Alfvén}} \approx 4^\circ$ downtail to the Main spot (Rabia et al., 2023).

From these latest observations, it therefore appears that the cyclotron maser instability driven by a loss–cone electron distribution function is a common way of amplifying radio emission at Jupiter. This is the case both for auroral radio emission (Louarn et al., 2017, 2018) and for moon–induced radio emission (Louis et al., 2020; Hue et al., 2022, and this present study). We have also shown here that the presence of Alfvénic perturbation as well as field aligned current are necessary for the radio emissions to be amplified. The radio sources are located only in the downward part of the FAC, i.e. when the current is carried by upgoing electrons. This supports the results obtained from very high resolution observations (Zarka et al., 1996; Zarka, 2004; Hess et al., 2007a, 2007b; Louis et al., 2022), which show that the millisecond bursts observed in the J–I emissions present only negative drifts, i.e. upward–moving electrons. Finally, radio emission are found to be associated with TEB, MAW and RAW spot at the footprint of the flux tube connected to the moons.

However, the Cyclotron Maser Instability does not trigger radio emission at a detectable level for Waves every time Juno is in the flux tube of the moons, even if UV emission is observed at the footprint of the flux tube in each case. Radio sources are crossed in the two cases of Ganymede flux tube crossings. In contrast, a radio source is crossed only once over ten Europa flux tube crossings, while for Io, only four radio sources are crossed over 23 Io flux tube crossings. Therefore, it is clear that several criteria are necessary to amplify a radio wave through the CMI.

First, we knew that for the CMI to occur, a low energetic plasma is needed ($f_{pe}/f_{ce} \ll 0.1$). But in this study, we also found that the CMI needs to have a sufficiently dense, hot and energetic plasma to occur. If the ratio between f_{pe} and f_{ce} is too low, the integration of the $\delta f/\delta v_\perp$ gradient along the resonant circles gives an insufficiently high growth rate to amplify the wave to an observable intensity.

A second necessary condition seems to be the presence of an Alfvénic acceleration process and Field Aligned Current. Could the loss–cone–driven CMI be triggered by upward electrons accelerated by a Fermi acceleration process in the FAC generated by the Alfvén Waves (as suggested by Crary, 1997). To answer this question, more crossings
of Jupiter-Moon radio emissions will be necessary, and future Juno observations could
further illuminate these important processes.

Data Availability Statement

The Juno data used in this manuscript are found at the Planetary Data System
at https://doi.org/10.17189/1522461 for Waves data (Kurth & Piker, 2022), at https://
doi.org/10.17189/1519715 for JADE–E data (Allegrini et al., 2022) and at https://
doi.org/10.17189/1519711 for MAG data (Connerney, 2017).

Acknowledgments

The authors thank the Juno mission team, especially the staff of the Waves, JADE and
MAG instruments. C. K. L.’s work at IRAP was supported by CNES. CKL’s and CMJ’s
work at DIAS was supported by Science Foundation Ireland Grant 18/FRL/6199. C. K.
L. thanks E. Penou, for the help with the particle analysis through the CLWeb software.
V. H. acknowledges support from the French government under the France 2030 invest-
ment plan, as part of the Initiative d’Excellence d’Aix–Marseille Université – A*MIDEX
AMX–22–CPJ–04. The research at the University of Iowa is supported by NASA through
Contract 699041X with the Southwest Research Institute. The research at the South-
west Research Institute is supported by NASA New Frontiers Program for Juno through
contract NNM06AA75C. The french authors acknowledge support from CNES and CNRS/INSU
national programs of planetology (PNP) and heliophysics (PNST).

