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Abstract

Classical approaches to flood hazard are obtained by the concatenation of a recurrence model for the events (i.e. an extreme

river discharge) and an inundation model that propagates the discharge into a flood extent. The traditional approach, however,

uses ‘best-fit‘ models that do not include uncertainty from incomplete knowledge or limited data availability. The inclusion of

these, so called epistemic uncertainties, can significantly impact flood hazard estimates and the corresponding decision-making

process. We propose a simulation approach to robustly account for uncertainty in model’s parameters, while developing a useful

probabilistic output of flood hazard for further risk assessments. A Peaks-Over-Threshold Bayesian analysis is performed for

future events simulation, and a pseudo-likelihood probabilistic approach for the calibration of the inundation model is used to

compute uncertain water depths. The annual probability averaged over all possible models’ parameters is used to develop hazard

maps that account for epistemic uncertainties. Results are compared to traditional hazard maps, showing that not including

epistemic uncertainties can underestimate the hazard and lead to non-conservative designs, and that this trend increases with

return period. Results also show that the influence of the uncertainty in the future occurrence of discharge events is predominant

over the inundation simulator uncertainties for the case study.
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Abstract15

Classical approaches to flood hazard are obtained by the concatenation of a recurrence16

model for the events (i.e. an extreme river discharge) and an inundation model that prop-17

agates the discharge into a flood extent. The traditional approach, however, uses ‘best-18

fit‘ models that do not include uncertainty from incomplete knowledge or limited data19

availability. The inclusion of these, so called epistemic uncertainties, can significantly im-20

pact flood hazard estimates and the corresponding decision-making process. We propose21

a simulation approach to robustly account for uncertainty in model’s parameters, while22

developing a useful probabilistic output of flood hazard for further risk assessments. A23

Peaks-Over-Threshold Bayesian analysis is performed for future events simulation, and24

a pseudo-likelihood probabilistic approach for the calibration of the inundation model25

is used to compute uncertain water depths. The annual probability averaged over all pos-26

sible models’ parameters is used to develop hazard maps that account for epistemic un-27

certainties. Results are compared to traditional hazard maps, showing that not includ-28

ing epistemic uncertainties can underestimate the hazard and lead to non-conservative29

designs, and that this trend increases with return period. Results also show that the in-30

fluence of the uncertainty in the future occurrence of discharge events is predominant31

over the inundation simulator uncertainties for the case study.32

Plain Language Summary33

Estimating the annual probability of some flood-depth level is a key input for risk34

analysis and engineering design. This is typically calculated via sophisticated probabil-35

ity and physics-based models that require many parameters. However, the classical ap-36

proach uses a fixed set of ‘best parameters’ for this and do not include the degree of un-37

certainty, even when such uncertainties may be very high. This work proposes a method38

to estimate the annual probability of flood-depth including the uncertainty in the pa-39

rameters used to compute it. More importantly, it shows that not including this uncer-40

tainty might severely underestimate the hazard and consequently lead to unsafe designs.41

1 Introduction42

As a key component of a comprehensive risk analysis, the hazard model is required43

to characterize the future occurrence of potentially damaging events. This ‘potential’ for44

damage is numerically quantified through an intensity measure (IM) metric that, in the45

case of flood hazard, usually is the water level, velocity and/or duration at any given point46

of interest (Pregnolato et al., 2015). It, ultimately, has the purpose of providing valu-47

able input information for vulnerability (e.g. damage) models that allow decision-makers48

to help mitigate the impact of natural hazards.49

In this context, flood hazard is typically defined as the probability of exceedance50

of an IM level at any point of interest during a given period of time. This usually comes51

in the form of ‘hazard curves’ that relate IM levels with an annual exceedance proba-52

bility (AEP) or a mean time of recurrence, also known as return period (RP). In prac-53

tice, the outcome is best conveyed through flood maps for different RPs to reflect the54

spatial distribution of hazard estimates.55

Since observations of IMs usually scarce for most locations, a purely statistical de-56

scription of their probability distribution is not possible. The typical approach, then, is57

to compute IMs as a result of the convolution of two distinct models: a ‘recurrence model’58

that describes the probability of occurrence of extreme events, such as an extreme rain-59

fall, river discharge, or sea-level rise; and a ‘source-to-site propagation model’ (or just60

propagation model for brevity) that represents how the triggering event is translated into61

a spatial (and temporal) distribution of IM levels (i.e. spatially distributed flood extent62

and depth). The former is inherently probabilistic and typically modelled via standard63
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stochastic time process such as the Poisson process. The propagation model, on the other64

hand, is typically modelled through deterministic physics-based models such as a hydro-65

logic and/or a hydraulic inundation model.66

The classical method involves computing the event’s magnitude, such as peak dis-67

charge in riverine flooding, for different RPs and use it as input of the inundation model68

to develop flood maps for the different recurrences. This is done using appropriately cal-69

ibrated recurrence curves and inundation simulators based on available data and expert’s70

knowledge. This is the standard approach for most practical applications in the indus-71

try, due to its conceptual simplicity and ease of implementation. It does, however, as-72

sume that the models used are perfectly ‘true’. The only probabilistic nature of the ap-73

proach comes from the inherent uncertainty in the future occurrence of extreme events;74

also termed ‘aleatory uncertainty’ (J. Hall & Solomatine, 2008).75

A broad range of researchers during the last decades have brought attention to the76

importance of including other, more subjective, sources of uncertainty into risk analy-77

sis in general, and flood hazard modelling in particular (J. Hall & Solomatine, 2008; Beven,78

2014; Merz & Thieken, 2005). Subjective uncertainties, also termed here ‘epistemic’, can79

arise from the data we use to constrain our models, our lack of knowledge regarding the80

true physical processes involved, or our limited analytic and computational capabilities81

for providing results (J. Hall & Solomatine, 2008). Their inclusion may lead to impact-82

ful modifications in the decision making process, at the cost of a significant increment83

in analytical and computational complexity.84

Many researchers have dealt with the inclusion of epistemic uncertainties in flood85

hazard models, specifically riverine floods, in the last decades. Some works have focused86

mainly on dealing with uncertain representations on the recurrence of the input discharge87

events. That is, defining a distribution for the uncertain discharge for a given return pe-88

riod. This includes accounting for statistical fitting errors due to limited-length data and89

distribution family (Apel et al., 2008; G. T. Aronica et al., 2012; Neal et al., 2013; Ro-90

manowicz & Kiczko, 2016; Stephens & Bledsoe, 2020), secondary input variables as flood91

volume (Candela & Aronica, 2017), or more general hydrograph shape uncertainties through92

hydrological modelling (Grimaldi et al., 2013; Falter et al., 2015; Ahmadisharaf et al.,93

2018; Zahmatkesh et al., 2021). Others have focused on including uncertainty in the in-94

undation model through its most sensitive parameters such as roughness coefficients (Di Bal-95

dassarre et al., 2010; Kalyanapu et al., 2012; G. T. Aronica et al., 2012; Kiczko et al.,96

2013; Romanowicz & Kiczko, 2016; Bharath & Elshorbagy, 2018), Digital Elevation Maps97

(DEM) (Apel et al., 2008), or cross-section geometrical properties (Stephens & Bledsoe,98

2020). Furthermore, many of these have included both the epistemic uncertainties in the99

discharges recurrence as well as in the inundation model (Apel et al., 2008; Di Baldas-100

sarre et al., 2010; Kalyanapu et al., 2012; G. T. Aronica et al., 2012; Kiczko et al., 2013;101

Romanowicz & Kiczko, 2016; Bharath & Elshorbagy, 2018; Stephens & Bledsoe, 2020;102

Zahmatkesh et al., 2021).103

The typical outcome from most of these approaches is in the form of ‘probability104

of flood’ maps for different return periods. That is, for a specific return period, differ-105

ent discharges and/or inundation model parameters are randomly sampled and used to106

obtain an ensemble of flood maps from which the probability of flooding is computed em-107

pirically (Di Baldassarre et al., 2010; Domeneghetti et al., 2013; Neal et al., 2013; Kiczko108

et al., 2013; Bharath & Elshorbagy, 2018; Stephens & Bledsoe, 2020; Zahmatkesh et al.,109

2021). A flood risk analysis requires estimating potential damages from the hazard out-110

comes, and this type of input is not very helpful since most flood damage models use as111

input the water depth above ground level (Pregnolato et al., 2015). For this reason, in-112

stead of translating uncertain flow discharges for given RP into a probability map (broadly113

known as ’event-based’ approach), some researchers have aimed to develop recurrence114

curves for water depths at the points of interest (G. T. Aronica et al., 2012; Nuswan-115

toro et al., 2016; Romanowicz & Kiczko, 2016).116
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The literature review indicates a lack of hazard methodologies that can (1) include117

epistemic uncertainties in both the recurrence and inundation models, (2) provide use-118

ful output for further risk assessments, while (3) also being probabilistically consistent119

and computationally tractable. This work explores a simulation methodology of flood120

scenarios using a Bayesian approach of extreme value theory and the Generalized Like-121

lihood Uncertainty Estimation (GLUE) framework to account for epistemic uncertainty122

in the parameters of the recurrence model and the inundation simulator respectively. We123

propose to use the probability of exceedance averaged over the distribution of all pos-124

sible parameters as a point measure of flood hazard due to its improved statistical prop-125

erties as discussed in Fawcett and Green (2018), and its lower computational demand126

compared to obtaining full credible intervals. This framework allows the development127

of flood hazard curves, as well as flood hazard maps by computing this estimate of the128

recurrence at every point of interest.129

Section 2 describes the mathematical model used to compute hazard estimates, a130

framework to include epistemic uncertainties through model’s parameters posterior dis-131

tributions, and a simulation procedure for its numerical evaluation. A small case study132

of riverine flooding is described in Sect. 3 and used as a working example to test this133

methodology. In Sect. 4, the resulting hazard curves and maps are compared to the tra-134

ditional approach where no epistemic uncertainties are included. Insights in the hypoth-135

esis, results and implications of the model are analyzed in the discussions of Sect. 5, while136

a summary of main takeaways and potential future lines of research are drawn in the fi-137

nal section.138

2 Methodology139

2.1 The hazard model140

As discussed in the introduction, flood hazard can be quantified as the annual prob-141

ability of exceedance of a given IM level y, at any location of interest. Mathematically,142

this probability is calculated by a stochastic time process model. The most used one, due143

to its simplicity and well-known mathematical properties, is the Homogenous Poisson144

