Crystal Ball for the Impact of Anthropogenic Climate Change on Global Air Quality PM 2.5

Shan Shan

1Department of Sociology, Zhejiang University

July 23, 2023
Crystal Ball for the Impact of Anthropogenic Climate Change on Global Air Quality PM 2.5: a Machine Learning Method

Shan Shan

Department of Sociology, Zhejiang University, Hangzhou 310058, China
Corresponding author: Shan Shan (shshan@zju.edu.cn)

Key Points:

- List up to three key points (at least one is required)
- Key Points summarize the main points and conclusions of the article
- Each must be 140 characters or less with no special characters or acronyms.

1. Significant shifts in PM2.5 emissions are projected in relation to complex social factors.
2. In terms of model efficacy, the Random Forest and Support Vector Regression methodologies stood out for this scenario.
3. Machine learning revealing the importance of interdisciplinary approaches in addressing PM2.5 pollution.
Abstract

Air pollution caused by PM2.5 particles is a major global concern, particularly for human health. This study used machine learning tools to uncover the social factors influencing PM2.5 emissions. Text mining techniques were employed to extract key variables from previous research databases related to the target variable PM2.5 air pollution and its determinants. Four important features were derived, encompassing a wide range of factors, including PM2.5 air pollution levels, population metrics, GDP per capita, military expenditure, health expenditure, and environmental features. The study identifies significant changes in PM2.5 emissions related to health expenditure and economic contributions, emphasizing the need for interdisciplinary efforts to address this global problem. From a technical standpoint, machine learning feature extraction was deployed to pinpoint four critical factors with significant influence on air quality. In terms of model efficacy, the Support Vector Regression method stood out. This technique excelled in producing accurate predictions and understanding the correlation between key social factors and global exposure to PM2.5.

Plain Language Summary

Classified as the most hazardous air pollutant globally, PM2.5 draws significant interest from scholars and the public, especially in terms of human health. Leveraging machine learning techniques, this study investigates the determinants of these emissions in multi-social dimensions. The conclusions denote that the complexity and implications of airborne particulate pollution are shaped by multifaceted social variables economically and politically. Machine learning methods unravel multi-dimensional societal causes in PM2.5 emissions within the context of health expenditure and economic contributions from urban population growth, agriculture, forestry, and fishing, value added (% of GDP), manufactures exports (% of merchandise exports), current health expenditure (% of GDP), asserting the significance of an interdisciplinary approach in combating this global issue.

1 Introduction

Without a crystal ball, it is hard for a research to accurately predict the long-term effects of climate change, since such predictions involve a degree of complexed social uncertainty. Air pollution as an indicator of climate change is a pressing global issue that poses significant risks to human health and the environment (OECD, Awe, 2022). Among the various air pollutants, particulate matter with a diameter of 2.5 micrometers or less (PM2.5) is classified as the most hazardous one. Its adverse effects on respiratory and cardiovascular health have been widely documented, making it a matter of utmost concern for public health authorities and policymakers worldwide (Cohen et al. 2017). Understanding the determinants of PM2.5 emissions and accurately predicting their future patterns are crucial for developing effective strategies to mitigate air pollution and protect human well-being (Karagulian, 2023:1).

Traditionally, the analysis of PM2.5 emissions and their associations with socioeconomic factors has relied on static linear regression models. However, the complexity of airborne particulate pollution and its implications extend beyond simple linear relationships. In recent years, machine learning techniques have emerged as powerful tools for deciphering the intricate
dynamics of complex systems, including environmental phenomena. Leveraging the capabilities of machine learning, this study aims to unravel the determinants of PM2.5 emissions to offer an example for more policy makers.

The objective of this investigation is to go beyond the limitations of traditional static linear regression models and provide a more profound understanding of the societal causes of PM2.5 pollution. By applying machine learning methods, researchers can capture non-linear relationships and interactions among various social variables, both economically and politically, that shape the complexity of airborne particulate pollution. This research contributes to the growing body of knowledge on air pollution by delivering more precise forecasts and shedding light on the multifaceted factors influencing PM2.5 emissions.

