Dissolved Nitrogen Cycling in The Eastern Canadian Arctic Archipelago and Baffin Bay from Stable Isotopic Data

Holly C. Westbrook¹, Annie Bourbonnais¹, Cara C M Manning², Jean-Eric Tremblay³, Mohamed Ahmed⁴, Brent Gordon Thomas Else⁴, and Julie Granger⁵

¹University of South Carolina
²University of British Columbia
³Laval University
⁴University of Calgary
⁵University of Connecticut

August 2, 2023

Abstract

Climate change is expected to alter the input of nitrogen (N) sources in the Eastern Canadian Arctic Archipelago (ECAA) and Baffin Bay due to increased discharge from glacial meltwater and permafrost thaw. Since dissolved inorganic N is generally depleted in surface waters, dissolved organic N (DON) could represent a significant N source fueling phytoplankton activity in Arctic ecosystems. Yet, few DON data for this region exist. We measured concentrations and stable isotope ratios (δ¹⁵N and δ¹⁸O) of DON and nitrate (NO₃⁻) to investigate the sources and cycling of dissolved nitrogen in regional rivers and at the sea surface from samples collected in the ECAA and Baffin Bay during the summer of 2019. The isotopic signatures of NO₃⁻ in rivers could be reproduced in a steady state isotopic model by invoking mixing between atmospheric NO₃⁻ and nitrified ammonium as well as NO₃⁻ assimilation by phytoplankton. DON concentrations were low in most rivers ([?4.9 μmol L⁻¹], whereas the concentrations (0.54–12 μmol L⁻¹) and δ¹⁵N of DON (-0.71–9.6 sea surface were variable among stations, suggesting dynamic cycling and/or distinctive sources. In two regions with high chl-a, DON concentrations were inversely correlated with chlorophyll-an and the δ¹⁵N of DON, suggesting net DON consumption in localized phytoplankton blooms. We derived an isotope effect of -6.9data helps establish a baseline to assess future change in nutrient regime for this climate sensitive region.
Dissolved Nitrogen Cycling in The Eastern Canadian Arctic Archipelago and Baffin Bay from Stable Isotopic Data

H.C. Westbrook¹, A. Bourbonnais¹*, C.C.M. Manning², J.-É. Tremblay³, M. M. M. Ahmed⁴, B. Else⁴, and J. Granger²

¹ School of the Earth, Ocean and Environment, University of South Carolina, Columbia, SC, United States
² Department of Marine Sciences, University of Connecticut, Groton, Connecticut, United States
³ Québec-Océan and Takuvik, Département de biologie, Université Laval, Québec, Québec, Canada
⁴ Department of Geography, University of Calgary, Calgary, Alberta, Canada

Corresponding author: Annie Bourbonnais (abourbonnais@seoe.sc.edu)

Key Points:

- Nitrate in regional rivers derived proximately from nitrification.
- Dissolved organic nitrogen concentrations in regional rivers were low.
- Dissolved organic nitrogen consumption was observed in the ECAA and Baffin Bay with highest chlorophyll-a.
Abstract
Climate change is expected to alter the input of nitrogen (N) sources in the Eastern Canadian
Arctic Archipelago (ECAA) and Baffin Bay due to increased discharge from glacial meltwater
and permafrost thaw. Since dissolved inorganic N is generally depleted in surface waters,
dissolved organic N (DON) could represent a significant N source fueling phytoplankton activity
in Arctic ecosystems. Yet, few DON data for this region exist. We measured concentrations and
stable isotope ratios ($\delta^{15}N$ and $\delta^{18}O$) of DON and nitrate (NO_3^-) to investigate the sources and
cycling of dissolved nitrogen in regional rivers and at the sea surface from samples collected in
the ECAA and Baffin Bay during the summer of 2019. The isotopic signatures of NO_3^- in rivers
could be reproduced in a steady state isotopic model by invoking mixing between atmospheric
NO_3^- and nitrified ammonium as well as NO_3^- assimilation by phytoplankton. DON
concentrations were low in most rivers (\leq4.9 µmol L$^{-1}$), whereas the concentrations (0.54–12
µmol L$^{-1}$) and $\delta^{15}N$ of DON ($-$0.71–9.6‰) at the sea surface were variable among stations,
suggesting dynamic cycling and/or distinctive sources. In two regions with high chl-a, DON
concentrations were inversely correlated with chlorophyll-a and the $\delta^{15}N$ of DON, suggesting net
DON consumption in localized phytoplankton blooms. We derived an isotope effect of $-6.9‰$
for DON consumption. Our data helps establish a baseline to assess future change in nutrient
regime for this climate sensitive region.

Plain Language Summary
Primary productivity in the Arctic Ocean surface waters is limited by nitrogen supply. We
investigated dissolved inorganic and organic nitrogen dynamics in the Eastern Canadian Arctic
Archipelago (ECAA) and Baffin Bay surface ocean waters as well as adjacent rivers. We used
the isotopic composition (N and O) of both dissolved organic and inorganic nitrogen (DON and
DIN, respectively) to explore the sources and transformations of nitrogen. Nitrate in rivers was
from both the atmosphere and from nitrified ammonium. Nitrate was also consumed by
phytoplankton. DON concentrations were low in rivers compared to inorganic nitrogen (i.e.,
nitrate). This observation contrast with previous data collected in the Eurasian and U.S. western
coastal Arctic Ocean, where rivers input a high quantity of DON to the coastal ocean. We
observed variable DON concentrations and isotopic composition in the ECAA and Baffin Bay
surface ocean waters, suggesting different sources and/or a dynamic DON cycling. We
additionally found evidence for DON consumption in regions of highest chlorophyll-a. These
data are important to better understand how Greenland’s melting ice sheet will impact nutrient
delivery and primary productivity in the region.

Introduction
Climate change is rapidly altering Arctic ecosystems. As air and seawater temperatures
are rising, sea ice volume is decreasing and seasonal river discharge is increasing (Wu et al.,
2005; Wassmann et al., 2011; Bintanja & Selten, 2014; Feng et al., 2021). The critical roles
played by the Arctic Ocean in controlling the thermohaline circulation and supporting fisheries
(Link & Tol, 2009) have stimulated scientific research in the region within the past few decades.
While primary productivity is expected to increase for most Arctic shelves, similar changes are
not ubiquitous across the entire Arctic (Arrigo et al., 2015; Lewis et al, 2020). For example,
decreased nutrient delivery through physical circulation as well as increased stratification due to
higher freshwater input may decrease primary productivity overall in the Canada Basin and the
Eastern Canadian Arctic Archipelago (ECAA), including Baffin Bay, the Nares Strait, Lancaster
Dissolved organic nitrogen (DON) typically accounts for the largest pool of dissolved nitrogen in freshwater and marine surface waters (Sipler & Bronk, 2014). Although dominated by refractory species, the labile fraction of DON can be an essential source of N to primary producers, especially in N limited regions (Bronk et al., 2007; Moschonas et al., 2017; Thibodeau et al., 2017; Knapp et al., 2018). DON is composed of a highly refractory pool, and a smaller labile pool, such as amino acids or DNA, which can be utilized on time scales ranging from hours to years. DON can be produced in situ in the oceans through mechanisms such as the viral lysing of bacteria or the loss of prey biomass during feeding by microzooplankton (Sipler & Bronk, 2014). Rivers are one of the major DON sources to the ocean due to the presence of terrestrial organic matter. As a result, DON tends to be higher in coastal areas than in the open ocean, although the utilization of DON is not limited to coastal regions. DON can be produced by surface plankton in productive areas and then transported out into N limited regions, fueling primary productivity (Letscher et al., 2013; Knapp et al., 2018; Bif et al., 2022).

The Arctic Ocean is heavily impacted by rivers, receiving 10% of global river discharge despite accounting for only 4% of the global ocean surface (Wu et al., 2005; Holmes et al., 2012). River runoff, permafrost thaw and coastal erosion are significant sources of nutrients in Arctic coastal regions (Tank et al., 2012; Le Foust, 2013; Treat et al., 2016; Thibodeau et al., 2017; Terhaar et al., 2021). Riverine input is typically high in areas such as the Laptev Sea and the western Arctic which are fed by large rivers. For example, the Lena River and the Mackenzie River have total dissolved nitrogen (TDN) concentrations around 15 to 20 μmol N L⁻¹ and discharge into the Laptev Sea and the Beaufort Sea, respectively. Dissolved inorganic N delivered by rivers is immediately consumed, as surface coastal Arctic waters are generally devoid of NO₃⁻ (Emmerton et al., 2008; Tremblay et al., 2014; Tremblay et al., 2015). The fate of riverine DON in coastal marine waters is still unclear, whether it is utilized, or simply diluted through mixing with DON-deplete waters. For instance, in the Arctic surface ocean, DON concentrations are on average 4.7 μmol N L⁻¹, which is less than the concentrations in major Arctic rivers, which range from 7.4–18.4 μmol N L⁻¹ (Sipler & Bronk, 2014). Several studies support that riverine DON in the Arctic is slowly remineralized, representing a significant source
of bioavailable N to the open ocean. Tank et al. (2012) suggested that riverine NO$_3^−$ and DON in the coastal Laptev Sea region contribute to primary productivity, albeit for a relatively small fraction (<10% each) of the overall Arctic Ocean primary production. Thibodeau et al. (2017) found that DON concentrations discharged from the Lena River in the Eurasian Arctic were up to six times higher than riverine NO$_3^−$ concentrations and that DON was rapidly consumed nearshore, with over 50% of it disappearing before reaching the shelf. However, Dittmar et al. (2001) concluded that DON input from Siberian rivers did not substantially support primary productivity, as it was largely recalcitrant. With riverine discharge increasing since around the 1960s (Peterson et al., 2002; Wu et al., 2005), the extent to which rivers influence the delivery of bioavailable DON in Arctic coastal waters needs to be further investigated.