Process (HPP) for which events occur discretely with independent exponentially distributed145

inter-arrival times with a mean rate λ0 that is constant over time. Under these simpli-146

fying assumptions, the probability of exceedance over a timespan T can be computed147

as per Eq. 1.148

pT (y) = 1− exp (−λ0Tp (Y ≥ y)) (1)149

Where Y is the random IM for any given event, T is the timespan of interest, and p (Y ≥ y)150

is the probability of exceedance of level y for any given event (this probability is con-151

stant over time in the HPP).152

The hazard is then computed by setting T = 1 in Eq. 1 to obtain the annual prob-153

ability of exceedance. For events with low recurrence λ0 and low exceedance probabil-154

ity p (Y ≥ y), as is mostly the case in disaster risk analysis, the probability of Eq. 1 can155

be further simplified as in Eq. 2.156

pT (y) ≈ λ0p (Y ≥ y) (2)157

This is equivalent to the mean rate of exceedance of Y ≥ y or its multiplicative158

inverse, the mean time between occurrences Tr (y), also known as ‘return period’ (see159

Eq. 3). In practical terms, hazard is measured by the annual probability of exceedance160

or by the mean rate of occurrence of IM level y, which are practically equivalent.161

λ0p (Y ≥ y) = λ (y) =
1

Tr (y)
(3)162
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Since direct observations of water depths (or IMs in general) during flood events163

are very rare, probabilistic characterization of Y is usually done via mechanistic fluid dy-164

namics models, here called ‘inundation model’ or simply ‘simulator’. This model depends165

on a number of observable boundary conditions X that are considered to vary event to166

event, such as upstream river discharge, rainfall intensity or sea-level rise. It also depends167

on a set of unobserved calibration parameters β considered constant over events, such168

as the soil roughness parameters or the channel cross-section geometry (see Eq. 4).169

Y = S (X,β) (4)170

In this context, an ‘event’ is characterized by a magnitude X which describes the171

impact potential of the phenomenon. For example, in riverine flooding, X can represent172

the river discharge flow and an event is triggered when it surpasses a given threshold.173

Analogously, in coastal flooding, X might stand for sea-level extreme rise, or in pluvial174

flooding where X stands for rainfall intensity. In more complex scenarios, X can be a175

vector representing multiple quantities, such as flow discharge and volume, rainfall in-176

tensity and duration, or a combination of flow discharge and sea-level rise. For the sake177

of simplicity, this work will focus on scalar X.178

Since Y is a function of X, the probability p (Y ≥ y) in Eq. 2 can be computed by179

conditioning on the probability distribution of the event’s magnitude X as given by,180

p (Y ≥ y) =

∫
x

1 {S (x, β) ≥ y} p (x|θ) dx (5)181

Where 1 {cond} is an indicator function that returns 1 when cond is true and 0 other-182

wise and θ is a vector of parameters that describe the probability distribution of X.183

This expression is useful as long as it is easier to define the probability distribu-184

tion of events magnitudes p (x|θ) than the distribution of IM levels p (Y ≥ y) from data185

or expert knowledge. As mentioned before, this is the typical case in flood hazard, where186

we usually have relatively robust historical measurements of river flow discharges or rain-187

fall intensity, but very few of water depths at points of interest in the floodplain.188

Introducing Eq. 5 into Eq. 2, we obtain the full expression for the flood hazard,189

λ (y) =

∫
1 {S (x, β) ≥ y}︸ ︷︷ ︸

Inundation
model

λ0p (x|θ)︸ ︷︷ ︸
Events

recurrence
model

dx (6)190

An illustrative scheme of a realization of the described time process is shown in Fig-191

ure 1. The varying sizes of the blue bubbles reflect the magnitude Xi of the events, while192

the black bars reflect the IM level (i.e. water depth) for each. According to the HPP model,193

the time Ti between events follows an exponential distribution with mean rate λi, while194

the time between IM exceedances Ti (y) (the black bars that cross the dotted red line)195

follows an exponential distribution with mean rate λ (y) as described in Eq. 6.196

It is important to highlight that the model summarized here is replicated when an-197

alyzing the hazard for other types of natural phenomena. In the case of seismic hazard,198

X is the moment magnitude and spatial epicenter location of the earthquake and their199

probability distribution is typically given by the Gutenberg-Richter law and the source-200

to-site propagation model is defined by the Ground Motion Prediction Equations (GM-201

PEs) (Baker et al., 2021). For typical hurricane winds hazard, the recurrence model de-202

scribes the likelihood of the hurricane’s central pressure and track, while the propaga-203

tion model is described through a wind field model (Vickery et al., 2006).204
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t

X

Xi

y1

y2

Yi =S(Xi, β)

Ti ∼Exp(λ0)

Ti(y1)∼Exp(λ(y1))

Ti(y2)∼Exp(λ(y2))

Figure 1. Schematic illustration of a realization of the HPP model, with two arbitrary IM

levels y1 and y2 to define the hazard

2.2 Including epistemic uncertainties205

The hazard problem is, as described by Eq. 6, tightly related to predicting an un-206

certain event in the future. Thus, it is strictly an uncertainty quantification task. At its207

core, that expression is a mathematical representation of what is known as ’aleatory un-208

certainty’, here characterized by the exponentially distributed inter-arrival times with209

mean rate λ0 and the probability distribution of the event’s magnitude p (x|θ).210

Aleatory uncertainty is considered an inherent component of the physical process211

and it does not depend on the amount of knowledge and information the modeller has.212

However, there are other sources of uncertainty around the estimation of the hazard that213

are related to our incomplete knowledge about the physical process and data available214

to characterize it. These are commonly known as ’epistemic uncertainties’ (Spiegelhalter215

& Riesch, 2011).216

As described by Spiegelhalter and Riesch (2011), epistemic uncertainty stems mainly217

from (1) limited information to properly characterize the models and variables involved218

and (2) limited knowledge to properly describe the true physical processes through the219

selected models. This more operational description of epistemic uncertainties allows for220

a more rigorous way of including them in the mathematical model.221

Limited information appears in practice, as limited-length data, observation errors,222

or missing variables. It can, typically, be represented through uncertainty in the param-223

eters that describe the models as data is not sufficient to perfectly identify them. Lim-224

ited knowledge, on the other hand, is usually represented through simplifying assump-225

tions as the ones in the HPP model, uncertainty in the distribution family chosen for p (x|θ),226

or the particular physics-based model chosen for S. It can be harder to represent this227

mathematically, although it has been done through model ensembles (i.e. considering228

and weighting many possible models) or statistical representations of model deficiencies229

(Kennedy & O’Hagan, 2001; Balbi & Lallemant, 2023).230

Despite the epistemological differences between the two, it is not always clear which231

sources of uncertainty belong to each category, and it can vary depending on the con-232

text. In any case, the most important feature that differentiates aleatory and epistemic233

uncertainty is the fact that the former cannot be practically reduced since it is an in-234

herent property of the system under analysis. The epistemic uncertainty, on the other235

hand, can be reduced by further collecting information and improving knowledge. This236

distinction is crucial when allocating resources for model improvement (Der Kiureghian237