In this study, a novel and efficient method was implemented to facilitate literature reviews by using text mining techniques and automated database interactions. Leveraging the Biopython library and the National Center for Biotechnology Information (NCBI) Entrez database, the employed text mining techniques fetch relevant articles associated with PM2.5 air pollution, climate change, and global air quality and extract critical variables from the retrieved literature, leading to the identification of 17 key features that spanned a multitude of factors, including PM2.5 air pollution levels, population metrics, GDP per capita, military expenditure, health expenditure, and environmental indicators.

Furthermore, this study highlights the significance of an interdisciplinary approach in addressing the global issue of PM2.5 pollution. By identifying the most pronounced shifts in PM2.5 emissions within the context of health expenditure and economic contributions from sectors such as urbanization, economic growth from agriculture, forestry, and fishing, manufactures exports (% of merchandise exports), and current health expenditure (% of GDP). The study indicates the need for collaboration between different fields of expertise. Only through a comprehensive understanding of the societal factors influencing PM2.5 emissions can effective strategies and policies be developed to combat air pollution and safeguard human health.
This research design, firstly, an exploration of multi-dimensional social causes was undertaken using text mining techniques, allowing for an analysis of numerous academic works, the identification of popular topics, and their classification into four distinct categories representing different dimensions of social data. Secondly, machine learning was employed to quantify and highlight the most critical features. Lastly, a comparative study of commonly used models was conducted to compare different model fitness.

2 Materials and Methods

2.1 Data collection and text mining for feature extraction

To investigate the influence of human-induced climate change on global PM2.5 air quality (Fig. 2), a comprehensive dataset was collected from reputable sources such as the World Bank and the OECD global data. The referenced data from OECD is Air pollution exposure, which pertains to population exposure levels exceeding 10 micrograms per cubic meter, and these figures
are presented as yearly averages. The World Bank development indicator (WDI) encapsulates information across various domains such as economics, education, environment, health, and more.

![Graph](image)

**Fig. 2.** Trend of worldwide exposure to PM2.5 from 2010 to 2019

Text mining techniques were employed to extract key variables from previous research related to PM2.5 air pollution and its determinants. Four social-important features’ categories are derived, encompassing a wide range of factors including PM2.5 air pollution levels, population metrics, GDP per capita, military expenditure, health expenditure, and environmental indicators.

The study utilizes the Biopython library to interact with the National Center for Biotechnology Information (NCBI) Entrez database, retrieving articles related to climate change and global air quality. The developed code snippet capitalizes on the functionalities of the Biopython library and the NCBI Entrez database to conduct query-based searches for articles. The Entrez module from the Bio package is employed, ensuring compliance with NCBI guidelines for accessing resources. Furthermore, the eSearch function from the Entrez module retrieves search results from the 'pubmed' database in XML format. Detailed information of identified articles is extracted using the fetch_details function, which takes a list of article IDs as input. The eFetch function from the Entrez module is employed to fetch these details from the 'pubmed' database in XML format. The practical application of this code is demonstrated by searching for articles related to "Climate Change, Global Air Quality, and Society", storing the ID list of matching articles in the id_list variable. The fetch_details function then retrieves the detailed information of these articles.

Through the process of text mining, pertinent features are classified into four distinct categories: environmental indicators, military and security indicators, economic indicators, healthcare indicators. This classification facilitated a more focused analysis of the socio-economic factors contributing to PM2.5 emissions. Utilizing open data resources such as the World Bank and OECD open data source, associated sub-indicators were amassed as detailed below:
Environmental Indicators:

- PM2.5 air pollution exposure, mean annual exposure (micrograms per cubic meter)
- CO2 emissions (kt)

Military and Security Indicators:

- Armed forces personnel, total
- Armed forces personnel (% of total labor force)
- Military expenditure (% of GDP)

Economic Indicators:

- Foreign direct investment, net outflows (% of GDP)
- Urban population
- Urban population growth (annual %)
- Agriculture, forestry, and fishing, value added (% of GDP)
- Services, value added (% of GDP)
- Trade in services (% of GDP)
- GDP per capita (constant 2015 US$)
- GDP per capita growth (annual %)
- Foreign direct investment, net inflows (% of GDP)
- Manufacturing, value added (% of GDP)
- Manufactures exports (% of merchandise exports)
- Exports of goods and services (% of GDP)
- Goods and services expense (% of expense)
- Urban population (% of total population)

Healthcare Indicators:

- Life expectancy at birth, total (years)
- Lifetime risk of maternal death (%)
- Lifetime risk of maternal death (1 in: rate varies by country)
- Current health expenditure (% of GDP)
- Current health expenditure per capita (current US$)
- Current health expenditure per capita, PPP (current international $)
- Domestic general government health expenditure (% of GDP)

Considering the raw data's degree of comprehensiveness and uniformity, 19 sub-indicators were retained for further analysis (refer to Table 1).
### Table 1
Basic information for nineteen sub-inicators

<table>
<thead>
<tr>
<th>Series Name</th>
<th>Series Code</th>
</tr>
</thead>
<tbody>
<tr>
<td>PM2.5 air pollution exposure</td>
<td>ExpoPM2.5</td>
</tr>
<tr>
<td>Agriculture, forestry, and fishing, value added (% of GDP)</td>
<td>NV.AGR.TOTL.ZS</td>
</tr>
<tr>
<td>Military expenditure (% of GDP)</td>
<td>MS.MIL.XPND.GD.ZS</td>
</tr>
<tr>
<td>Services, value added (% of GDP)</td>
<td>NV.SRV.TOTL.ZS</td>
</tr>
<tr>
<td>Trade in services (% of GDP)</td>
<td>BG.GSR.NFSV.GD.ZS</td>
</tr>
<tr>
<td>CO2 emissions (kt)</td>
<td>EN.ATM.CO2E.KT</td>
</tr>
<tr>
<td>GDP per capita (constant 2015 US$)</td>
<td>NY.GDP.PCAP.KD</td>
</tr>
<tr>
<td>Foreign direct investment, net inflows (% of GDP)</td>
<td>BX.KLT.DINV.WD.GD.ZS</td>
</tr>
<tr>
<td>Manufacturing, value added (% of GDP)</td>
<td>NV.IND.MANF.ZS</td>
</tr>
<tr>
<td>Manufactures exports (% of merchandise exports)</td>
<td>TX.VAL.MANF.ZS.UN</td>
</tr>
<tr>
<td>Tariff rate, applied, simple mean, manufactured products (%)</td>
<td>TM.TAX.MANF.SM.AR.ZS</td>
</tr>
<tr>
<td>Textiles and clothing (% of value added in manufacturing)</td>
<td>NV.MNF.TXTL.ZS.UN</td>
</tr>
<tr>
<td>Exports of goods and services (% of GDP)</td>
<td>NE.EXP.GNFSZS</td>
</tr>
<tr>
<td>Goods and services expense (% of expense)</td>
<td>GC.XPN.GSRV.ZS</td>
</tr>
<tr>
<td>Total debt service (% of GNI)</td>
<td>DT.TDS.DECT.GN.ZS</td>
</tr>
<tr>
<td>Urban population growth (annual %)</td>
<td>SP.URB.GROW</td>
</tr>
<tr>
<td>Urban population (% of total population)</td>
<td>SP.URB.TOTL.IN.ZS</td>
</tr>
<tr>
<td>Armed forces personnel (% of total labor force)</td>
<td>MS.MIL.TOTL.TF.ZS</td>
</tr>
<tr>
<td>Armed forces personnel, total</td>
<td>MS.MIL.TOTL.P1</td>
</tr>
</tbody>
</table>

#### 2.2 Data splitting

The initial steps in the analysis involve splitting the dataset into training and testing subsets. The `train_test_split` function from the scikit-learn library is employed for this purpose. By randomly dividing the dataset, models are trained on a portion of the data while their performance is assessed on unseen data. The study allocates 70% of the data for training and 30% for testing. A fixed random seed of 19 ensures consistency across iterations, facilitating the development of robust models and effective assessment of their predictive capabilities (Bisong, 2019:251, 2019:289).