While previous studies have largely focused on the inputs of nutrient from large rivers in past decades (e.g., Tank et al., 2012; Thibodeau et al., 2017), deliveries of NO$_3^−$ and dissolved organic nitrogen (DON) by small rivers and glacially-fed rivers (i.e. marine terminating glaciers and glacial-fed rivers), and their impacts on coastal oceanic primary productivity in the ECAA and Baffin Bay, has not been as thoroughly explored. Inputs of NO$_3^−$ to surface waters was shown to occur by upwelling induced by rising submarine glacial melt discharge in proximity to the Greenland Ice Sheet and Jones Sound (Cape et al., 2019; Bhatia et al., 2021) and glacial melt (Beaton et al., 2017). However, the input of exogenous DON to the surface ocean from glacial melt has not been considered thus far. Upwelling regions generally see elevated DON concentrations following the increase in biological activity due to NO$_3^−$ input from below (Sipler & Bronk, 2014). Since many rivers are of glacial origin in the ECAA and Baffin Bay, both glacial and terrestrial riverine end members must be constrained in order to identify the sources of DON in this rapidly changing region.

The naturally occurring stable N and O isotope ratios of dissolved N species can be exploited to identify N sources and transformations in environmental samples. The nitrogen 15N/14N isotope ratios are reported in delta notation ($δ$) and units of per mil (‰), where the 15N/14N and 18O/16O references are atmospheric N$_2$ for N and Vienna Standard Mean Ocean Water (VSMOW) for O. $δ^{15}$N = \[
\frac{[^{15}\text{N}/^{14}\text{N}]_{\text{sample}} - 1}{[^{15}\text{N}/^{14}\text{N}]_{\text{air}}} \times 1000
\]

$δ^{18}$O = \[
\frac{[^{18}\text{O}/^{16}\text{O}]_{\text{sample}} - 1}{[^{18}\text{O}/^{16}\text{O}]_{\text{VSMOW}}} \times 1000
\]

The $δ^{15}$N of NO$_3^−$ and DON is influenced originally by the $δ^{15}$N of its source(s) and secondarily by the fractionation imposed during phytoplankton uptake and DON decomposition (see Knapp et al., 2005). The $δ^{15}$N of NO$_3^−$ and DON can thus be diagnostic of dominant sources of new N in a system. The DON produced by N$_2$-fixing organisms as well as newly nitrified NO$_3^−$ from this source are expected to reflect the low $δ^{15}$N of newly fixed ammonium (NH$_4^+$; \sim2 to 0‰) (Minagawa & Wada, 1986; Carpenter et al., 1997; Knapp et al., 2018) or N from atmospheric deposition with a similarly low $δ^{15}$N (Altieri et al., 2016 and references therein). Conversely, the $δ^{15}$N DON released by phytoplankton is more elevated, reflecting the $δ^{15}$N of the incident inorganic N substrates. The $δ^{15}$N of nitrate varies regionally, posting a global ocean average of 5‰, but the $δ^{15}$N of Pacific waters of western Arctic basins is distinctly higher at 8‰ (Knapp et al., 2005; Knapp et al., 2018). DON and NO$_3^−$ produced through newly regenerated N, typically NH$_4^+$, will often have a lower $δ^{15}$N compared to ambient substrate pools as lighter isotopes are preferentially excreted (Fawcett et al., 2011).
In turn the δ^{18}O of NO$_3^-$ is distinct among N sources and also sensitive to NO$_3^-$ production and consumption terms. The δ^{18}O of NO$_3^-$ in atmospheric deposition is exceptionally high (e.g., Hastings et al., 2003). Nitrate produced by the nitrification of ammonium empirically converges on δ^{18}O of water. (Casciotti et al. 2010; Buchwald et al., 2012). Assimilatory and dissimilatory NO$_3^-$ consumption results in a parallel increase of both δ^{18}O and δ^{15}N in a 1:1 ratio (Granger et al., 2004, 2008) in proportion to nitrate consumed. This relationship can be used to determine the influence of processes other than assimilation on the NO$_3^-$ pool.

The goals of this study are to determine, using an isotopic approach, 1) the dominant sources of NO$_3^-$ and DON in the ECAA and Baffin Bay and 2) the transformations affecting these pools. This study focuses on the Nares Strait, Jones Sound, Lancaster Sound, and Baffin Bay, whose coastal regions are more extensively bordered by glaciers compared to other Arctic regions. This region of the Arctic also experiences high permafrost coverage. Nutrient input from other sources, such as terrestrial rivers, are more significant in other Arctic regions such as the Laptev Sea and the western Arctic (Letscher et al., 2012; Thibodeau et al., 2017). The Eastern Baffin Bay is a highly productive area important for fisheries in Greenland. Determining the sources of nutrient inputs to coastal waters is essential to predict the effect of climate change on primary productivity in these economically important regions.

2 Materials and Methods

2.1 Sample Location and Collection

Samples were collected during Leg 2a and 2b of the ArcticNet expedition aboard the CCGS Amundsen from July 5th to August 15th of 2019. The expedition took place in the ECAA including Baffin Bay, the Nares Strait, Lancaster Sound, and Jones Sound. Sampling locations and regional circulation patterns are presented in Figure 1. In this region, prevailing currents flow southward through Nares Strait and into Kane Basin, Smith Sound, and finally Baffin Bay. Additionally, in northwestern Baffin Bay, currents flow eastward from Lancaster Sound into Baffin Bay. At the surface, these water masses are Pacific-derived and circulate in the Canadian and Makarov Basins before entering the ECAA through the Nares Strait and Lancaster Sound, respectively. In Baffin Bay, Atlantic water enters along the southwestern coast of Greenland and travels north until it converges with water flowing south from the Smith Sound and circulates southwards on the eastern side of Baffin Island (Lehmann 2019; 2022; Tang et al., 2004). Atlantic water from the Eurasian Basin of the Arctic Ocean can be found at depth in Baffin Bay (Alkire et al., 2010). Ice cover in this region varies by season and along an east-west gradient, with the lowest coverage in the summer and ice persisting much longer on the western side of Baffin Bay in spring (Tang et al., 2004). Some sea ice in Baffin Bay is formed locally, while some is formed in the Nares Strait and transported south. Ice formed in other channels is typically blocked by landfast ice and does not enter Baffin Bay (Tang et al., 2004).

Samples for DON analysis were collected using 12 L Niskin bottles at depths of 100 m and 80 m, and then upwards to the surface in 10 m intervals. Samples at 100 and 80 m were collected in 15 mL centrifuge tubes, and samples taken above 80 m were collected in 60 mL HDPE plastic bottles. All centrifuge tubes and bottles were acid-washed and rinsed three times with sample water prior to collection. All samples were frozen with a headspace to allow for water expansion upon freezing, until analysis. Samples taken during Leg 2b were also filtered with GF/F filters before freezing. Leg 2a samples were filtered prior to analysis with Supor$^\text{TM}$. 0.45 micron polyethersulfone filters. A comparison was performed on the effect of the different
filters on [DON] and δ^{15}N DON and no significant difference was observed. Riverine samples were collected from surface waters of 11 rivers, filtered with GF/F filters, and frozen. Water samples were also collected for δ^{18}O of H2O analysis; samples were collected without bubbles in 2 mL glass vials and stored at 4°C.

2.2 Concentration and Isotopic Analysis of DON, NO$_3^-$, and δ^{18}O of H2O

The concentration and δ^{15}N of DON were measured as in Knapp et al. (2005). Briefly, total dissolved nitrogen (TDN) was oxidized to NO$_3^-$ using recrystallized persulfate followed by measurement on a NO$_3$ analyzer by chemiluminescent detection (Braman & Hendrix, 1989). An unoxidized sample was also used to measure dissolved inorganic nitrogen (DIN). [DON] was estimated as the difference between TDN and DIN. The δ^{15}N of NO$_3^-$ was then analyzed using the denitrifier method (Sigman & Casciotti, 2001; Weigand et al., 2016).