& Ditlevsen, 2009; Merz & Thieken, 2005).238
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The inclusion of epistemic uncertainties greatly increases the complexity of the prob-239

lem from an analytical and computational standpoint. In particular, this work focuses240

on the inclusion of epistemic uncertainty through model’s parameters as a broad rep-241

resentation of limited data to define the models. In this context, hazard as calculated242

in Eq. 6 can be understood as being conditional to a given set of models and parame-243

ters as given by,244

λ (y|β, λ0, θ) =

∫
1 {S (x, β) ≥ y}λ0p (x|θ) dx (7)245

One way of incorporating uncertainty regarding the values of the set of parame-246

ters {β, λ0, θ} is provided by Bayesian decision theory. In this context, an appropriate247

estimate of the hazard should take into account the consequences of over or underpre-248

dicting its true value. Fawcett and Green (2018) discusses this when estimating return249

period levels for environmental extreme events, and they suggest the use of the predic-250

tive posterior return level as a point estimate that reliably incorporates epistemic un-251

certainty.252

The posterior predictive estimate is obtained by averaging the conditional hazard253

of Eq. 7 over all possible values of the parameters {β, λ0, θ} weighted by their posterior254

distribution p (Θ|data) as per Eq. 8.255

λ (y|data) =
∫
Θ

λ (y|λ0, β, θ) p (λ0, β, θ|data) dλ0dβdθ (8)256

In the Bayesian framework, the posterior distribution of the parameters p (λ0, β, θ|data),257

is the probability conditional on the available data and modeller’s prior knowledge ob-258

tained by means of Bayes’ Theorem (Gelman et al., 2013). The posterior distribution259

is proportional to the probability of observing the data given a set of parameters, also260

known as ‘likelihood function’, multiplied by the probability of a given set of parame-261

ters before incorporating the data, also known as ‘prior distribution’ (see Eq. 9). This262

can be colloquially described as the modeller’s knowledge (i.e. prior distribution) times263

the information contained in the observations (i.e. the likelihood function).264

p (λ0, β, θ|data) ∝ p (data|λ0, β, θ) p (λ0, β, θ) (9)265

Equation 8 allows us to compute the hazard curve of water depths (or the IM cho-266

sen for the analysis) for any given point in space. Or inversely, compute the water depth267

for a given rate or return period. Hence, we can develop the T-years flood hazard map268

by marginally computing the y level for that return period from the expression.269

In the following sub-sections we describe the methodology to estimate the poste-270

rior probability distributions of the parameters from Eq. 9, and the simulation method-271

ology to estimate the hazard as per Eqs. 7 and 8.272

2.2.1 A Bayesian recurrence model273

In the framework described above, the recurrence model aims to quantify the mean274

rate of occurrence λ0 of events, and characterize the distribution of the magnitude X275

and its parameters θ for any given event. These can be obtained from the statistical anal-276

ysis of time series of past events. Poisson Point Process theory, as a generalization of the277

well-known Peaks-Over-Threshold (POT), methodology provides a robust framework for278

this (Bezak et al., 2014). Extreme events are individualized from historical records of279

daily discharges, by selecting an appropriate minimum threshold u and time separation280

to ensure independence. This results in a dataset of observed independent times between281

events T̂ and a dataset of observed event’s magnitudes x̂. A Generalized Pareto Distri-282

bution (GPD) is then used as the probability model for the exceedances above the thresh-283
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old threshold x− u, and the inter-arrival time between events is assumed to be expo-284

nentially distributed. This is,285

T ∼ Exp (t|λ0) (10)286

X − u ∼ GPD (x|ξ, σ) (11)287

Where λ0 is the mean rate of arrival and ξ and σ are the shape and scale parameters that288

define the probability distribution, and u an appropriately defined threshold.289

Hence, two probability models are required to describe the occurrence of events.290

An exponential distribution model of parameter λ0 for the time between arrivals, and291

a GPD of parameters θ = {ξ, σ} for the magnitude of each event. Bayesian statistics292

provide an ideal framework to compute uncertainty in model’s parameters that are con-293

sistent with the modeller’s prior knowledge and proposed model (Bousquet & Bernar-294

dara, 2021).295

For the dataset of observed interarrival times T̂ , the likelihood function is simply296

a product of n exponential densities, where n is the number of observations. The pos-297

terior distribution of the mean rate λ0 can be obtained by assuming a weakly informa-298

tive Gamma (1/2, 1/2) prior distribution. A weakly informative prior distribution is rel-299

atively flat in the entire range of plausible values for the parameter. For this choice of300

prior, the posterior distribution has a closed form solution as given in Eq. 12 since it is301

a conjugate pair for the Exponential likelihood (Gelman et al., 2013).302

p
(
λ0|T̂

)
= Gamma (n+ 1/2, t+ 1/2) (12)303

Where n is the number of events and t =
∑

∀i T̂i is the total number of years in the se-304

ries.305

The most likely value of the rate of occurrence given the observations is given by306

the mode of the posterior probability of Eq. 12, also known as the Maximum A-Posteriori307

(MAP) estimate. The MAP estimate and the mean value of the posterior distribution308

for λ0 are given by Eqs. 13 and 14 respectively.309

λ∗
0 = (n− 1/2) / (t+ 1/2) (13)310

λ0 = n/t (14)311

For the dataset of observed event’s magnitudes x̂, the likelihood function is given312

by a product of n GPD densities. There is no conjugate model for this likelihood, but313

a non-informative prior can built for the shape and scale parameters following Castellanos314

and Cabras (2007) (Eq. 15).315

p (ξ, σ) ∝ σ−1 (1 + ξ)
−1

(1 + 2ξ)
−1/2

(15)316

Valid for ξ > −0.5 and σ > 0.317

Then, the un-normalized expression for the posterior can be obtained by Bayes the-318

orem as per Eq. 16, and the predictive posterior distribution for X can be subsequently319

computed as per Eq. 17. In both cases, there is no analytic solution, and samples from320

the distribution can be done via standard Markov Chain-Monte Carlo (MCMC) meth-321

ods (Gelman et al., 2013). These can also be used to compute posterior mean and MAP322

estimates for ξ∗, σ∗.323

p (ξ, σ|x̂) ∝ p (ξ, σ)

n∏
i=1

(1 + x̂iξ/σ)
−(1+ξ)/ξ

(16)324

p (x− u|x̂) =
∫

GPD (x− u|ξ, σ) p (ξ, σ|x̂) dξdσ (17)325

–8–



manuscript submitted to Water Resources Research

2.2.2 Probabilistic inundation model326

The inundation model is, in this context, a computational solver of some simpli-327

fied version of the fluid dynamics equations that depend on variable inputs X and cal-328

ibration parameters β. Epistemic uncertainties might come from lack of sufficient infor-329

mation to calibrate the parameters, observation errors, mechanistic simplifying assump-330

tions, and numerical simplification of the equations solver (Kennedy & O’Hagan, 2001).331

We assume here, due to simplicity, that for a given simulator S (X,β) these can be rep-332

resented by uncertainty in the model’s calibration parameters β. More complex proce-333

dures to include model uncertainty can be used to include uncertainty in the model struc-334

ture. For example, a formally probabilistic calibration procedure that includes model struc-335

tural uncertainty as an additive Gaussian Process is discussed in Balbi and Lallemant336

(2023).337

Parameter’s distributions can be obtained using nominal probability models from338

expert’s knowledge (Kalyanapu et al., 2012; Stephens & Bledsoe, 2020) or statistically339

calibrated ones generally via the GLUE methodology (Di Baldassarre et al., 2010; G. T. Aron-340

ica et al., 2012; Kiczko et al., 2013; Romanowicz & Kiczko, 2016; Zahmatkesh et al., 2021).341

In this work, epistemic uncertainty will be represented by probability distributions in342

the roughness parameters only, for the floodplain and for the channel, considering all other343

inputs as constant regarding the calibration procedure. These distributions will be ob-344

tained by means of the GLUE framework, where all possible sets of parameters are as-345

signed a normalized score (i.e. pseudo-likelihood) from an appropriately selected scor-346

ing rule. In the case of flood extent binary observations (as in the case study developed347

in this work), it is typical to use the F-score (as per Eq. 18), a variant of the classical348

Jaccard Index (G. T. Aronica et al., 2012; Papaioannou et al., 2017).349

F (β) =
A−B

A+B + C
(18)350

Where A is the number of correctly predicted pixels, B the number of over-predicted pix-351

els (predicted flooded, observed non-flooded), and C is the number of under-predicted352

pixels (predicted non-flooded, observed flooded).353

The details of the calibration procedure using the GLUE framework can be found354

in Balbi and Lallemant (2023), but they can be summarized in four steps:355

1. Sample a large set of β from their prior distribution356

2. Compute the F-score for the sampled β357

3. Reject all ’non-behavioral’ models using some thresholding criteria: F < f∗
358

4. Standardize the resulting F-scores so that they are all positive and integrate to359

1360

The model fit for each value of β is, then, a measure of its uncertainty, or pseudo-361

posterior probability (as it is not strictly obtained from a probabilistic likelihood). In362

addition, the MAP value for parameter β is the one that yields the best fit (i.e. largest363

F-score).364

2.3 Numerical implementation365

Computing the integral from Eq. 8 requires numerical procedures since no analytic366

solution exist for the posterior distributions of the parameters just described. Since many367

parameters are involved in its computation, a summary of variables and symbols can be368

found in Table 1.369

Equation 8 can be slightly simplified, however, by noting that λ (y|λ0, β, θ) is lin-370

ear on λ0 and its posterior distribution (Eq. 12) is independent from the rest of the pa-371
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Table 1. Summary of variables and symbols

Variable Description

X Flood event’s magnitude (i.e. river peak discharge)
Y Flood IM (i.e. flood depth) at a given point in space
λ0 Mean rate of occurrence of events X ≥ 0
λ (y) Mean rate of occurrence of events Y ≥ y
β Inundation simulator calibration parameters
S (X,β) Inundation simulator
ξ GPD shape parameter
σ GPD scale parameter
u Threshold value for X POT model

(.) Mean value of parameter
(.)