#### 2.3 The distribution and probability property of the data

The distribution properties rely on certain distributional assumptions about the data(Demirtas & Yucel, 2008).

This analysis aims to delve into the detailed distribution characteristics of our dataset's variables. The nature of the data is better understood by examining the distribution and quantile-quantile plots for each column in the dataframe(NIST/SEMATECH, 2022). The generated plots provide insights into the distribution and deviation from normality for each column in the DataFrame. The histogram and fitted curve show the shape of the distribution, and the probability...
plot helps evaluate how well the data aligns with a normal distribution indicates there is no significant differences in the distribution of our features between our training and testing sets. (Fig.3).

Ensuring that the training and testing sets are similarly distributed guarantees that the model can effectively learn pertinent patterns during the training phase and accurately apply them to the test data. (Bisong, 2019). Thus kernel density plots are utilized for the visual examination
of the distribution of each feature in the training and testing subsets. Kernel Density Estimation (NIST/SEMATECH, 2022) also works as a method that assists in smoothing a histogram and facilitates data visualization via a continuous probability density curve across one or more dimensions. The outcomes from this comparative examination shows that the test data mirrors the training data properly. Through the analysis of these scatter plots and histograms, the aim is to identify any intriguing relationships or patterns in the data. There is no significant skewness or abnormalities in the feature distribution and no additional data cleaning steps or motivate transformations, thus further training, validation, and assessment procedures could be applied (Fig.4).

![Figure 4. The distribution and probability property of the data with KDE](image)

2.4 The relationships between each feature and the target variable air quality

The method used for the exploratory data analysis is described, with a focus on understanding the relationships among the variables in the dataset. The data analysis process involves the construction of correlation matrices to visualize the linear relationships between pairs of variables to the target variable air quality. The correlation coefficient, ranging from -1 to 1, indicates negative and positive correlations, with 0 indicating no linear relationship. For the overall interrelationships among the variables, a heatmap of the correlation matrix is created for air quality "ExpoPM2.5"(Fig.5). A positive correlation between two variables is represented by a bright color,
and a negative correlation is a darker color, which expedites the process of feature selection and helps identify potential collinearity issues.

Fig. 5. Heatmap of the overall interrelationships among the variables

2.5 Four important features

A correlation threshold of 0.5 is established to streamline the focus. This threshold signifies the minimum absolute correlation a variable must exhibit with the `ExpoPM2.5` to be considered significant for the analysis. Variables that possess correlation values less than this threshold with `ExpoPM2.5` are regarded as less significant and are therefore removed from the dataset. This elimination process simplifies subsequent analysis and model development. A threshold of 0.5 suggests an interest in variables that possess a moderate to strong positive or negative connection with `ExpoPM2.5`. This interpretation of correlation strength is based on a common guideline, although the threshold choice should ideally be influenced by the specifics of the research context and the nature of the data. After exclusion, four crucial features remain – 'Urban population growth (annual %)', 'Agriculture, forestry, and fishing, value added (% of GDP)', 'Manufactures exports (% of merchandise exports)', and 'Current health expenditure (% of GDP)'. These features, which exhibit a significant correlation with `ExpoPM2.5`, will be the central focus of subsequent analysis and model construction. In addition, correlation does not equate to causation. A high correlation
between predictors might suggest multicollinearity, which could influence the performance and interpretability of certain types of statistical models (Fig. 6).

![Figure 6: Four features with significant correlations with air quality](image)

2.6 Machine learning modeling and analysis

Common machine learning techniques were implemented including Ridge Regression, Decision Tree Regressor, and Random Forest Regression for the comparison. These models were trained and evaluated using appropriate metrics to assess their performance in predicting PM2.5 levels. The scores from the models provided empirical evidence of the validity of the analysis and the effectiveness of machine learning methods in studying PM2.5 air quality.