As there is currently no efficient means to remove DIN, the combined concentration and isotopic composition of NO$_3^-$ and NO$_2^-$ (and NH$_4^+$ if present) must be analyzed to calculate the δ^{15}N of DON by isotopic mass balance. [NO$_3^-$ + NO$_2^-$] was thus also measured by chemiluminescence prior to persulfate oxidation and the δ^{15}N of NO$_3^-$ only (i.e., without the persulfate oxidation step) was determined using the denitrifier method (Sigman & Casciotti, 2001; Casciotti et al., 2002; Weigand et al., 2016).

[NO$_3^-$], [NO$_2^-$] and [PO$_4^{3-}$] were also measured at sea using a nutrient autoanalyzer. Nitrite concentrations were generally below detection limit in our samples, with maximum values of 1.3 μM in marine samples and 1.4 μM in riverine samples. Only samples in which DON represents over 50% of TDN were considered. Ammonium in riverine samples was measured using a SEAL Nutrient Analyzer.

To prepare samples for TDN analysis, 1 mL of freshly prepared persulfate oxidizing reagent (POR) was added to 6 mL of sample in 12 mL threaded test tubes with Teflon-lined phenolic screw caps (Corning 99447-161). These samples were then autoclaved for one hour. POR blank was typically <0.4 μmol N L$^{-1}$ and [TDN] was corrected for blank contribution. Additionally, 5 μmol N L$^{-1}$ of the international standards USGS-40, USGS-64, and USGS-65 and an internal standard of 6-aminocaproic acid were analyzed with each run to verify oxidation efficiency and that no fractionation occurred during the persulfate oxidation step. The average percent yield of standard concentrations were >95%, and the standard deviation from known isotopic composition was ±0.37‰.

Prior to isotopic analysis, the pH of autoclaved samples, standards, and blanks were adjusted to 3–4 with 6 N HCl. Neutralized samples were injected into 2 mL of Pseudomonas chlororaphis suspended in media. When analyzing NO$_3^-$ alone, Pseudomonas aureofaciens was instead used to measure the δ^{18}O of NO$_3^-$. In the few NO$_3^-$ samples in which NO$_2^-$ accumulated, NO$_2^-$ was removed using sulfamic acid as in Granger & Sigman, (2009). The target sample size was 20 nmol. The product N$_2$O was purified and analyzed using a continuous flow isotope ratio mass spectrometer (Elementar Americas PrecisION) equipped with a custom on-line gas extraction and purge-trap system and PAL autosampler. Samples were standardized using a two-point correction with the international standards IAEA N-3 (δ^{15}N = 4.7‰ vs air) and USGS-34 (δ^{15}N = −1.8‰ vs air). The δ^{15}N of DON was determined by isotopic mass balance taking into consideration the concentration and δ^{15}N of the POR blank as well as sample NO$_3^-$ and TDN. The average standard deviation for duplicate δ^{15}N-DON analysis was generally lower than ±0.5‰. Error propagation was determined using a Monte Carlo method as in Knapp et al. (2018).
The δ^{18}O of H$_2$O was measured using an integrated off-axis cavity absorption spectrometer (Los Gatos Research, LGR, Triple Liquid Water Isotope Analyzer, model 912-0032) at the University of Calgary as described in Ahmed et al. (2020). Chlorophyll-a was measured using High Performance Liquid Chromatography (HPLC) at the University of British Columbia as described in Burt et al. (2018). Plots of surface data and cross-sections were generated with the Ocean Data View software (Schlitzer, 2021).

2.3 Mixing Model

δ^{18}O of H$_2$O and salinity were used in the following simple mixing model in order to determine the relative contributions of marine water (*mar*), freshwater (*fw*), and sea ice melt (*sim*).

\[
f_{mar} + f_{fw} + f_{sim} = 1
\]

\[
f_{mar} * S_{mar} + f_{fw} * S_{fw} + f_{sim} * S_{sim} = S_{measured}
\]

\[
f_{mar} * O_{mar} + f_{fw} * O_{fw} + f_{sim} * O_{sim} = O_{measured}
\]

Wherein f is the fraction of each end member, S is salinity and O is δ^{18}O of H$_2$O. End member values used in the calculations are listed in Table 2.1. There are two important freshwater sources in our system: rivers and glacial water. These two sources have identical salinities (0) and overlapping δ^{18}O of H$_2$O values, -17 to $-25\%\text{oo}$ for river water and -20.5 to $-21.7\%\text{oo}$ for glacial water (Bedard et al., 1981; Thibodeau et al., 2017; Brown et al., 2020). Thus, we cannot distinguish between these end members with this dataset, and used a value of $-20\%\text{oo}$ for the freshwater δ^{18}O end member. The contribution of sea ice melt can be considered in two regards: as net sea ice melt or local sea ice melt. Net sea ice melt is integrated over time and reflects the difference between ice formation during the winter and ice melt during the spring and summer. Local sea ice melt is the instantaneous contribution of sea ice melt at the time of sampling. In both cases, a positive value indicates melting, and a negative value indicates formation. Because the melting and formation of sea ice are decoupled in time and space, the contribution of sea ice melt determined from the end members in Table 2.1 represents net sea ice melt rather than local sea ice melt, and local sea ice melt is not determined in this study.

Additionally, because this region has marine water originating from both the Pacific and Atlantic Oceans, we first determine the fraction of Pacific (f_{PW}) and Atlantic water (f_{AW}) in a given sample, assuming that $f_{PW} + f_{AW} = 1$ (Jones et al., 1998; Yamamoto-Kawai et al., 2008; Sherwood et al., 2021; Lehmann et al. 2022). We utilize N^{*}, a semi conservative nutrient tracer based on the amount of excess DIN relative to phosphate assuming Redfield stoichiometry (i.e., 16N:1P) to determine f_{PW} and f_{AW}. We calculate the N^{*} of a sample using the equation below, and presume that nitrate is not affected by benthic denitrification in the CAA, a supposition that appears valid (Lehmann et al., 2022).

\[
N^{*} = (NO_3^- - 16 \times [PO_4^{3-}]) + 2.9
\]

After N^{*} was calculated, we calculated f_{PW} in a given sample using the following equation, wherein $N^{*}_{PW} = -11 \mu M$, $N^{*}_{AW} = 2.8 \mu M$, and negative f_{PW} values indicate no Pacific water contribution and were set to zero.

\[
f_{PW} = \frac{N^{*}_{sample} - N^{*}_{AW}}{N^{*}_{PW} - N^{*}_{AW}}
\]
Finally, we adjust our marine endmember mixing model values (\(S_{\text{mar}}\) and \(O_{\text{mar}}\)) based on the fraction of Pacific and Atlantic water in the sample. Endmember values for Pacific and Atlantic waters are provided in Table 1.

2.4 Model for Riverine NO\(_3^-\) Cycling

A simple steady-state isotopic model was used to apportion the sources and sinks of NO\(_3^-\) in ECAA and Baffin Bay rivers. This model included two sources of NO\(_3^-\) supplied to rivers: 1) NO\(_3^-\) from the nitrification of NH\(_4^+\), which may derive proximally from permafrost, atmospheric NH\(_4^+\), or in-river mineralization (e.g., Wagner et al., 2002; Alves et al., 2013; Fouché et al., 2020) and 2) uncycled NO\(_3^-\) from atmospheric deposition (e.g., Hastings et al., 2004). We assumed that complete nitrification of NH\(_4^+\) results in NO\(_3^-\) with a \(^{15}\text{N}\) of \(\sim 1.2\%\) akin to atmospheric and permafrost end-members (range: \(−6\) to \(10\%\); Wynn et al., 2007; Ansari et al., 2013; Louiseize et al., 2014; Heikoop et al., 2015; Arendt et al., 2016; Clark et al., 2020). The \(^{18}\text{O}\) produced during the nitrification of NH\(_4^+\) was estimated to be \(\sim 14.2\%\) (range: \(−8.9\) to \(−19.5\%\)), assuming that at least 2/3 of the O atoms are derived from water during nitrification (Casciotti et al., 2010; Heikoop et al., 2015; Boshers et al., 2019). For this estimation, we assume the \(^{18}\text{O}\) of water ranges from \(−12\%\) to \(−22\%\) (Wynn et al., 2007; Arendt et al., 2016) and that \(^{18}\text{O}\) of dissolved oxygen range from \(23.7\%\) to \(24.2\%\) based on the \(^{18}\text{O}\) of air (Horibe et al., 1973; Kiddon et al., 1993; Wang & Veizer, 2000) as in Wynn et al., (2007). Additionally, we assumed isotope effects on the \(^{18}\text{O}\) NO\(_3^-\) and exchange with H\(_2\)O during bacterial nitrification as in Casciotti et al. (2010) and Buchwald et al. (2012). We also assumed that NH\(_4^+\) was completely oxidized to NO\(_3^-\) in rivers, as NH\(_4^+\) was absent or very low in all our samples, with the highest concentration being 0.56 μM at R-ESC. We assumed that atmospheric deposition added NO\(_3^-\) with a \(^{15}\text{N}\) of \(−3.5\%\) and a \(^{18}\text{O}\) of 72.1% (Hastings et al., 2004; Ansari et al., 2013; Louiseize et al., 2014; Heikoop et al., 2015). We assumed an kinetic N isotope effect (\(\varepsilon\)) of 5% for NO\(_3^-\) assimilation (Altabet, 2001) and a corresponding \(^{18}\text{O}:^{15}\text{N}\) of 1:1 (Granger et al., 2004). The isotope effect is defined as \(^{15}\varepsilon = ((^{14}\text{k}^{15}\text{k})−1)×1000\), where \(^{14}\text{k}\) and \(^{15}\text{k}\) are the rate coefficients of the reactions for the light and heavy isotopes respectively. We excluded denitrification, the canonical conversion of NO\(_3^-\) to the nitrogen gases N\(_2\)O and N\(_2\) under anaerobic conditions, due to the high O\(_2\) concentrations in the rivers (Dalsgaard et al., 2014). We considered two main scenarios for the extent of N recycling and its impact on primary production within the rivers: 1) 50% recycled production, and 2) 25% recycled production. More details about the model are included in the Supporting Information.