∗
MAP value of parameter (mode of its posterior distribution)

rameters as given by Eq. 19.372

λ (y|data) = λ0

∫
β,ξ,σ

p (Y ≥ y|β, ξ, σ) p (β, ξ, σ|data) dβdξdσ (19)373

Where λ0 is the mean of the posterior distribution of λ0 given by Eq. 14.374

Standard Monte-Carlo (MC) integration techniques can be employed to compute375

such integral. Conceptually the task is straightforward: we need to sample from the pos-376

terior distribution of Y , by sampling first from the posterior of X. This can be done through377

the following steps:378

1. Sample N values from the posterior distribution of β (as per Sect. 2.2.2) and {ξ, σ}379

(from Eq. 16)380

2. For each sample of {ξi, σi}, sample xi from Eq. 17381

3. For each sample xi and βi, compute water depth at all points of interest from the382

simulator yi = S (xi, βi)383

4. Estimate the mean rate of exceedance of y as:

λ (y|data) ≈ λ0

N

∑
i

1 {S (xi, βi) ≥ y}

The number of samples N required for the simulation depends on the percentile384

of the curve (i.e. return period) we are trying to estimate and the precision desired. For385

example, to estimate the 100 years return level y100 we need to estimate an exceedance386

probability p (Y ≥ y100) = (100λ0)
−1

. According to the standard theory of empirical387

estimates of probabilities, based on the Central Limit Theorem (CLT), we can obtain388

an approximate minimum number of simulations for a 95% confidence interval as per,389

N >
1.96

ε2

√
1− p

p
(20)390

Where p is the actual probability being estimated (not exactly known) and ε is the width391

of the relative interval (Melchers & Beck, 2018).392

On the other hand, the computation of the hazard in the classical approach (as given393

by Eq. 5), where no epistemic uncertainties are considered, is much simpler:394

1. Obtain the return levels of the GPD distribution for each return period Tr of in-
terest , and for fixed parameters ξ∗ and σ∗ as given by (see Appendix A for de-
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tails),

xTr = u+

{
σ∗

ξ∗

{
(λ∗

0 · Tr)
ξ∗ − 1

}
, if ξ∗ ̸= 0

σ∗ ln (λ∗
0 · Tr) , if ξ∗ = 0

2. For each Tr, compute water depth at all points of interest for fixed parameters395

β∗ from the simulator yTr = S (xTr, β
∗)396

That is, we compute x for different return periods of interest (also known as re-397

turn levels), and then evaluate the inundation model at each. It is important to note,398

that this two-step approach can be followed but for an entire ensemble of posterior re-399

alizations of parameters {βi, ξi, σi}, to obtain an estimate of the predictive posterior es-400

timate including epistemic uncertainties. This method requires many times more the num-401

ber of calls to the inundation simulator S relative to the four-step procedure described402

above, but has the advantage of obtaining credible intervals for the estimate.403

3 Case study404

The proposed methodology described in Sect. 2 is applied here in a real-world case405

study, with the purpose of analyzing the influence of the inclusion of epistemic uncer-406

tainties in the recurrence model of river discharges (as per Sect. 2.2.1) and in the inun-407

dation model (as per Sect. 2.2.2).408

3.1 Models and data409

The case study is based on a short reach on the upper river Thames in Oxfordshire,410

England, just downstream from a gauged weir at Buscot (Fig. 2). The river at this reach411

has an estimated bankfull discharge of 40 m/s3 and drains a catchment of approximately412

1000 km2. The topography was obtained from stereophotogrammetry at a 50 m scale413

with a vertical accuracy of ±25 cm, obtained from large-scale UK Environment Agency414

maps and surveys. This reach has also been study previously in G. Aronica et al. (2002),415

J. W. Hall et al. (2011) and Balbi and Lallemant (2023)
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Figure 2. Floodplain topography at Buscot, SAR imagery of 1992 flood event (light blue),

channel layout (dark blue) and gauge station location (red dot).

416
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The events are characterized by the river discharge flow only. To develop the re-417

currence model for events, a publicly available daily discharge data series at Buscot weir418

was obtained from the UK National River Flow Archive (see Fig. 3). The series spans419

from 19 years from 1980 to 1998 with some minor gaps that are not expected to affect420

the extreme statistics analysis to perform.421

On the other hand, for the calibration of the inundation model, a satellite obser-422

vation of the flood extent of 1-in-5 year event occurred during December 1992 was used423

(see Fig. 2). The satellite SAR( synthetic aperture radar) image of the flood was cap-424

tured 20 hours after the flood peak when discharge was at a level of 73m3/s (G. Aron-425

ica et al., 2002). The resolution of the image is 50m.426

The computational inundation model used is the raster-based Lisflood-fp model (Neal427

et al., 2012). Lisflood-fp couples a 2D water flow model for the floodplain and a 1D solver428

for the channel flow dynamics. Its numerical structure makes it computationally efficient429

and suitable for the many simulations needed for probabilistic flood risk analysis and model430

calibration.431

A simplified rectangular cross-section is used for the channel with a constant width432

of 20m for the entire reach and a varying height of around 2m. The observed event is433

defined by the boundary condition of a fixed input discharge of x = 73m/s3 at the ge-434

ographic location of the gauging station shown in Fig. 2, and by an assumed downstream435

boundary condition of a fixed water level of approximately 90cm above the channel bed436

height. The short length of the reach and the broadness of the hydrograph imply that437

a steady-state hydraulic model is sufficiently accurate for the calibration (G. Aronica et438

al., 2002).439

The model’s parameters used for calibration are the Manning’s roughness param-440

eters for the channel rch and for the floodplain rfp, both considered spatially uniform441

in the domain of analysis. That is, β = {rch, rfp}. For the calibration method described442

in Sect. 2.2.2, the inundation model was ran for a fixed observed discharge of 73m3/s443

and for a uniform prior for both parameters in the range 0.01− 0.15.444

3.2 Computational implementation445

The statistical models and simulation method described in Sect. 2.3 were imple-446

mented in Python 3.X language (Van Rossum & Drake, 2009), using a 10-core Intel i9-447

10700k processor computer. Each evaluation of the inundation model S (X,β) takes ap-448

proximately 4s. For the calibration of the inundation model 19,600 evaluations of the449

simulator were needed to cover the entire grid of β values, and around 100,000 evalua-450

tions were needed for the hazard simulation procedure from Sect. 2.3.451

4 Results452

4.1 Discharge recurrence model453

To define the events and their magnitudes, a threshold of u = 12m3/s and min-454

imum distance between clusters of 7 days (i.e. there has to be 7 days of values below the455

threshold for two events to be considered as separate events) were selected aiming to sat-456

isfy the conditions required by POT standard theory (Bousquet & Bernardara, 2021):457

• The minimum threshold for which the modified scale and shape parameters of the458

fitted GPD of the exceedances remain constant for higher thresholds.459

• The resultant threshold exceedances (cluster’s peaks) should form an independent460

sample.461
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A total of 73 clusters were identified in 18.8yrs of data as shown in Fig. 3. That462

is, on average, 3.9 events per year, and it shows the relative advantage of this type of anal-463

ysis versus the standard annual maximum approach for which there would only be 18464

data points. The posterior distribution of the mean rate λ0, as given by Eq. 12, has a465

mode (i.e. MAP) λ∗
0 = 3.8yrs−1 and a mean value λ0 = 3.9yrs−1. Statistical graphi-466

cal tests, shown in Fig. 4, showed that the resulting series of extreme discharges can be467

considered independent and that the time between events has a good fit to the exponen-468

tial model as assumed in the HPP model.
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Figure 3. Daily discharge for Buscot and identification of flood events by clustering with a

12 m/s3 threshold and 7 days of minimum return. Blue cross indicates event’s peak discharge.

469

Samples of the posterior distribution of the GPD parameters (Eq. 16) were drawn470

by a standard MCMC algorithm of 4 chains of 15,000 samples each. Discarding the first471

half of sample from each as burn-in stage, convergence of the chains was assessed by ver-472

ifying that Gelman-Rubin R-scores remains below 1.01 (Gelman et al., 2013). Goodness-473

of-fit tests showed a good agreement of the exceedances with the GPD. The shape pa-474

rameter ξ is centered around −0.05 while the scale parameter σ is centered around 16.5,475

both with a relatively small skewness (see Fig. 5). The MAP values for the parameters476

practically coincide with these values.477

For each posterior sample of ξ and σ, the probability distribution of the discharges478

follows a GPD. With the ensemble of distributions for each sample, we computed the479

mean curve (i.e. the predictive posterior distribution of X) and the 90% confidence pos-480

terior intervals. These are shown as return period curves in Fig. 6 as computed by,481

Tr (x) = 1/λ∗
0p (X ≥ x) (21)482

A ’deterministic’ hazard curve was also computed using the MAP values for the483

GPD parameters, following the classical approach. It can be seen that epistemic uncer-484

tainties have the effect of increasing the discharges for a given return period, and that485

this effect increases with increasing return period. This is intuitive, as larger return pe-486

riods are more uncertain with limited-length data. Similar results have been obtained487

before (Merz & Thieken, 2005; Romanowicz & Kiczko, 2016; Fawcett & Green, 2018).488

489

4.2 Inundation model490

The statistical calibration of the inundation model was done by using a uniform491

grid for both parameters in the range (0.01, 0.15) with a step of 0.01, and a threshold492
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Figure 4. (a) Autocorrelation plot of discharge series; (b) Probability plot of interarrival

times compared to the exponential distribution.
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Figure 5. Posterior (blue) and prior (red) distributions of the parameters of the frequency

model (blue)

of 0.5 to filter out non-behavioral models. This resulted in a total of 543 accepted sim-493

ulations out of 19,600. The bivariate pseudo-posterior distribution for the roughness pa-494

rameters is shown in Fig. 7. The set of parameters that yields the maximum F-score (i.e.495