2.7 Models evaluation

The study conducted a comparative analysis of different machine learning tools to develop a predictive model for our dataset. The models were evaluated based on their R-squared scores, which measure the goodness of fit to the data. Among the models tested, Ridge Regression achieved the highest R-squared score of 0.989079, closely followed by Support Vector Regression with a score of 0.988993. These models demonstrated excellent predictive capabilities and effectively captured the relationships between the features and the target variable. The Decision Tree Regressor performed moderately well with a score of 0.845267, while the Random Forest Regression obtained a lower score of 0.685836. Based on these findings, Ridge Regression and Support Vector Regression are recommended as strong models for predictive modeling in our
dataset, while further refinement may be needed for the Decision Tree Regressor and Random Forest Regression models.

Table 2. Machine learning methods performance evaluation. The score herewithin refers to the term general to the metrics used to evaluate the performance and effectiveness of the model. (James et al. 2013).

<table>
<thead>
<tr>
<th>Machine Learning Methods</th>
<th>Score</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ridge Regression</td>
<td>0.989079</td>
</tr>
<tr>
<td>Support Vector Regression</td>
<td>0.988993</td>
</tr>
<tr>
<td>Decision Tree Regressor</td>
<td>0.845267</td>
</tr>
<tr>
<td>Random Forest Regression</td>
<td>0.685836</td>
</tr>
</tbody>
</table>

The suggestion for opting for one or more models, based on the performance evaluation provided, is contingent upon a multitude of aspects, which encompass the particular objectives,
requisites, and limitations associated with the task in question. Here are several points to weigh when advocating for a machine learning model in this study (Table 3):

Table 3. The general comparison of four machine learning models used in this study

<table>
<thead>
<tr>
<th>Option description</th>
<th>Mechanics</th>
<th>Prons and cons</th>
</tr>
</thead>
<tbody>
<tr>
<td>Support Vector Regression (SVR)</td>
<td>Employs kernel functions to transform data into higher dimensions, and then it tries to minimize the error within a defined margin. It is an advanced regression algorithm that aims to find an optimal hyperplane to fit the data points in a high-dimensional space. SVR is particularly effective for datasets with complex, non-linear relationships.</td>
<td>Pros: High predictive accuracy; Effective for complex, non-linear relationships.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Cons: Computationally intensive, especially for large datasets; Model interpretability is limited.</td>
</tr>
<tr>
<td>Ridge Regression</td>
<td>Minimizes the sum of squared residuals with an added penalty proportional to the square of the magnitude of the coefficients.</td>
<td>Pros: Handles multicollinearity well; Simpler and computationally efficient.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Cons: Might not perform well with non-linear data; Model complexity can be increased due to the introduction of regularization.</td>
</tr>
<tr>
<td>Decision Tree Regression</td>
<td>Splits the dataset into subsets based on feature values, and this process is recursively repeated until the tree reaches a predefined depth or purity.</td>
<td>Pros: High interpretability; Can capture non-linear relationships.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Cons: Prone to overfitting, especially with complex datasets; Can create overly complex trees.</td>
</tr>
<tr>
<td>Random Forest Regression</td>
<td>Creates a set of decision trees from randomly selected subsets of the training set and averages their predictions.</td>
<td>Pros: High predictive accuracy; Less prone to overfitting compared to a single decision tree.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Cons: Computationally more intensive than a single decision tree. Interpretability is less compared to a single decision tree but better than SVR.</td>
</tr>
</tbody>
</table>

3. Results

3.1 Text mining: uncovering social-environment trends in NCBI Entrez database outputs

Understanding and combating PM2.5 pollution requires a comprehensive understanding of its societal causes and interdisciplinary collaboration.

In the present scientific investigation, three major contributions were yielded. The first contribution comprised a comprehensive examination of multi-dimensional social causes utilizing
text mining methodologies. This comprehensive examination facilitated a rigorous analysis of a substantial volume of academic literature, leading to the identification of prevailing themes, which were then systematically classified into four unique categories, each representing a separate dimension of social data.