References

Bagenal, F., Adriani, A., Allegrini, F., Bolton, S. J., Bonfond, B., Bunce, E. J.,

Connerney, J. E. P., Benn, M., Bjarno, J. B., Denver, T., Espley, J., Jorgensen,

with Voyager/PRA and Cassini/RPWS. *Journal of Geophysical Research (Space Physics)*, 122, 9228-9247. doi: 10.1002/2016JA023779

Supporting Information for "Source of radio emissions induced by the Galilean moons Io, Europa and Ganymede: in situ measurements by Juno"

C. K. Louis1,2,3, P. Louarn2, B. Collet4, N. Clément2,5, S. Al Saati2,6, J. R. Szalay7, V. Hue8, L. Lamy3,4, S. Kotsiaros9, W. S. Kurth10, C. M. Jackman1, Y. Wang2,11,12, M. Blanc2,5, F. Allegrini13,14, J. E. P. Connerney15, D. Gershman16

1School of Cosmic Physics, DIAS Dunsink Observatory, Dublin Institute for Advanced Studies, Dublin 15, Ireland
2IRAP, Université de Toulouse, CNRS, CNES, UPS, Toulouse, France
3LESIA, Observatoire de Paris, Université PSL, CNRS, Sorbonne Université, Université de Paris Meudon, France
4Pythéas, Aix Marseille Université, CNRS, CNES, Marseille, France
5Laboratoire d’Astrophysique de Bordeaux, Univ. Bordeaux, CNRS, B18N, Allée Geoffroy Saint-Hilaire, 33615 Pessac, France
6CPHT, CNRS, Institut Polytechnique de Paris, Route de Saclay, 91128 Palaiseau, France
7Department of Astrophysical Sciences, Princeton University, Princeton, New Jersey, USA
8NAix-Marseille Université, CNRS, CNES, Institut Origines, LAM, Marseille, France
9Technical University of Denmark: Kgs. Lyngby, Denmark
10Department of Physics and Astronomy, University of Iowa, Iowa City, Iowa, USA
11State Key Laboratory of Space Weather, National Space Science Center, Chinese Academy of Sciences, Beijing, China
12College of Earth and Planetary Sciences, University of Chinese Academy of Sciences, Beijing, China
13Southwest Research Institute, San Antonio, Texas, USA
14Department of Physics and Astronomy, University of Texas at San Antonio, San Antonio, Texas, USA
15NSpace Research Corporation, Annapolis, MD, USA, 21403
16NASA Goddard Space Flight Center, Greenbelt, MD, USA

Contents of this file:

1. Figures S1 to S5

Introduction

This Supporting Information contains figures that complement the figures and text in the main manuscript. Figure S1 complements Figure 1 by providing details of magnetic disturbances. Figure S2 to S4 provides Juno data for the three other Io-induced radio emission source crossings discussed in the text of the main manuscript. Finally, Figure S5 gives details of magnetic disturbances during the Ganymede-induced radio emission source crossing of PJ#20.
Figure S1 – Magnetic field perturbations from Juno/MAG measurements during Io-induced radio emission source crossing on 2017 March 27 (Perijove #5 South)

Figure S1: Magnetic field perturbations (spherical coordinates) during Io-induced radio emission source crossing that occurs during Perijove #5 South (2017 March 27). Transverse perturbations: (A) δB_{ϕ} and (B) δB_{θ}; Radial perturbations: (C) δB_r; Compressive perturbations: (D) $\delta |B|$. The blue shaded area represents downward current, while the red area represents upward current. Panel (E) shows the polar projection (as seen from the Southern pole) of Juno/UVS data with Juno’s trajectory overplotted. The two red points show the integrated time of the image (indicated on the bottom-right corner of the image). The red ellipse highlight the crossing of interest.
Figure S2 – Juno/ measurements during Io-induced radio emission source crossing on 2017 May 29 (Perijove #6 North)

Figure S2: Juno data during Perijove #6 North (2017 May 19), during an Io-induced radio emission source crossing. Panels (A,B) display Juno/Waves data (A) in low-resolution mode and (B) in high-resolution mode. The solid-black lines represent the electron cyclotron frequency derived from the magnetic field measurements of Juno/MAG, and the dashed-black line is $1.01 f_{ce}$. Panels (C-E) display Juno/JADE-E measurements: (C) the electron differential number flux (or intensity) of all electrons; (D) the electron distribution function for energy in range [2-21] keV as a function of pitch angle; (E) partial electron density calculated from the JADE-E flux. The vertical solid black lines represent the flux tube crossing as inferred from JADE data, while vertical red lines represent the time interval where growth rate $>10^{-4}$ are calculated from JADE measurements. Panel (F) shows the polar projection (as seen from the Northern pole) of Juno/UVS data with Juno’s trajectory
overplotted. The two red point shows the integrated time of the image (indicated on the top-right corner of the image). The red ellipse highlights the crossing of interest. Juno/MAG measurements show no significant magnetic field perturbation (potentially due to a very small electron density), and are therefore not shown.