MAP parameters) were rch = 0.029, rfp = 0.045 giving F = 0.54.496

4.3 Flood hazard497

Close to 15,000 thousand posterior samples of water depth Y at all points in the498

region were obtained, following the simulation procedure described in Sect. 2.3. This al-499

lowed to empirically estimate the posterior exceedance recurrence λ (Y ≥ y|data) for ev-500

–14–



manuscript submitted to Water Resources Research

10 1 100 101 102

Return period [yr]

20

40

60

80

100

120

140

Di
sc

ha
rg

e 
[m

/s
3]

obs.
MAP parameters
Pred. post.
Conf. interval: 0.9

Figure 6. Hazard curves for river discharge
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Figure 7. Bivariate posterior distribution for inundation model parameters

ery pixel and, consequently, the hazard curve. The number of simulations ran implies501

that exceedance probabilities as small as 10−4 can be estimated with a 10% interval ac-502

cording to Eq. 20. For a mean value λ0 = 3.8yrs−1, this is equivalent to RPs of up to503

1, 500yrs.504

Figure 8 shows the flood depth hazard curves for different points in the floodplain.505

The posterior predictive curves are compared with the classical approach that uses the506

deterministic discharge hazard curve (dotted black curve in Fig. 6) and the MAP pa-507

rameters for the inundation simulator. In every case, it can be seen that the flood depth508

values of the posterior predictive curves increase faster than the classical approach as509

the return period grows, in a similar fashion observed in the discharge hazard model of510

Fig. 6. Furthermore, the two curves are very similar for lower return periods.511

The 100yrs flood hazard map was developed by computing the 100yrs flood depth512

from the posterior predictive curves at each point (see Fig. 9). This map is compared513

in plot (a) of Fig. 10 with the traditional hazard map computed using the best inunda-514

tion model with the deterministic estimate of the 100yrs discharge. The increasing flood515

depth for the posterior predictive map can be seen to be replicated for every pixel in the516

region of analysis with the exception of some isolated pixels right next to the channel.517
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Figure 8. Hazard curves for flood depths at different locations in the floodplain

This effect, as in the discharge hazard curve, is exacerbated with increasing return pe-518

riods as can be seen in plot (b) and (c) of the figure for the 250yrs and 500yrs maps com-519

parison.520

5 Discussion521

5.1 On the influence of epistemic uncertainties in hazard estimates522

From an engineering design perspective, the water height used to design a struc-523

ture for a specified safety level (i.e. return period) will be larger when including epis-524

temic uncertainties. Results show that this is true for every pixel in the region of anal-525

ysis as can be seen from the maps in Fig. 10 and the curves in Fig. 11 for a specific pixel.526

That is, when including our lack of knowledge and information on the process, we need527

to be more conservative in design to ensure an appropriate level of reliability. Further-528

more, this trend increases with the return period, and is practically negligible for more529
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Figure 9. 100yrs flood hazard map using posterior predictive flood depth at each point

recurrent events. This result is somewhat intuitive as we usually have less knowledge on530

rare events, and similar conclusions have been obtained by other researchers in hydro-531

logical hazards (Merz & Thieken, 2005; Fawcett & Green, 2018).532

To further understand and generalize this result, however, we need to understand533

the relative influence of epistemic uncertainties on the discharge recurrence model and534

on the inundation model. To do this, we obtained the hazard curves while including epis-535

temic uncertainties one model at a time, as shown in Fig. 11. It can be seen that the536

effect of more conservative water depths for any given return period is entirely due to537

epistemic uncertainties in the recurrence model. This trend reflects the heavier tails of538

the posterior distribution of the discharges (as also seen in Fig. 6) that mainly repre-539

sents uncertainty due to the limited-length observed time series used to build the model.540

That is, using an 18-years data record, there are practically no observations of much higher541

return periods which is reflected in the larger uncertainty.542

Uncertainty on the inundation model parameters, on the other hand, seems to have543

a relatively constant decreasing effect over return periods. That is, it gives lower (i.e. less544

conservative) water depths for a given recurrence relative to the classical approach. This545

is related to the shape of the posterior distribution of the parameters, but also on the546

non-linear nature of the S transformation. Thus, the influence of epistemic uncertainty547

in the inundation model parameters is related to the type of observations used for cal-548

ibration (i.e. binary flood extent observations in this case), the statistical procedure used549

(i.e. F-score pseudo-likelihood), and also the non-linearity of the inundation simulator550

itself. Given that water levels are relatively constrained by the topography, it is not ex-551

pected that the inundation simulator presents a radically high non-linearity. Thus, the552

highly skewed shape of the roughness parameters posterior distribution (Fig. 7), obtained553

from the GLUE method, with respect to the MAP values might be the main driver re-554

sponsible for the underestimation in flood hazard. However, further analysis is required555

in order to deeply understand how this influence varies in different settings (i.e. differ-556

ent observations, different calibration methods and inundation models), and understand557

if this effect can be magnified in some contexts.558
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Figure 10. Difference maps between posterior predictive estimates and deterministic esti-

mates for (a) 100yrs, (b) 250yrs, (c) 500yrs

5.2 On the usefulness of the output559

From a risk analysis standpoint, we might be interested in computing some dam-560

age measure, or any higher-level decision metric, that reflects the impact of the flood in561

human communities. The framework is analogous to the one described here, but instead562

we are interested in the distribution of the decision metric Z over all the potential haz-563

ard events. We can straightforwardly compute this from the probability distribution of564

–18–



manuscript submitted to Water Resources Research

100 101 102 103

Return period [yr]

0.0

0.2

0.4

0.6

Fl
oo

d 
de

pt
h 

[m
]

All
Only recurrence
Only inundation
None

Figure 11. Hazard curves for water depth at location x = 1.30km, y = 1.05km

the IM, as in Eq. 22, since the vulnerability model is generally dependent on the y level.565

λ (z) ≈
∫

p (Z ≥ z|y)︸ ︷︷ ︸
Vulnerability

model

λ0p (y)︸ ︷︷ ︸
Hazard
model

dy (22)566

Equation 22 shows that we actually need the recurrence of water depth y (and even-567

tually other IMs like duration, or velocity) at any site of interest in order to compute568

the risk. For most modern vulnerability models then, a probability of flood map for a569

given return period is not useful since it does not provide the required information. The570

hazard maps, as developed in this work, provide a reliable estimate of the recurrence λ0p (y)571

while also accounting for epistemic uncertainties. Specifically the maps show the water572

depths for a given return period that can be transformed into an exceedance probabil-573

ity as per Eq. 2.574

It is important to note that the maps reflect marginal probabilities and do not take575

into account spatial correlation in the flood process, as they are built by individually com-576

puting the hazard curves at each point. In other words, the resulting hazard maps (as577

in Fig. 9) do not show a real flood event. For this reason, the hazard maps are useful578

for site-specific hazard, and eventually risk analysis, but not for analyzing spatially-distributed579

assets. However, these maps were built from an ensemble of simulated flood maps as per580

the MC simulation approach described in Sect. 2.3. This ensemble is a direct output of581

the inundation simulator, and thus, can be used to estimate damage for spatially dis-582

tributed exposure while propagating epistemic uncertainties in the hazard model.583

5.3 On the separation of aleatory and epistemic uncertainties584

The posterior predictive estimate for the hazard proposed in this work combines585

in one metric both the aleatory and epistemic uncertainty. While this is important for586

risk-based decision making, it does not directly help exploiting the main distinction be-587

tween the two: that epistemic uncertainties can potentially be reduced by further col-588

lecting data or improving our models.589

Qualitatively speaking, the departure of the posterior predictive curves from the590

deterministic hazard curve (Fig. 11) can be interpreted as a measure of the relevance591

of epistemic uncertainties on top of aleatory uncertainties. In this sense, it can be noted592

that for the case study developed, epistemic uncertainty on the future occurrence of dis-593
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charge events seems to be more impactful than uncertainty on the inundation model pa-594

rameters; at least for return periods of 100 years and above.595

Developing uncertainty bounds for the hazard curve estimates is the typical way596

of showing the sensitivity of the hazard estimates on the model’s parameters, and their597

overall relevance. This was done for the hazard curve of discharges in Fig. 6. Doing the598

same for the flood depths would require to compute a hazard curve for each posterior599

sample of parameters with the consequent added computational demand. An ensemble600

of 100 hazard curves was computed and is shown in Fig. 12 together with the posterior601

predictive (i.e. the mean curve of the ensemble) and the deterministic hazard curve.
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Figure 12. Ensemble of posterior samples of the hazard curves for water depth at location

x = 1.30km, y = 1.05km

602

Figure 12 shows that uncertainty in the model’s parameters can yield hazard curves603

that are vastly different from one another, resulting in large uncertainty bounds. This604

type of analysis can encourage modellers to obtain more data and/or refine the knowl-605

edge of the models used in order to reduce it.606

5.4 On the modelling methodology607

The inclusion of epistemic uncertainties in the computation of flood hazard result608

in a non-uniqueness of the parameters (and models eventually) used to compute the haz-609

ard curves. Thus, there is not a single discharge for a given return period, and there is610

not a single flood map for any given input discharge. As a result, there is no direct trans-611

lation between the discharge for a given return period and its corresponding flood map.612