We used this model to reproduce the deviation from the \(^{18}\text{O}:^{15}\text{N}\) ratio of \(\sim 1\) observed for pure NO\(_3^-\) assimilation (Granger et al., 2004) of our riverine samples. We refer to this deviation as the \(\Delta(15,18)\), which is the difference between NO\(_3^-\) \(\delta^{15}\text{N}\) and \(\delta^{18}\text{O}\) (Rafter et al., 2013).

2.5 Isotope Effect of DON Consumption

In areas where chlorophyll-a was the highest, we estimated the \(^{15}\varepsilon\) of DON consumption using a closed system Rayleigh model (\(\delta^{15}\text{N}\) of DON vs ln(DON)) as in Knapp et al. (2018). A low [DON] concomitant with elevated \(\delta^{15}\text{N}\) indicates consumption, as kinetic isotope fractionation during consumption increases the \(\delta^{15}\text{N}\) of the residual DON pool.
3 Results

3.1 Physical Characteristics of the ECAA and Baffin Bay

Near shore waters were influenced by freshwater input from rivers and/or glacial meltwater, as evidenced by fresher surface waters with distinctly low δ^{18}O H$_2$O values (-6.05 to -0.54%), suggesting mixing with meteoric water (Mellat et al., 2021). This was evident throughout the study region, more distinct near Talbot Inlet, at the Petermann Glacier, at the Jakobshavn Glacier, in Lancaster Sound, and near the riverine stations R-SG and R-ESC in Jones Sound (Figure 2). The fraction of freshwater and fraction of sea ice melt in surface waters of the study area are depicted in Figure 2 A&B, respectively. Stations closest to land had a higher fraction of freshwater, as expected. The low fraction of freshwater on the eastern coast of Transect 1 and 2 (0 to 0.05) observed in this study has been attributed to upwelling as well as influence from the West Greenland Current, which is more saline than the Baffin Current (Alkire et al., 2010). Sea ice melt was highest on the western side of Transect 2, which is close to the mouth of the Clyde River.

Many of the rivers sampled in this study were glacially fed, particularly those on Ellesmere Island such as R-ESG and R-6.1. Others were not located near glaciers, for example R-DIW and R-DIW-N on western Devon Island, and R-CP on Cornwallis. River ranged from 0.5 to 3 meters deep and ~1 to ~30 meters wide. δ^{18}O of H$_2$O in rivers ranged from -18.4 to -28.4% (Brown et al., 2022).

3.2 Chlorophyll-a

Chlorophyll-a concentrations at the surface (4 m) were low throughout the study region (typically <2 µg L$^{-1}$) except in the northern Nares Strait, where a particularly large bloom near Petermann Glacier was observed, as well as in Jones Sound, and the western side of Transect 1 (Figure 3).

3.3 Nitrate Concentration and isotopic composition in the ECAA and Baffin Bay

Nitrate was near zero in all surface waters, except in the Jones sound, as well as the eastern and western ends of the Davis Strait (Transect 1 in Figure 1, Figure 4). At Transect 1 the δ^{15}N of NO$_3$ was lower in the east (6.5%), and higher in the west (9.8%), where higher chlorophyll-a was also observed (Figure 3). δ^{15}O of NO$_3$ across this transect was similar in the east (3.3%) and west (3.4%). Additionally at the mouth of Jones sound, a δ^{15}N and δ^{18}O of NO$_3$ of 14% and 50% were observed. Nitrate was generally completely consumed in the mixed layer (upper 10 m) within the study area and increased with depth to up to ~15 µM at 100 m depth (Figure S2).

Nitrate concentration and isotopic composition of river samples are provided in Table 2. The concentration of NO$_3$ among riverine samples covered a broad range, from 0.44 to 47 µM, (Table 2). Nitrite was <0.2 µM in all samples, both riverine and marine, expect for R-6.1, which had 1.4 µM NO$_2$. High variability was observed even in rivers adjacent to one another, such as R-6.1 and R-ESG. The isotopic composition of NO$_3$ was highly variable between rivers, indicating variability in NO$_3$ sources and/or transformations among these Arctic rivers. R-SG had the lowest δ^{15}N of NO$_3$ (0.71%) and a NO$_3$ concentration of 2.7 µM. R-ESG had the highest δ^{15}N of NO$_3$ (10.3%) and a NO$_3$ concentration of 0.44 µM. The adjacent river R-6.1 had a similarly elevated δ^{15}N of NO$_3$ of 10% but much higher NO$_3$ concentration of 11 µM. The river at R-6.1 was about 20–30 meters wide. In contrast, R-ESG was a river running through
a crevasse adjacent to Eugenie Glacier and was only ~1 meter wide. R-ESG and R-6.1 were
drastically different with respect to their δ^{18}O of NO_{3}^{-} which was ~2.7‰ in R-6.1 and 49‰ in
R-ESG.

High variation was also observed between R-ESC and R-SG, both of which are west of
Grise Fjord. R-SG was around 5 meters wide and ~0.5 meters deep, while R-ESC was roughly
20 meters wide and 1–2 meters deep. Additionally, R-ESC was more inland than R-SG. R-SG
and R-ESC had similar NO_{3}^{-} concentrations, but the δ^{15}N of NO_{3}^{-} was almost 2‰ higher at R-
ESC than R-SG. Furthermore, the δ^{18}O of NO_{3}^{-} at R-ESC was nearly 4.5 times lower than that at
R-SG. Conversely, two other stations in similar areas, R-DIW and R-DIW-N, both located on the
west side of Devon Island had significantly different NO_{3}^{-} concentrations (20 µM and 47µM,
respectively), but similar isotopic signatures (4.4‰ & 4.8‰, respectively).

We consider that the isotopic composition of riverine NO_{3}^{-} derived from two end-
member sources, namely NO_{3}^{-} produced proximately by nitrification and uncycled atmospheric
NO_{3}^{-}. However, the NO_{3}^{-} isotopic composition of our samples did not fall along the mixing line
for the two end members. The isotope values were potentially explained by also invoking the
partial assimilation of NO_{3}^{-} and associated isotopic enrichment of residual NO_{3}^{-} (Figure 5). This
indicates that atmospheric depositions, assimilation and nitrification contributed, to some extent,
to the δ^{15}N and δ^{18}O of NO_{3}^{-} signatures of the river samples.

Additionally, we used a steady-state isotopic model to confirm that these 3 processes
(nitrification, atmospheric depositions and NO_{3}^{-} assimilation) could produce the deviation from
the ^8\varepsilon:^{15}\varepsilon ratio of ~1 observed for pure NO_{3}^{-} assimilation (Granger et al., 2004) for our riverine
samples. We define the deviation from the ^8\varepsilon:^{15}\varepsilon ratio of ~1 as the difference between NO_{3}^{-} δ^{15}N
and δ^{18}O, referred to as Δ(15,18) (Rafter et al., 2013). Assuming that 25% of the dissolved
nitrogen was recycled within the rivers, we were able to reproduce the full range of observed
Δ(15,18) (Figure 6).

3.4 DON Distribution and δ^{15}N in the ECAA and Baffin Bay

The surface distribution of DON concentrations and the δ^{15}N of DON are shown in
Figure 7. DON concentrations were highly variable but had similar values between regions,
ranging from 3.2 to 6.1 µmol N L^{-1} in Baffin Bay and 3.2 to 6.0 µmol N L^{-1} in the Nares Strait.
Lancaster Sound and Jones Sound had lower DON concentrations, ranging from 2.1 to 5.7 µmol
N L^{-1}. In the mixed layer (upper 10 meters) of the water column, [DON] increased with salinity
(Figure 8). This suggests a low [DON] freshwater end member, corroborating our direct riverine
measurements of [DON] (mean 1.7 ± 1.5 µM NL^{-1}). [DON] in riverine samples were moderate-
to-low (0 – 4.9 µM NL^{-1}), even when NO_{3}^{-} was high.