The study utilizes the Biopython library and the NCBI Entrez database, provides an example for literature retrieval and analysis. The execution of this code snippet allows for efficient retrieval of article details, including titles, from the 'pubmed' database, facilitating in-depth analysis and synthesis of research findings. It offers a tool for researchers investigating the complex relationship between climate change and global air quality, enabling the retrieval and analysis of a large volume of articles.

3.2 Feature analysis: mapping the dimensions of air quality research outputs.

Stemmed from the utilization of machine learning techniques which were instrumental in quantifying and underlining the most salient features of the social data under investigation. The results of the analysis revealed the significant impact of socio-economic factors on global PM2.5 air quality. Through machine learning modeling and feature engineering, the study identified the four most influential features contributing to PM2.5 emissions: urbanization, agriculture, forestry, and fishing, value added (% of GDP); Manufactures exports (% of merchandise exports); and Current health expenditure (% of GDP).

3.3 Modeling evaluation: Ridge Regression and Super Vector Regression

In this research, Ridge Regression was employed as a machine learning method to analyze the dataset. The Ridge Regression model is a variant of linear regression that includes a regularization term to control the complexity of the model. By using the scikit-learn library, a GridSearchCV was performed to find the best value for the regularization parameter, $\alpha$. The parameter grid consisted of different $\alpha$ values, and the model was evaluated using a cross-validation strategy with 3 folds. The best parameter value was determined as the one that yielded the highest coefficient of determination (R2) score. The results showed that the best parameter for the Ridge Regression model was $\alpha=0.01$, with a corresponding R2 score of 0.987. This indicates that the model with the selected $\alpha$ value achieved a high level of prediction accuracy and effectively captured the underlying patterns in the data.

The Support Vector Regression (SVR) model was trained using various kernel functions, including linear, polynomial, radial basis function (RBF), and sigmoid. These different kernel functions allow the SVR model to capture different types of non-linear relationships in the data. The model was also tuned using GridSearchCV, which systematically explores different combinations of hyperparameters, such as the regularization parameter (C) and the kernel coefficient (gamma), to find the best configuration for the SVR model. The performance of the model was evaluated using the R2 score, which measures the proportion of variance in the target variable that is explained by the model. Through hyperparameter optimization and R2 score

---

1 The recommendation is not solely based on the score but also on the specific use case and requirements. Often, it is advisable to try multiple models and perform cross-validation to see how they perform on unseen data before making a final decision. Additionally, considering the interpretability, training time, and complexity in addition to accuracy is important in making an informed choice (Linardatos, Papastefanopoulos, & Kotsiantis, 2020).
evaluation, the optimal combination of kernel function, regularization parameter, and kernel coefficient for the SVR model can be determined, resulting in a precise and robust predictive model.

4. Conclusion

The highlights the pressing global issue of PM2.5 air pollution and its detrimental effects on human health and the environment. Traditional linear regression models have limitations in capturing the complexity of airborne particulate pollution. To overcome these limitations, machine learning techniques were employed to analyze the dataset and uncover the determinants of PM2.5 emissions.

Through text mining techniques and automated database interactions, multi-dimensional variables were extracted from previous research, resulting in the identification of 18 key features encompassing four socio-economic levels, economicaly and politically.

Machine learning methods, such as Ridge Regression, Decision Tree Regressor, and Random Forest Regression, were utilized to predict PM2.5 contributors’ significance and assess the performance of the models. The results demonstrated the efficacy of Super Vector Regression and Ridge Regression’s model fitness in understanding and forecasting PM2.5 air pollution.

The study emphasizes the need for an interdisciplinary approach to address the global issue of PM2.5 pollution. The identified socio-economic factors, such as health expenditure and economic contributions, provide valuable insights for policymakers and researchers in developing effective strategies and policies to mitigate air pollution and protect human health.

Overall, this research contributes to the understanding of the complex relationships between socio-economic variables and PM2.5 emissions. By employing machine learning techniques and considering multiple dimensions, policymakers can make informed decisions and implement interventions to combat PM2.5 air pollution on a global scale.

Reference