The water depth for a given return period, as per Eq. 19, has now contributions from613

all possible discharges which is a more accurate representation of knowledge (and un-614

certainty).615

There are many methodologies to include this uncertainty in the modelling pro-616

cess, and we have chosen to rely on rigorous probabilistic modelling based on a Bayesian617

framework. The Bayesian methodology allows to consistently include modeller’s knowl-618

edge and data from different sources into posterior estimates of probabilities. In partic-619

ular, this work has limited the epistemic uncertainties to uncertainty over the param-620

eters of some models appropriately chosen (i.e. the GPD model for the discharges and621

the Lisflood simulator for the inundation model), but further prior distributions can be622

set over different models without affecting the workflow of the method proposed.623
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Finally, other deeper sources of uncertainty cannot be discarded in risk analysis and624

include what Spiegelhalter and Riesch (2011) named ’indeterminacy’ and ’ignorance’.625

The former are associated with known limitations in understanding and modelling abil-626

ity, while the latter is associated with unknown limitations of understanding. Different627

approaches have been proposed to deal with epistemic uncertainties that are not fully628

quantifiable including these deeper sources of uncertainties; these were not treated in this629

work and the reader is referred to (Spiegelhalter & Riesch, 2011; Goldstein, 2011; Beven,630

2014).631

5.5 On the computational challenges632

From a computational perspective, the inclusion of epistemic uncertainties via the633

Bayesian posterior predictive distribution of IMs means that we need to perform lots of634

simulations of the inundation model in order to compute the hazard curves. This con-635

trasts with the traditional approach where we only need to run the inundation model636

once to obtain the 100yrs flood hazard (see Sect. 2.3). Furthermore, the number of sim-637

ulations needed grow with the return period according to Eq. 20.638

This can result in an unfeasible computational burden, particularly for very large639

return periods. Ongoing advances in computer technology, on the other hand, are pro-640

ducing faster computers that will make simulation approaches like the one proposed, eas-641

ier to deal as time progresses. In this context, it is expected that this type of numeri-642

cal analysis will become more common in future research.643

In any case, it is also important the implementation of efficient simulation tech-644

niques in order to reduce the computational cost. There are mainly two families of tech-645

niques that can be implemented in order to reduce the computational time required to646

compute the desired probabilities: using a more efficient simulation algorithm that tar-647

gets the desired return period faster, such as importance sampling (Zio, 2013); and mak-648

ing each run of the inundation model faster by using a statistical emulator (Jiang et al.,649

2020).650

6 Conclusions651

We propose and develop in this work, a methodology to compute flood hazard curves652

and maps including epistemic uncertainty on the model’s parameters. The framework653

aims, not only to consistently include this uncertainty into robust hazard estimates, but654

also to produce useful output for risk analysis and engineering decision-making.655

Rather than computing probabilities for an uncertain T-yrs peak discharge event,656

we propose to compute the flood depth distributions from all possible events within a657

given time-frame. The posterior distribution of the models’ parameters were computed658

to include epistemic uncertainty, and the average recurrence-rate over these distributions659

(i.e. predictive posterior distribution) was used as a point estimate for the hazard. As660

a result, the flood hazard maps developed provide information related to the water-depths661

for different recurrence rates (or return periods) that can be readily used for further dam-662

age analysis including the forward propagation of epistemic uncertainties. The mathe-663

matical notation was kept intentionally generic to encourage its use in other natural haz-664

ards applications.665

The results of the real-world case study developed, showed significant differences666

between the hazard estimates considering epistemic uncertainties and the classical ones667

without. In particular, the results show that not considering epistemic uncertainties might668

underestimate the water-depths hazard at any point in the region of analysis, resulting669

in less reliable decisions and designs. Furthermore, this tendency aggravates with larger670

return periods, that tend to be the main focus in many risk analysis. A deeper analy-671
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sis shows that uncertainty in the prediction of future discharges as a product of a short-672

length observation series, is the main driver responsible for the underestimation in flood673

hazard. A similar pattern can be observed in the recurrence curves for the peak discharges674

in line with some results from the literature (Merz & Thieken, 2005; Romanowicz & Kiczko,675

2016; Fawcett & Green, 2018).676

On the other hand, the influence of the uncertainty in the inundation model pa-677

rameters (i.e. floodplain and channel roughness) proved to be less significant. Results678

show that this uncertainty seems to have a constant effect over return periods, towards679

the conservative side; that is, it yields lower hazard values than using the classical ap-680

proach. This seemingly non-intuitive influence requires further studies to understand how681

it generalizes to different applications and contexts (i.e. different calibration approaches,682

different computational simulators, different available data), although a potential expla-683

nation is the highly skewed shape of the posterior distribution (see Fig. 7) relative to684

the MAP parameters used in the classical approach.685

On the computational aspects, the proposed numerical methodology requires the686

simulation of thousands of inundation maps. This ensemble can be straightforwardly used687

in spatially distributed vulnerability models covering a continuous range of return pe-688

riods. It comes at the expense, however, of a much larger computational burden than689

the classical approach where only a few runs for selected return periods are needed. Tech-690

nological advances are expected to rapidly reduce the development-time of this simula-691

tion approach, particularly in applications that are practically feasible today. Addition-692

ally, this should also encourage researchers to find ways of optimizing the computation693

of the estimates by using more efficient sampling algorithms or cheaper emulators of the694

inundation model.695

To summarize, we have shown that the inclusion of epistemic uncertainties can sig-696

nificantly modify the estimates of hazard estimates that are later used for risk assess-697

ments and damage mitigation decision-making. This is particularly exacerbated for rare698

and big events (i.e. longer return periods). A framework that can consistently include699

these in robust probabilistic outputs is, we believe, therefore a major advance for risk700

analysis.701

Appendix A The GPD distribution702

This appendix summarizes the probability functions for the Generalized Pareto Dis-703

tribution (GPD), to avoid confusion in the definition and meaning of the parameters used.704

p (x|ξ, σ) =


(
1 + ξ

σy
)− ξ+1

ξ

, if ξ ̸= 0

exp
(
− y

σ

)
, if ξ = 0

(A1)705

F (x|ξ, σ) =

1−
(
1 + ξ

σy
)−1/ξ

, if ξ ̸= 0

1− exp
(
− y

σ

)
, if ξ = 0

(A2)706

Where the support of X is x ≥ 0 when ξ ≥ 0, and 0 ≤ x ≤ −σ/ξ when ξ < 0.707

Return levels xTr for this distribution can be computed from,708

Tr =
1

1− F (xTr|ξ, σ)
(A3)709

Open Research Section710

All the data used as input in this work (DEM, daily discharge series, flood extent711

observation) is publicly available and the sources were mentioned in the manuscript. The712
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open-source software Lisflood-fp was used as inundation simulator (http://www.bristol713

.ac.uk/geography/research/hydrology/models/lisflood/). All the simulations and714

figures were performed Python 3.X (https://www.python.org/) scripts developed by715

the authors. All the code used to develop the results and figures mentioned in this manuscript,716

as well as the input data and the Lisflood-fp binaries used, are publicly available on GitHub717

https://github.com/mbalbi/epistemic flood hazard.git.718
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Abstract15

Classical approaches to flood hazard are obtained by the concatenation of a recurrence16

model for the events (i.e. an extreme river discharge) and an inundation model that prop-17

agates the discharge into a flood extent. The traditional approach, however, uses ‘best-18

fit‘ models that do not include uncertainty from incomplete knowledge or limited data19

availability. The inclusion of these, so called epistemic uncertainties, can significantly im-20

pact flood hazard estimates and the corresponding decision-making process. We propose21

a simulation approach to robustly account for uncertainty in model’s parameters, while22

developing a useful probabilistic output of flood hazard for further risk assessments. A23

Peaks-Over-Threshold Bayesian analysis is performed for future events simulation, and24

a pseudo-likelihood probabilistic approach for the calibration of the inundation model25

is used to compute uncertain water depths. The annual probability averaged over all pos-26

sible models’ parameters is used to develop hazard maps that account for epistemic un-27

certainties. Results are compared to traditional hazard maps, showing that not includ-28

ing epistemic uncertainties can underestimate the hazard and lead to non-conservative29

designs, and that this trend increases with return period. Results also show that the in-30

fluence of the uncertainty in the future occurrence of discharge events is predominant31

over the inundation simulator uncertainties for the case study.32

Plain Language Summary33

Estimating the annual probability of some flood-depth level is a key input for risk34

analysis and engineering design. This is typically calculated via sophisticated probabil-35

ity and physics-based models that require many parameters. However, the classical ap-36

proach uses a fixed set of ‘best parameters’ for this and do not include the degree of un-37

certainty, even when such uncertainties may be very high. This work proposes a method38

to estimate the annual probability of flood-depth including the uncertainty in the pa-39

rameters used to compute it. More importantly, it shows that not including this uncer-40

tainty might severely underestimate the hazard and consequently lead to unsafe designs.41