Yet, no significant relationship between [DON] and the fraction of freshwater input was
observed in Jones Sound, where the highest freshwater fraction was observed (Figure 2A).
[DON] also fell above or below the pure mixing line at other stations, suggesting surface ocean
DON production and consumption processes (Figure 8). The relationship between DON
concentration and δ^{15}N with depth was variable and often only characterized within the upper 40
m because NO_{3}^{-} concentrations below 40 m depth were often too high to allow calculating the
δ^{15}N of DON from isotopic mass balance. Concentration and δ^{15}N of DON increased with depth
in Transects 1 & 2, Lancaster Sound, and in some areas near Disko Island. DON trends with
depth in the Nares Strait were variable. The depth relationship between [DON] and δ^{15}N was
more variable at some of the more southernmost stations, which either showed an increase in [DON] associated with a slight decrease in δ\(^{15}\)N, a slight increase in both δ\(^{15}\)N and [DON] or no change in isotopic composition. The higher [DON] observed for the eastern sections of both transects could have been caused by Ekman-driven upwelling, which is supported by salinity profiles (Figure S1).

In two areas where highest chlorophyll-a concentrations were measured, the Northern Nares Strait and Western Transect 1, chlorophyll-a and DON concentrations in the upper 10 meters were inversely correlated Pearson R\(^2=0.75\) and p-value = 0.04, Spearman ρ= −1 and ln([DON]) and δ\(^{15}\)N-DON were also inversely correlated (Pearson R\(^2=0.54\), p-value = 0.10, Spearman ρ= −1 and p-value = 0.02; Figure 10) in these regions. These trends were not observed in Jones Sound, where relatively high chlorophyll-a concentrations were also observed. No relationships were observed between the freshwater fraction and [DON] or freshwater fraction and δ\(^{15}\)N of DON in Northern Nares Strait and Western Transect 1, precluding a significant source of low [DON] and elevated δ\(^{15}\)N DON from rivers at these locations.

4 Discussion

4.1 Deciphering NO\(_3^-\) sources in the ECAA and Baffin Bay

Nitrate was close to zero in the surface mixed layer at most stations (<10 m depth), though some surface stations had over 1 µM NO\(_3^-\) (Figure 4). While some of the rivers sampled had upwards of 10 µM NO\(_3^-\), these elevated concentrations were not observed in coastal marine waters. These data suggest that NO\(_3^-\) from the rivers was rapidly consumed or diluted along the coasts. Previous studies of riverine nutrients in the Arctic have similarly found that riverine NO\(_3^-\) delivered into coastal Arctic waters was rapidly consumed nearshore (Emmerton et al., 2008; Tremblay et al., 2014; Tremblay et al., 2015). Riverine nutrient input can increase productivity locally in some near-shore regions, but this only represents a relatively minor fraction of net marine primary productivity in the Arctic (Tremblay et al., 2015). While few blooms were identified through discrete chlorophyll-a sampling, satellite data for July and August 2019 in this region show higher chlorophyll-a nearshore (Figure S4).

The concentration and isotopic composition of riverine NO\(_3^-\) were highly variable spatially, indicating variable contributions of end-member sources, and production and consumption terms. We considered two main sources of NO\(_3^-\) in rivers: atmospheric deposition or the proximate nitrification of NH\(_4^+\) from either permafrost or atmospheric deposition (and internal recycling). Some rivers with low [NO\(_3^-\)] had particularly high δ\(^{18}\)O, up to 48‰, suggesting a significant fraction of uncycled atmospheric NO\(_3^-\). The δ\(^{18}\)O of NO\(_3^-\) from atmospheric deposition in the summer reflects the δ\(^{18}\)O of the O sources, which are ozone (O\(_3\)) and hydroxyl radicals (OH). O\(_3\) has a higher δ\(^{18}\)O (90–122‰; (Krankowsky et al., 1995; Johnston & Thiemens, 1997), while OH usually has δ\(^{18}\)O < 0 (Hastings et al., 2004). NO\(_3^-\) receives two O atoms from O\(_3\), and one from OH, significantly increasing the δ\(^{18}\)O of NO\(_3^-\) from atmospheric deposition (65.2 to 79.6‰; Hastings et al., 2004). Additionally, other rivers had a low δ\(^{18}\)O of NO\(_3^-\) (7 out of 11 rivers with δ\(^{18}\)O of NO\(_3^-\) < 0‰), which portends of nitrification of exogenous and recycled NH\(_4^+\). During nitrification, most of the O atoms originate from water, hence the δ\(^{18}\)O of newly nitrified NO\(_3^-\) approaches the O isotopic signature of its H\(_2\)O source (Boshers et al., 2019). Since freshwater in high latitude systems has a lower δ\(^{18}\)O of H\(_2\)O
(−22‰; (Louiseize et al., 2014; Arendt et al., 2016), the lower δ18O of NO3− observed in some ECAA river waters could indicate a significant input from nitrification.

To determine the contribution of these end members we used a steady-state isotopic model described in section 2.4 and the supporting information, and were able to reproduce the range of observed δ15N, δ18O as well as Δ(15,18) in riverine samples (Figure 6). The NO3− isotopic signatures (both δ15N and δ18O) suggested that mixing between atmospheric NO3− and nitrified NH4+ alone could not account for the observed δ15N and δ18O. However, including NO3− assimilation helped explain the observed dual NO3− isotopic values (solid arrow in Figure 5). This requirement for NO3− removal by assimilation is corroborated by previous studies, which have observed the uptake of NO3− by phytoplankton in Arctic rivers (Snyder & Bowden, 2014; Beaton et al., 2017). Our isotopic model also suggests that the majority of our data appear to be more influenced by the input of microbially-derived (nitrified) NO3− rather than uncycled atmospheric NO3−. This indicates that nitrification is putatively an important process to provide bioavailable N to Arctic rivers. Some Canadian Arctic permafrost is known to have a large quantity of NH4+ (Fouché et al., 2020), and contact with permafrost can influence the chemical composition of rivers (Frey et al., 2007; Frey & McClelland, 2009; Heikoop et al., 2015; Vonk et al., 2015). Additionally, NH4+ can be found in atmospheric deposition in similar proportions to atmospheric NO3− (Clark et al., 2020; Fouché et al., 2020). Moreover, NO3− input from atmospheric deposition appears to be temporally variable. In the Canadian Arctic, atmospheric deposition can be a dominant source of NO3− in rivers during the early melt season, which was from early June to mid–July. Rivers in this study were sampled after this melt season, during which remineralization takes over as the dominant source of NO3− (Louiseize et al., 2014). Though nitrification of NH4+ derived from permafrost or atmospheric deposition was the predominant source of NO3− (or recycling), some rivers had significantly higher NO3− concentrations and varying isotopic compositions, even when located geographically in close proximity to one another. For instance, rivers R-6.1 ([NO3−] = 11 μM) and R-ESG ([NO3−] = 0.44 μM) were adjacent and both had a δ15N of 10‰, but R-ESG had the lowest Δ(15,18) (−68‰) and the highest δ18O of NO3− (49‰). In contrast, R-6.1 had a relatively high Δ(15,18) (13‰), and a lower δ18O of NO3− (−2.7‰). We attribute this extreme variability to different landscape features associated with these rivers. R-ESG was running directly through a glacier, while R-6.1 was next to a glacial moraine containing significant terrestrial material. Therefore, R-ESG was likely in more direct contact with the glacial end member than R-6.1 and thus might have a relatively higher atmospherically-derived NO3− fraction. We posit that the sources of nitrogen in these rivers greatly vary depending on watershed characteristics and microbial metabolisms as suggested by Kaiser et al. (2017), even within small spatial scales.

4.2 DON mixing and transformations in the ECAA and Baffin Bay

Several factors control primary productivity in the Arctic, including nitrogen, iron and light availability (Tremblay et al., 2015). Ongoing Arctic sea-ice loss is expected to increase light availability, and drastically impact primary productivity and, consequently biological CO2 intake (Arrigo, 2007; Frey, 2018; Hill et al., 2018). Furthermore, river discharges from Arctic watersheds are steadily increasing in response to changes in the North Atlantic Oscillation and global mean surface air temperature (Peterson et al., 2002; McClelland et al., 2016; Rood et al., 2017). These rivers transport massive quantities of dissolved and particulate inorganic and organic nitrogen, sustaining primary productivity in coastal waters (Letscher, et al., 2013; McClelland et al., 2016; Thibodeau et al., 2017). Conversely, increased river discharge and
coastal erosion can lead to unfavorable nearshore light conditions, which could negatively impact primary productivity (Terhaar et al., 2021).