Figure S3 – Juno/ measurements during Io-induced radio emission source crossing on 2020 September 16 (Perijove #29 North)

Figure S3: Juno data during Perijove #29 North (2020 September 16), during an Io-induced radio emission source crossing. Panels (A,B) display Juno/Waves data (A) in low-resolution mode and (B) in high-resolution mode. The solid-black lines represent the electron cyclotron frequency derived from the magnetic field measurements of Juno/MAG, and the dashed-black line is $1.01 f_{ce}$. Panels (C-E) display Juno/JADE-E measurements: (C) the electron...
differential number flux (or intensity) of all electrons; (D) the electron distribution function for energy in range [2-21] keV as a function of pitch angle; (E) partial electron density calculated from the JADE-E flux. Panel (F) shows the field aligned currents calculated based on Al Saati et al. (2022)'s method, using magnetic field fluctuations in the azimuthal direction (δB_ϕ) deduced from the Juno/MAG measurements.
The vertical solid black lines represent the flux tube crossing as inferred from JADE data, while vertical solid red lines represent the time interval where growth rate $> 10^4$ are calculated from JADE measurements.
Panels (G-J): Magnetic field perturbations (spherical coordinates) from Juno/MAG measurements: Transverse perturbations: (G) δB_ϕ and (H) δB_θ; Radial perturbations: (I) δB_r; Compressive perturbations: (J) $\delta|B|$. The blue shaded area represents downward current, while the red areas represent upward currents.
Panel (K) shows the polar projection of Juno's trajectory (as seen from the Northern pole). The red ellipse highlights the position of Juno at the crossing time. Not enough Juno/UVS data were available for this crossing to build a UV map of context.
Figure S4 – Juno/ measurements during Io-induced radio emission source crossing on 2017 March 17 (Perijove #5 North)

Figure S4: Juno data during Perijove #5 North (2017 March 17), during an Io-induced radio emission source crossing. Panel (A) displays Juno/Waves data in high-resolution mode. The solid-black lines represent the electron cyclotron frequency derived from the magnetic field measurements of Juno/MAG, and the dashed-black line is 1.01ν_{ce}. Panels (B-D) display Juno/JADE-E measurements: (B) the electron differential number flux (or intensity) of all electrons; (C) the electron distribution function for energy in range [2-21] keV as a function of pitch angle; (D) partial electron density calculated from the JADE-E flux. Panel (E) shows the field aligned currents calculated based on Al Saati et al. (2022)’s method, using magnetic field fluctuations in the azimuthal direction (δB_ϕ) deduced from the Juno/MAG measurements. The vertical solid black lines represent the flux tube crossing as inferred from JADE data. Panels (F-I): Magnetic field perturbations (spherical coordinates) from Juno/MAG measurements: Transverse perturbations: (F) δB_ϕ and (G) δB_θ; Radial perturbations: (H)
Compressive perturbations: $(I) \delta |B|$. The blue shaded area represents downward current, while the red area represents upward current.

Panel (J) shows the polar projection (as seen from the Northern pole) of Juno/UVS data with Juno’s trajectory overplotted. The two red point shows the integrated time of the image (indicated on the bottom-right corner of the image). The red ellipse highlights the crossing of interest.

Figure S5 – Magnetic field perturbations from Juno/MAG measurements during Ganymede-induced radio emission source crossing on 2019 May 29 (Perijove #20 North)

Figure S5: Magnetic field perturbations (spherical coordinates) during Ganymede-induced radio emission source crossing that occurs during Perijove #20 North (2019 May 29). Transverse perturbations: (A) δB_ϕ and (B) δB_θ; Radial perturbations: (C) δB_r; Compressive perturbations: (D) $\delta |B|$. The blue shaded area represents downward current, while the red area represents upward current. Panel (E) shows the polar projection (as seen from the Northern pole) of Juno/UVS data with Juno’s trajectory overplotted. The two red point shows the integrated time of the image (indicated on the top-right corner of the image). The red ellipse highlights the crossing of interest.