1 Introduction42

As a key component of a comprehensive risk analysis, the hazard model is required43

to characterize the future occurrence of potentially damaging events. This ‘potential’ for44

damage is numerically quantified through an intensity measure (IM) metric that, in the45

case of flood hazard, usually is the water level, velocity and/or duration at any given point46

of interest (Pregnolato et al., 2015). It, ultimately, has the purpose of providing valu-47

able input information for vulnerability (e.g. damage) models that allow decision-makers48

to help mitigate the impact of natural hazards.49

In this context, flood hazard is typically defined as the probability of exceedance50

of an IM level at any point of interest during a given period of time. This usually comes51

in the form of ‘hazard curves’ that relate IM levels with an annual exceedance proba-52

bility (AEP) or a mean time of recurrence, also known as return period (RP). In prac-53

tice, the outcome is best conveyed through flood maps for different RPs to reflect the54

spatial distribution of hazard estimates.55

Since observations of IMs usually scarce for most locations, a purely statistical de-56

scription of their probability distribution is not possible. The typical approach, then, is57

to compute IMs as a result of the convolution of two distinct models: a ‘recurrence model’58

that describes the probability of occurrence of extreme events, such as an extreme rain-59

fall, river discharge, or sea-level rise; and a ‘source-to-site propagation model’ (or just60

propagation model for brevity) that represents how the triggering event is translated into61

a spatial (and temporal) distribution of IM levels (i.e. spatially distributed flood extent62

and depth). The former is inherently probabilistic and typically modelled via standard63
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stochastic time process such as the Poisson process. The propagation model, on the other64

hand, is typically modelled through deterministic physics-based models such as a hydro-65

logic and/or a hydraulic inundation model.66

The classical method involves computing the event’s magnitude, such as peak dis-67

charge in riverine flooding, for different RPs and use it as input of the inundation model68

to develop flood maps for the different recurrences. This is done using appropriately cal-69

ibrated recurrence curves and inundation simulators based on available data and expert’s70

knowledge. This is the standard approach for most practical applications in the indus-71

try, due to its conceptual simplicity and ease of implementation. It does, however, as-72

sume that the models used are perfectly ‘true’. The only probabilistic nature of the ap-73

proach comes from the inherent uncertainty in the future occurrence of extreme events;74

also termed ‘aleatory uncertainty’ (J. Hall & Solomatine, 2008).75

A broad range of researchers during the last decades have brought attention to the76

importance of including other, more subjective, sources of uncertainty into risk analy-77

sis in general, and flood hazard modelling in particular (J. Hall & Solomatine, 2008; Beven,78

2014; Merz & Thieken, 2005). Subjective uncertainties, also termed here ‘epistemic’, can79

arise from the data we use to constrain our models, our lack of knowledge regarding the80

true physical processes involved, or our limited analytic and computational capabilities81

for providing results (J. Hall & Solomatine, 2008). Their inclusion may lead to impact-82

ful modifications in the decision making process, at the cost of a significant increment83

in analytical and computational complexity.84

Many researchers have dealt with the inclusion of epistemic uncertainties in flood85

hazard models, specifically riverine floods, in the last decades. Some works have focused86

mainly on dealing with uncertain representations on the recurrence of the input discharge87

events. That is, defining a distribution for the uncertain discharge for a given return pe-88

riod. This includes accounting for statistical fitting errors due to limited-length data and89

distribution family (Apel et al., 2008; G. T. Aronica et al., 2012; Neal et al., 2013; Ro-90

manowicz & Kiczko, 2016; Stephens & Bledsoe, 2020), secondary input variables as flood91

volume (Candela & Aronica, 2017), or more general hydrograph shape uncertainties through92

hydrological modelling (Grimaldi et al., 2013; Falter et al., 2015; Ahmadisharaf et al.,93

2018; Zahmatkesh et al., 2021). Others have focused on including uncertainty in the in-94

undation model through its most sensitive parameters such as roughness coefficients (Di Bal-95

dassarre et al., 2010; Kalyanapu et al., 2012; G. T. Aronica et al., 2012; Kiczko et al.,96

2013; Romanowicz & Kiczko, 2016; Bharath & Elshorbagy, 2018), Digital Elevation Maps97

(DEM) (Apel et al., 2008), or cross-section geometrical properties (Stephens & Bledsoe,98

2020). Furthermore, many of these have included both the epistemic uncertainties in the99

discharges recurrence as well as in the inundation model (Apel et al., 2008; Di Baldas-100

sarre et al., 2010; Kalyanapu et al., 2012; G. T. Aronica et al., 2012; Kiczko et al., 2013;101

Romanowicz & Kiczko, 2016; Bharath & Elshorbagy, 2018; Stephens & Bledsoe, 2020;102

Zahmatkesh et al., 2021).103

The typical outcome from most of these approaches is in the form of ‘probability104

of flood’ maps for different return periods. That is, for a specific return period, differ-105

ent discharges and/or inundation model parameters are randomly sampled and used to106

obtain an ensemble of flood maps from which the probability of flooding is computed em-107

pirically (Di Baldassarre et al., 2010; Domeneghetti et al., 2013; Neal et al., 2013; Kiczko108

et al., 2013; Bharath & Elshorbagy, 2018; Stephens & Bledsoe, 2020; Zahmatkesh et al.,109

2021). A flood risk analysis requires estimating potential damages from the hazard out-110

comes, and this type of input is not very helpful since most flood damage models use as111

input the water depth above ground level (Pregnolato et al., 2015). For this reason, in-112

stead of translating uncertain flow discharges for given RP into a probability map (broadly113

known as ’event-based’ approach), some researchers have aimed to develop recurrence114

curves for water depths at the points of interest (G. T. Aronica et al., 2012; Nuswan-115

toro et al., 2016; Romanowicz & Kiczko, 2016).116
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The literature review indicates a lack of hazard methodologies that can (1) include117

epistemic uncertainties in both the recurrence and inundation models, (2) provide use-118

ful output for further risk assessments, while (3) also being probabilistically consistent119

and computationally tractable. This work explores a simulation methodology of flood120

scenarios using a Bayesian approach of extreme value theory and the Generalized Like-121

lihood Uncertainty Estimation (GLUE) framework to account for epistemic uncertainty122

in the parameters of the recurrence model and the inundation simulator respectively. We123

propose to use the probability of exceedance averaged over the distribution of all pos-124

sible parameters as a point measure of flood hazard due to its improved statistical prop-125

erties as discussed in Fawcett and Green (2018), and its lower computational demand126

compared to obtaining full credible intervals. This framework allows the development127

of flood hazard curves, as well as flood hazard maps by computing this estimate of the128

recurrence at every point of interest.129

Section 2 describes the mathematical model used to compute hazard estimates, a130

framework to include epistemic uncertainties through model’s parameters posterior dis-131

tributions, and a simulation procedure for its numerical evaluation. A small case study132

of riverine flooding is described in Sect. 3 and used as a working example to test this133

methodology. In Sect. 4, the resulting hazard curves and maps are compared to the tra-134

ditional approach where no epistemic uncertainties are included. Insights in the hypoth-135

esis, results and implications of the model are analyzed in the discussions of Sect. 5, while136

a summary of main takeaways and potential future lines of research are drawn in the fi-137

nal section.138

2 Methodology139

2.1 The hazard model140

As discussed in the introduction, flood hazard can be quantified as the annual prob-141

ability of exceedance of a given IM level y, at any location of interest. Mathematically,142

this probability is calculated by a stochastic time process model. The most used one, due143

to its simplicity and well-known mathematical properties, is the Homogenous Poisson144

Process (HPP) for which events occur discretely with independent exponentially distributed145

inter-arrival times with a mean rate λ0 that is constant over time. Under these simpli-146

fying assumptions, the probability of exceedance over a timespan T can be computed147

as per Eq. 1.148

pT (y) = 1− exp (−λ0Tp (Y ≥ y)) (1)149

Where Y is the random IM for any given event, T is the timespan of interest, and p (Y ≥ y)150

is the probability of exceedance of level y for any given event (this probability is con-151

stant over time in the HPP).152

The hazard is then computed by setting T = 1 in Eq. 1 to obtain the annual prob-153

ability of exceedance. For events with low recurrence λ0 and low exceedance probabil-154

ity p (Y ≥ y), as is mostly the case in disaster risk analysis, the probability of Eq. 1 can155

be further simplified as in Eq. 2.156

pT (y) ≈ λ0p (Y ≥ y) (2)157

This is equivalent to the mean rate of exceedance of Y ≥ y or its multiplicative158

inverse, the mean time between occurrences Tr (y), also known as ‘return period’ (see159

Eq. 3). In practical terms, hazard is measured by the annual probability of exceedance160

or by the mean rate of occurrence of IM level y, which are practically equivalent.161

λ0p (Y ≥ y) = λ (y) =
1

Tr (y)
(3)162
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Since direct observations of water depths (or IMs in general) during flood events163

are very rare, probabilistic characterization of Y is usually done via mechanistic fluid dy-164

namics models, here called ‘inundation model’ or simply ‘simulator’. This model depends165

on a number of observable boundary conditions X that are considered to vary event to166

event, such as upstream river discharge, rainfall intensity or sea-level rise. It also depends167

on a set of unobserved calibration parameters β considered constant over events, such168

as the soil roughness parameters or the channel cross-section geometry (see Eq. 4).169

Y = S (X,β) (4)170

In this context, an ‘event’ is characterized by a magnitude X which describes the171

impact potential of the phenomenon. For example, in riverine flooding, X can represent172

the river discharge flow and an event is triggered when it surpasses a given threshold.173