In this study, NO$_3^-$ concentrations were extremely low (maximum of 1.3 µM) or zero in the ECAA and Baffin Bay surface waters, which is consistent with N being the limiting nutrient in Arctic regions (Figure 4). However, DON accumulated to concentrations up to 6.1 µmol N L$^{-1}$ in surface waters near Davis Strait (Figure 7A) and could thus sustain primary productivity if a significant fraction of that DON is labile. However, the labile versus recalcitrant DON fractions were not analyzed in this study.

The large differences in both concentrations and isotopic compositions observed in this study could be due to local variations in DON sources. Previous studies have found that the δ15N of DON can reflect the δ15N of the new N source (Knapp et al., 2018). Therefore, DON produced from a low δ15N source, such as newly nitrified NO$_3^-$ from N$_2$ fixation, can have a similarly low δ15N DON. In samples where we were able to measure both δ15N of NO$_3^-$ and DON, the δ15N of DON was on average ~4 ‰ lower than that of NO$_3^-$ which could indicate DON production from NO$_3^-$. Knapp et al. (2018) observed a similar trend in the Eastern Tropical South Pacific surface waters, where subsurface DON bracketed the δ15N of NO$_3^-$ by ±3‰. Additionally, the lack of variation in DON isotopic composition and concentration observed in some areas, such as Transect 4, where [DON] ranged from 5.7–6.1 µmol N L$^{-1}$ and δ15N– DON ranged from 4.8–4.9‰, could suggest recalcitrant DON (Knapp et al., 2005; Bourbonnais et al., 2009).

Previous studies suggest that rivers are generally a significant source of bioavailable DON. For instance, Lobbes et al. (2000) reported an average [DON] of 12 µM for several Russian rivers. Conversely, Thibodeau et al. (2017) measured DON concentrations ranging between 13.9 to 21.8 µM in the Siberian Arctic. These studies found that up to 70% of the terrigenous DON delivered by Arctic rivers was consumed within the shelf waters of the western and Eurasian Arctic (Letscher et al., 2013; Thibodeau et al., 2017). Our results contrast with findings from other Arctic regions, such as the Siberian and Western Arctic (Lobbes et al., 2000; Dittmar et al., 2001; Holmes et al., 2012; Thibodeau et al., 2017). Rivers measured in this study generally had relatively high NO$_3^-$ but were mostly depleted in DON (up to 4.9 µmol N L$^{-1}$ in R-ESG). Our study thus suggests that rivers in the ECAA and Baffin Bay could act to dilute the DON pool in adjacent coastal marine surface waters. Overall, [DON] seemed to decrease with salinity in the mixed surface layer (upper 10 meters), though this correlation was overall not significant (Figure 8). Increased freshwater inputs with low DON concentrations could further stratify the water column in coastal ECAA and Baffin Bay waters, inhibiting vertical exchange with nutrient-rich deep waters, potentially decreasing primary productivity in the region if DIN is concomitantly low. The differences in DON concentrations observed between studies are likely related to the amount of glacial coverage, as the ECAA and Baffin Bay have significantly higher glacial coverage than the western and Eurasian Arctic (Pfeffer et al., 2014).

DON concentrations reported for glacial rivers are greatly variable. For example, on the Greenland Ice Sheet and the Leverett Glacier, which is adjacent to eastern Transect 1, previous studies reported a range from 5.1–14 µM for DON in the surface ice, while DON in basal ice and summer ice melt was on average about 12 µM and 3.0 µM, respectively (Wadham et al., 2016; Holland et al., 2019). The higher DON values in both locations were attributed to the presence of debris or microbial production of DON. However, other studies reported near zero DON concentration in supraglacial streams, cryoconite melt water, snow, and short ice cores (Telling et al., 2012; Wadham et al., 2016; Holland et al., 2019). In contrast, runoff from the Leverett
Glacier had an average DON concentration of 1.7 µM, with a maximum of 6.3 µM (Wadham et al., 2016). This average value is low relative to the average [DON] of the adjacent marine waters (5.6 µmol N L⁻¹). Thus, the low [DON] seen in river samples in this study could be characteristic of glacial melt that has not significantly mixed with high DON basal ice or debris.

Notably, Western Lancaster Sound, where a particularly high fraction of freshwater was observed, is fed by several rivers which we directly sampled. The rivers R-DIW, R-DIW-N, and R-CP all drain into western Lancaster Sound and had low [DON], ranging from 0.99–2.2 µmol N L⁻¹. This is a lower concentration than the surface ocean [DON] of this region, which is ~4 µmol N L⁻¹ but more similar to the [DON] in run off from the Leverett Glacier in the Greenland ice sheet (0.1–6.3 µM, mean of 1.7 µM; Wadham et al., 2016). All the [DON] values of rivers in this study fall within this range, though none of these rivers were draining from the Greenland Ice Sheet. While this can be viewed as a localized input of nutrients, at a larger scale this serves to both stratify and dilute the nearshore nitrogen pool. Thus, our direct measurements of [DON] in Arctic rivers corroborate dilution of the marine DON pool by riverine freshwater. Deviations from a pure mixing line in Figure 8 strongly suggest that competing sources or transformations are affecting the DON pool, e.g., inputs from freshwater and buoyancy or Ekman-driven upwellings and in-situ production/consumption by phytoplankton assemblages in the mixed surface waters (Thibodeau et al., 2017; Cape et al., 2019; Bhatia et al., 2022). The DON pool would also be influenced by the lability of the localized sources.

Our isotopic model for riverine NO₃⁻ suggested that nitrified NH₄⁺ was a significant source of NO₃⁻ in most rivers observed in this study. However, rivers in direct contact with organic matter sources such as permafrost and debris are typically DON-rich (Frey et al., 2007; Frey & McClelland, 2009; Wadham et al., 2016; Fouché et al., 2020). These contrasting observations suggest that most of the NO₃⁻ in rivers in this study could be atmospherically derived (either from nitrification of NH₄⁺ or direct NO₃⁻ inputs). Future studies should better constrain the isotopic composition (δ¹⁵N) and lability of permafrost DON, as well as soil conditions which can affect nitrogen cycling. For example, Frey & McClelland (2007) suggest that organic nitrogen in the permafrost of Alaskan watersheds was more easily remineralized compared to West Siberian watersheds, as the Siberian watersheds have high water saturation, which can limit remineralization of DON and facilitate denitrification. Due to analytical limitations, we were unable to analyze δ¹⁵N-DON in all but two of our riverine samples. Improvements to the analytical methods for measuring stable isotopes of DON (e.g., capability to remove DIN prior to DON analysis) could elucidate the contribution of permafrost in delivering DON to glacially fed rivers.

Both R-SG and R-ESG had slightly elevated δ¹⁵N-DON (5.8‰ and 7.2‰, respectively). Prior studies have observed low δ¹⁵N-DON in rivers and streams, at around −4 to 2‰ (Thibodeau et al., 2017; Ye et al., 2018). These values have been attributed to N sources from atmospheric deposition, aquatic and/or terrestrial N₂ fixation, or plant litter decomposition. Assuming DON sources in these rivers would have similar δ¹⁵N to this range, the values observed here could be considered elevated, and may indicate kinetic isotope fractionation during consumption or a source of recalcitrant DON with a particularly high δ¹⁵N. DON consumption will preferentially utilize the lighter isotopes, elevating the δ¹⁵N-DON of the remaining pool (e.g., Knapp et al., 2005; Bourbonnais et al., 2009; Knapp et al., 2018). Identifying the sources and lability of DON in these rivers, and the microbial processes involved
could provide further insights on how changes in river discharge and glacial coverage will affect DON supply.

Sea ice melt represents another potential source of DON in the ECAA and Baffin Bay. Similar to surface ice in some glaciers, sea ice can have higher concentration of DON, as observed in the Antarctic (Fripiat et al., 2014; Dall’Osto et al., 2017). Fripiat et al. (2014) suggested high DON was released by microbial communities within the sea ice following NO$_3^-$ assimilation. However, no significant correlation was observed between sea ice melt and DON in this study. Higher resolution sea ice melt and DON datasets, as well as direct measurements of DON in Arctic sea ice could help explore this potential contribution.

4.3 Evidence for DON consumption

DON consumption was identified at two main regions in the study area. One of the signals of DON consumption is isotopic enrichment of the DON pool (Knapp et al., 2018). During consumption, 14N is preferentially taken up, resulting in an increase in the δ15N of the substrate in surface waters. We observed a negative relationship between chlorophyll-a and DON concentrations in both the northern segment of the Nares Strait and the western half of Transect 1 (Pearson $R^2 = 0.75$, p-value = 0.04, Spearman $\rho = -1$, p-value = 0.02; Figure 9). Though Jones sound also has high chlorophyll, we have excluded it in this analysis as we suspect riverine discharge (Figure S3) is obscuring the relationship between chlorophyll-a, DON, and δ15N of DON. Additionally, [DON] was negatively correlated with δ15N (Pearson $R^2 = 0.54$, p-value = 0.10, Spearman $\rho = -1$, p-value = 0.02) (Figure 10). Our derived isotope effect of −6.9‰ using a closed-system Rayleigh model, is comparable to previously measured isotope effects of DON consumption of −5.5‰ (Knapp et al., 2018).

We observe that higher chlorophyll-a is correlated with lower [DON], which contrasts with the relationship found by Knapp et al. (2018). Knapp et al. (2018) observed a positive correlation between surface ocean chlorophyll-a and DON concentrations in the eastern tropical South Pacific, consistent with a photosynthetic source for DON. Conversely, nutrient concentration has been shown to decrease as chlorophyll-a increases due to nutrient uptake by phytoplankton in incubation studies (Cruz et al., 2006; Buapet et al., 2008), and a similar inverse relationship has been observed between DON and chlorophyll-a in lakes (Berman, 1997). We posit that the low DON associated with high chlorophyll-a observed here is the result of net DON uptake by phytoplankton.

Though [DON] remains at around 4–5 μM N L$^{-1}$ in the surface waters throughout most of the study region and NO$_3^-$ is near or at zero, we do not observe a distinct consumption signal at other stations. Several possibilities could explain this observation. First, any correlation between [DON] and chlorophyll-a is likely hindered by the low spatial resolution of available chlorophyll-a measurements, though satellite data corroborates our observations of mostly low chlorophyll-a in Baffin Bay (Figure S4). Second, DON could be recalcitrant in some regions. Dittmar et al. (2001) found that DON in the Siberian Arctic in brackish mixing zones was relatively recalcitrant. Third, DON cycling is likely complex and highly dynamic, with simultaneous consumption and production decoupled in space and time. These processes could complicate the relationship between chlorophyll-a and DON.
5 Conclusions

Nitrogen is a limiting nutrient in the ECAA and Baffin Bay, but its cycling and dynamics are not well constrained, particularly with regards to DON. As river discharges are projected to increase under a warmer climate, it is critical to better understand the role of glacial rivers in delivering nitrogen to this climate sensitive region.

NO$_3^-$ was the dominant dissolved nitrogen species in rivers. Our stable isotopic data suggests that a significant fraction of this NO$_3^-$ was assimilated in the river and/or rapidly consumed near shore. Thus, while increased river discharge may increase riverine NO$_3^-$ flux, the impact on primary productivity may be limited to coastal regions (Tank et al., 2012; Tremblay et al., 2015). We used a steady-state isotopic box model to apportion the sources of NO$_3^-$ in rivers. Our model suggested that NO$_3^-$ assimilation in addition to mixing between inputs from atmospheric deposition and nitrified NH$_4^+$ is needed to explain the observed δ^{15}N and δ^{18}O of NO$_3^-$ in rivers. NO$_3^-$ putatively derived from the nitrification of permafrost or atmospheric NH$_4^+$ was found to be a main source of NO$_3^-$ in most rivers, while only few rivers (e.g., R-ESG) had significant input of NO$_3^-$ from atmospheric deposition.

DON concentrations were relatively low in rivers (less than 4.9 µmol N L$^{-1}$). Unlike relationships observed for coastal waters adjacent to major Arctic rivers (Lettscher et al., 2013; Tremblay et al., 2014; Thibodeau et al., 2017), we observed that DON concentrations were generally increasing with salinity. We posit that increased riverine discharge in the ECAA and Baffin Bay may result in increased stratification of the surface ocean and dilution of the ambient DON pool, with potential effect on chlorophyll-a. However, it is important to note that geochemical signatures of Arctic rivers can vary seasonally (Alkire et al., 2017; Manning et al., 2020), and our river measurements were collected during a relatively narrow period (July 8th to August 14th, 2019) occurring after the peak annual discharge. Thus, the trends we observed may not be reflective of other times of the year. The low DON concentrations observed in the river contrast with those observed in large terrestrial rivers with extensive watersheds, such as the Mackenzie or Lena Rivers. We observed evidence for DON consumption (i.e., negative correlations between chlorophyll-a and δ^{15}N-DON and DON concentrations) in the northern Nares Strait, as well as western Transect 1. This indicates that DON could be utilized by phytoplankton in the ECAA and Baffin Bay, although the source of this DON, as well as its composition and lability require further investigation. We estimated an isotope effect for DON consumption of \sim6.9‰, which is in line with previous studies (−5.5‰; Knapp et al., 2018). This study provides a baseline for DON cycling in the ECAA and Baffin Bay and highlights further areas of research needed to better understand N-cycling in this dynamic region.

Acknowledgments, Samples, and Data

This work was funded by the National Science Foundation (NSF) (award #1927755 to Bourbonnais). Research on the CCGS Amundsen was funded by ArcticNet, a Network of Centres of Excellence Canada and the Amundsen Science program, which is supported through Université Laval by the Canada Foundation for Innovation. Data have been submitted to the NSF Arctic Data Center. Additionally, we thank Dr. Nadine Lehmann for providing the R code used for the Figure 1. Sample collection took place off the shores and within the rivers of Inuit, Inughuit Nunaat, and Kalaallit Nunaat land, and samples were analyzed on Congaree and Tsalaguwetiyi land. We thank the crew of the CCGS Amundsen for making this research
We also thank Darcy Perin, Maggie Gaspar, Elise Lumsden, Adrianna Webb, Jaquan High, and Miles Hampton for assistance in sample analysis.

References

Confidential manuscript submitted to Global Biogeochemical Cycles

Table 1. End member values used in the mixing model (from Yamamoto-Kawai et al., 2008 and Alkire et al., 2010).

<table>
<thead>
<tr>
<th>End Member</th>
<th>Salinity (PSU)</th>
<th>δ¹⁸O-H₂O (‰)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pacific Water</td>
<td>33</td>
<td>−0.80</td>
</tr>
<tr>
<td>Atlantic Water</td>
<td>35</td>
<td>0.20</td>
</tr>
<tr>
<td>Freshwater (rivers & glaciers)</td>
<td>0.0</td>
<td>−20</td>
</tr>
<tr>
<td>Sea Ice</td>
<td>4.0</td>
<td>0.05</td>
</tr>
</tbody>
</table>

Table 2. Concentration and δ¹⁵N and δ¹⁸O of NO₃⁻ and DON, as well as Δ(15,18) of NO₃⁻ in river samples (calculated as in Rafter et al., 2013). “R” denotes rivers sampled. Rivers were named based on proximity to geographic features or CTD stations, and are named as follows: Devon Island West (R-DIW), Devon Island East (R-DIE), Copland Point (R-CP), Devon Island West North (R-RIWN), Sydkap Glacier (R-SG), Eastern Sydkap Icecap (R-ESC), Station 6.1 (R-6.1), Eugenie’s Sister Glacier (R-ESG), Station 135 (R-135), Ellesmere Island East (R-EE), and Hans Island (R-HI).

<table>
<thead>
<tr>
<th>STATION</th>
<th>[NO₃⁻]</th>
<th>δ¹⁵N–NO₃⁻</th>
<th>δ¹⁸O–NO₃⁻</th>
<th>Δ(15,18)</th>
<th>[DON]</th>
<th>δ¹⁵N–DON</th>
</tr>
</thead>
<tbody>
<tr>
<td>R-DIW</td>
<td>20</td>
<td>4.4</td>
<td>−9.3</td>
<td>14</td>
<td>1.6</td>
<td></td>
</tr>
<tr>
<td>R-DIE</td>
<td>1.3</td>
<td>3.4</td>
<td>18</td>
<td>−14</td>
<td>0.54</td>
<td></td>
</tr>
<tr>
<td>R-CP</td>
<td>4.1</td>
<td>2.9</td>
<td>−7.5</td>
<td>10</td>
<td>2.2</td>
<td></td>
</tr>
<tr>
<td>R-DIW-N</td>
<td>47</td>
<td>4.8</td>
<td>−9.6</td>
<td>14</td>
<td>0.99</td>
<td></td>
</tr>
<tr>
<td>R-SG</td>
<td>2.7</td>
<td>0.71</td>
<td>−1.4</td>
<td>2.1</td>
<td>3.1</td>
<td>5.8</td>
</tr>
<tr>
<td>R-ESC</td>
<td>3.3</td>
<td>2.6</td>
<td>−6.3</td>
<td>8.9</td>
<td>1.8</td>
<td></td>
</tr>
<tr>
<td>R-6.1</td>
<td>11</td>
<td>10</td>
<td>−2.7</td>
<td>13</td>
<td>0.0</td>
<td></td>
</tr>
<tr>
<td>R-ESG</td>
<td>0.44</td>
<td>10</td>
<td>49</td>
<td>−38</td>
<td>4.9</td>
<td>7.2</td>
</tr>
<tr>
<td>R-135</td>
<td>3.5</td>
<td>6.6</td>
<td>7.3</td>
<td>−0.68</td>
<td>0.16</td>
<td></td>
</tr>
<tr>
<td>R-EE</td>
<td>2.7</td>
<td>4.8</td>
<td>10</td>
<td>−5.4</td>
<td>1.5</td>
<td></td>
</tr>
<tr>
<td>R-HI</td>
<td>4.7</td>
<td>5.3</td>
<td>−0.80</td>
<td>6.1</td>
<td>1.4</td>
<td></td>
</tr>
</tbody>
</table>
Figures

Figure 1. Map of the sampling locations. CTD casts are marked with orange circles. Red triangles represent river locations, which are also labeled by name. Transects 1, 2, 3, 4, 5, and the Northern Nares Strait are also labeled with solid black lines. The directions of surface currents are shown by the white arrows. Important regions and features numbered as follows: 1: Clyde River, 2: Disko Island, 3: Jakobshavn Glacier, 4: Lancaster Sound, 5: Devon Island, 6: Jones Sound, 7: Manson Icefield, 8: Talbot Inlet, 9: Smith Sound, 10: Kane Basin, 11: Kennedy Channel, 12: Petermann Glacier, 13: Hall Basin. 9–13 are all considered part of Nares Strait.
Figure 2. A. Fraction of freshwater and B. fraction of sea ice melt in surface water. 1 – Clyde River, 3 – Jakobshavn Glacier, 4 – Lancaster Sound, 6 – Jones Sound, 8 – Talbot Inlet, 12 – Petermann Glacier.

Figure 3. Surface chlorophyll-a (μg L$^{-1}$), regions with blooms at Petermann Glacier (12), Jones Sound (6), and Western Transect 1.
Figure 4. NO$_3^-$ (µM) distribution in the surface of the study area. Regions with measurable NO$_3^-$ concentrations are labeled as in Figure 1.
Figure 5. δ^{18}O vs δ^{15}N of NO$_3^-$ for riverine samples, with mixing between nitrification of NH$_4^+$ (blue box) and atmospheric deposition (pink box) marked by the dashed line. The $\varepsilon^{18}: \varepsilon^{15}$ of assimilation (~1) is noted with the solid black arrow.
Figure 6. Results from simple box model simulations evaluating the capacity of different sources of NO$_3^-$ in glacial rivers of the ECAA to generate d^{15}N and d^{18}O and D(15,18) signatures. The ratio of nitrified NH$_4^+$: atmospheric deposition is on the x axis, and Δ(15-18) on the y-axis. The blue line represents 50% recycled production, and the pink line represents 25% recycled production. The shaded colors represent model outputs when using the outer ranges of the end members. The black dashed lines represent the minimum and maximum Δ(15,18) observed in riverine samples.

Figure 7. A. [DON] (µM N L$^{-1}$) and B. δ^{15}N of DON in the surface water. Transects 1, 2, and Northern Nares Strait are denoted with black text. Lancaster (4) and Jones (6) Sounds are also labeled.
Figure 8. [DON] (µM N L\(^{-1}\)) in the mixed layer (upper 10 meters) of the water column vs salinity. Color indicates close geographic proximity: Blue dots represent samples located within Baffin Bay, orange diamonds represent samples in Nares Strait, and pink triangles represent samples located in sounds to the east of Baffin Bay. Riverine (hollow) and marine (solid) end members are marked with black dots with solid lines representing standard deviation in our estimates. The dashed line represents mixing between the two end members. Standard deviation < 0.5 µM for [DON].

Figure 9. Surface [DON] (µM N L\(^{-1}\)) in the northern Nares Strait (north of 80°N) (comprising Hall Basin and Kennedy Channel) and western Transect 1, against chlorophyll-a concentration (µg L\(^{-1}\)). The Pearson and Spearman’s rank correlation coefficients and p-values (P) are shown. Data from all other stations are shown with light grey dots, with Jones sound outlined in black.
Figure 10. Surface ln(DON) vs δ¹⁵N of DON in the northern Nares Strait (north of 80°N) and western Transect 1. The Pearson and Spearman’s rank correlation coefficients and p-values (P) are shown. Data from all other stations are shown with light grey dots, with Jones Sound outlined in black.
Introduction

The following is a description of the parameters used in our simple steady-state isotopic model for NO$_3^-$ cycling in rivers in the study area. This model is used to qualitatively evaluate if the observed Δ(15-18) of NO$_3^-$ can be reproduced by considering different dissolved NO$_3^-$ sources (nitrification and atmospheric depositions) in glacial rivers. Subsequently, we provide figures of surface salinity and δ^{18}O of water in the study area, and nitrate depth profiles. Description of River Isotopic NO$_3^-$ model.

Definition of terms

- $a =$ nitrified NO$_3^-$ (from permafrost or atmospheric NH$_4^+$)
- $b =$ atmospheric NO$_3^-$ (from glacial snow melt)
- $d =$ assimilation of NO$_3^-$
- $e =$ recycled production of NO$_3^-$
- $\delta^{15}N_{nit} = \delta^{15}N$ of NO$_3^-$ produced during complete nitrification of permafrost or atmospherically derived ammonium, average of 1.22‰ (range: -6 to 10‰; Arendt et al. 2016; Heikoop et al. 2016)
- $\delta^{18}O_{nit} = \delta^{18}O$ of NO$_3^-$ produced though nitrification of ammonium, average of -14.21‰ (range: -19.51 to -8.9‰; assuming $\delta^{18}O$ DO of 23.5-24.2‰ (Kiddon et al., 1993; Wang & Veizer, 2000; Horibe et al., 1973 as in Wynn et al., 2007) and $\delta^{18}O$ H$_2$O of -12 to -22‰ (Arendt et al. 2016, Wynn et al., 2007))
- $\delta^{15}N_{atm} = \delta^{15}N$ of NO$_3^-$ from atmospheric deposition, -3.54‰ (-8.72-1.40; Ansari et al., 2013; Hastings et al., 2003; Heikoop et al., 2015; Louiseize et al., 2014)
- $\delta^{18}O_{atm} = \delta^{18}O$ of NO$_3^-$ from atmospheric deposition, 72.07‰ (60.30-80.20; Ansari et al., 2013; Hastings et al., 2003; Heikoop et al., 2015; Louiseize et al., 2014)
- $\epsilon_{as^{15}} =$ isotope effect of NO$_3^-$ assimilation on N (5‰; Altabet, 2001)
\(\varepsilon_{as}^{18} = \) isotope effect of NO\(_3^-\) assimilation on O (5.9‰; Rafter & Sigman, 2015)

\(\delta^{15}N_{re} = \delta^{15}N \) of NO\(_3^-\) from recycled production

\(\delta^{18}O_{re} = \delta^{18}O \) of NO\(_3^-\) from recycled production average of -14.21‰ (range: -19.51 to -8.9‰; assuming \(\delta^{18}O \) DO of 23.5 to 24.2‰ (Kiddon et al., 1993; Wang & Veizer, 2000; Horibe et al., 1973 as in Wynn et al., 2007) and \(\delta^{18}O \) H\(_2\)O of -12 to -22‰ (Arendt et al. 2016, Wynn et al., 2007))

\(\delta^{15}N_{as} = \delta^{15}N_{box} - \varepsilon_{as}^{15} = \delta^{15}N \) of NO\(_3^-\) assimilated

\(\delta^{15}N_{box} = \) model output of \(\delta^{15}N \) of NO\(_3^-\) in the river

Model Conditions

- Nitrified NO\(_3^-\) is a source
- Atmospheric NO\(_3^-\) is a source
- NO\(_3^-\) assimilation is a sink
- Recycled production accounts for 50% or 25% of supplied NO\(_3^-\)
- No denitrification

For \(\delta^{15}N \)

\[
\delta^{15}N_{box} = a \times \delta^{15}N_{nit} + b \times \delta^{15}N_{atm} - [(d - e) \times (\delta^{15}N_{box} - \varepsilon_{as}^{15})]
\]

This can be arranged to

\[
\delta^{15}N_{box} = \frac{a \times \delta^{15}N_{nit} + b \times \delta^{15}N_{atm} + [(d - e) \times \varepsilon_{as}^{15}]}{1 + d - e}
\]

For \(\delta^{18}O \)

\[
\delta^{18}O_{box} = a \times \delta^{18}O_{nit} + b \times \delta^{18}O_{atm} - [d \times (\delta^{18}O_{box} - \varepsilon_{as}^{18})] + e \times \delta^{18}O_{re}
\]

This can be arranged to

\[
\delta^{18}O_{box} = \frac{a \times \delta^{18}O_{nit} + b \times \delta^{18}O_{atm} + e \times \varepsilon_{as}^{18} + e \times \delta^{18}O_{re}}{1 + d}
\]

The \(\Delta(15,18) \) is calculated according to Rafter and Sigman (2016):

\[
\Delta(15,18) = \delta^{15}N - \delta^{18}O
\]
Figure S1: Salinity cross sections of A. Transect 1 and B. Transect 2

Figure S2: Nitrate depth profiles for A. Western Baffin Bay B. Eastern Baffin Bay C. Nares Strait and D. Jones and Lancaster Sounds
Figure S3: Jones Sound Salinity (A) and Temperature (B) Cross Section.
Figure S4: Chlorophyll-a in the study region via satellite observations