Analogously, in coastal flooding, X might stand for sea-level extreme rise, or in pluvial174

flooding where X stands for rainfall intensity. In more complex scenarios, X can be a175

vector representing multiple quantities, such as flow discharge and volume, rainfall in-176

tensity and duration, or a combination of flow discharge and sea-level rise. For the sake177

of simplicity, this work will focus on scalar X.178

Since Y is a function of X, the probability p (Y ≥ y) in Eq. 2 can be computed by179

conditioning on the probability distribution of the event’s magnitude X as given by,180

p (Y ≥ y) =

∫
x

1 {S (x, β) ≥ y} p (x|θ) dx (5)181

Where 1 {cond} is an indicator function that returns 1 when cond is true and 0 other-182

wise and θ is a vector of parameters that describe the probability distribution of X.183

This expression is useful as long as it is easier to define the probability distribu-184

tion of events magnitudes p (x|θ) than the distribution of IM levels p (Y ≥ y) from data185

or expert knowledge. As mentioned before, this is the typical case in flood hazard, where186

we usually have relatively robust historical measurements of river flow discharges or rain-187

fall intensity, but very few of water depths at points of interest in the floodplain.188

Introducing Eq. 5 into Eq. 2, we obtain the full expression for the flood hazard,189

λ (y) =

∫
1 {S (x, β) ≥ y}︸ ︷︷ ︸

Inundation
model

λ0p (x|θ)︸ ︷︷ ︸
Events

recurrence
model

dx (6)190

An illustrative scheme of a realization of the described time process is shown in Fig-191

ure 1. The varying sizes of the blue bubbles reflect the magnitude Xi of the events, while192

the black bars reflect the IM level (i.e. water depth) for each. According to the HPP model,193

the time Ti between events follows an exponential distribution with mean rate λi, while194

the time between IM exceedances Ti (y) (the black bars that cross the dotted red line)195

follows an exponential distribution with mean rate λ (y) as described in Eq. 6.196

It is important to highlight that the model summarized here is replicated when an-197

alyzing the hazard for other types of natural phenomena. In the case of seismic hazard,198

X is the moment magnitude and spatial epicenter location of the earthquake and their199

probability distribution is typically given by the Gutenberg-Richter law and the source-200

to-site propagation model is defined by the Ground Motion Prediction Equations (GM-201

PEs) (Baker et al., 2021). For typical hurricane winds hazard, the recurrence model de-202

scribes the likelihood of the hurricane’s central pressure and track, while the propaga-203

tion model is described through a wind field model (Vickery et al., 2006).204
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t

X

Xi

y1

y2

Yi =S(Xi, β)

Ti ∼Exp(λ0)

Ti(y1)∼Exp(λ(y1))

Ti(y2)∼Exp(λ(y2))

Figure 1. Schematic illustration of a realization of the HPP model, with two arbitrary IM

levels y1 and y2 to define the hazard

2.2 Including epistemic uncertainties205

The hazard problem is, as described by Eq. 6, tightly related to predicting an un-206

certain event in the future. Thus, it is strictly an uncertainty quantification task. At its207

core, that expression is a mathematical representation of what is known as ’aleatory un-208

certainty’, here characterized by the exponentially distributed inter-arrival times with209

mean rate λ0 and the probability distribution of the event’s magnitude p (x|θ).210

Aleatory uncertainty is considered an inherent component of the physical process211

and it does not depend on the amount of knowledge and information the modeller has.212

However, there are other sources of uncertainty around the estimation of the hazard that213

are related to our incomplete knowledge about the physical process and data available214

to characterize it. These are commonly known as ’epistemic uncertainties’ (Spiegelhalter215

& Riesch, 2011).216

As described by Spiegelhalter and Riesch (2011), epistemic uncertainty stems mainly217

from (1) limited information to properly characterize the models and variables involved218

and (2) limited knowledge to properly describe the true physical processes through the219

selected models. This more operational description of epistemic uncertainties allows for220

a more rigorous way of including them in the mathematical model.221

Limited information appears in practice, as limited-length data, observation errors,222

or missing variables. It can, typically, be represented through uncertainty in the param-223

eters that describe the models as data is not sufficient to perfectly identify them. Lim-224

ited knowledge, on the other hand, is usually represented through simplifying assump-225

tions as the ones in the HPP model, uncertainty in the distribution family chosen for p (x|θ),226

or the particular physics-based model chosen for S. It can be harder to represent this227

mathematically, although it has been done through model ensembles (i.e. considering228

and weighting many possible models) or statistical representations of model deficiencies229

(Kennedy & O’Hagan, 2001; Balbi & Lallemant, 2023).230

Despite the epistemological differences between the two, it is not always clear which231

sources of uncertainty belong to each category, and it can vary depending on the con-232

text. In any case, the most important feature that differentiates aleatory and epistemic233

uncertainty is the fact that the former cannot be practically reduced since it is an in-234

herent property of the system under analysis. The epistemic uncertainty, on the other235

hand, can be reduced by further collecting information and improving knowledge. This236

distinction is crucial when allocating resources for model improvement (Der Kiureghian237

& Ditlevsen, 2009; Merz & Thieken, 2005).238
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The inclusion of epistemic uncertainties greatly increases the complexity of the prob-239

lem from an analytical and computational standpoint. In particular, this work focuses240

on the inclusion of epistemic uncertainty through model’s parameters as a broad rep-241

resentation of limited data to define the models. In this context, hazard as calculated242

in Eq. 6 can be understood as being conditional to a given set of models and parame-243

ters as given by,244

λ (y|β, λ0, θ) =

∫
1 {S (x, β) ≥ y}λ0p (x|θ) dx (7)245

One way of incorporating uncertainty regarding the values of the set of parame-246

ters {β, λ0, θ} is provided by Bayesian decision theory. In this context, an appropriate247

estimate of the hazard should take into account the consequences of over or underpre-248

dicting its true value. Fawcett and Green (2018) discusses this when estimating return249

period levels for environmental extreme events, and they suggest the use of the predic-250

tive posterior return level as a point estimate that reliably incorporates epistemic un-251

certainty.252

The posterior predictive estimate is obtained by averaging the conditional hazard253

of Eq. 7 over all possible values of the parameters {β, λ0, θ} weighted by their posterior254

distribution p (Θ|data) as per Eq. 8.255

λ (y|data) =
∫
Θ

λ (y|λ0, β, θ) p (λ0, β, θ|data) dλ0dβdθ (8)256

In the Bayesian framework, the posterior distribution of the parameters p (λ0, β, θ|data),257

is the probability conditional on the available data and modeller’s prior knowledge ob-258

tained by means of Bayes’ Theorem (Gelman et al., 2013). The posterior distribution259

is proportional to the probability of observing the data given a set of parameters, also260

known as ‘likelihood function’, multiplied by the probability of a given set of parame-261

ters before incorporating the data, also known as ‘prior distribution’ (see Eq. 9). This262

can be colloquially described as the modeller’s knowledge (i.e. prior distribution) times263

the information contained in the observations (i.e. the likelihood function).264

p (λ0, β, θ|data) ∝ p (data|λ0, β, θ) p (λ0, β, θ) (9)265

Equation 8 allows us to compute the hazard curve of water depths (or the IM cho-266

sen for the analysis) for any given point in space. Or inversely, compute the water depth267

for a given rate or return period. Hence, we can develop the T-years flood hazard map268

by marginally computing the y level for that return period from the expression.269

In the following sub-sections we describe the methodology to estimate the poste-270

rior probability distributions of the parameters from Eq. 9, and the simulation method-271

ology to estimate the hazard as per Eqs. 7 and 8.272

2.2.1 A Bayesian recurrence model273

In the framework described above, the recurrence model aims to quantify the mean274

rate of occurrence λ0 of events, and characterize the distribution of the magnitude X275

and its parameters θ for any given event. These can be obtained from the statistical anal-276

ysis of time series of past events. Poisson Point Process theory, as a generalization of the277

well-known Peaks-Over-Threshold (POT), methodology provides a robust framework for278

this (Bezak et al., 2014). Extreme events are individualized from historical records of279

daily discharges, by selecting an appropriate minimum threshold u and time separation280

to ensure independence. This results in a dataset of observed independent times between281

events T̂ and a dataset of observed event’s magnitudes x̂. A Generalized Pareto Distri-282

bution (GPD) is then used as the probability model for the exceedances above the thresh-283
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old threshold x− u, and the inter-arrival time between events is assumed to be expo-284

nentially distributed. This is,285

T ∼ Exp (t|λ0) (10)286

X − u ∼ GPD (x|ξ, σ) (11)287

Where λ0 is the mean rate of arrival and ξ and σ are the shape and scale parameters that288

define the probability distribution, and u an appropriately defined threshold.289

Hence, two probability models are required to describe the occurrence of events.290

An exponential distribution model of parameter λ0 for the time between arrivals, and291

a GPD of parameters θ = {ξ, σ} for the magnitude of each event. Bayesian statistics292

provide an ideal framework to compute uncertainty in model’s parameters that are con-293

sistent with the modeller’s prior knowledge and proposed model (Bousquet & Bernar-294

dara, 2021).295

For the dataset of observed interarrival times T̂ , the likelihood function is simply296

a product of n exponential densities, where n is the number of observations. The pos-297

terior distribution of the mean rate λ0 can be obtained by assuming a weakly informa-298

tive Gamma (1/2, 1/2) prior distribution. A weakly informative prior distribution is rel-299

atively flat in the entire range of plausible values for the parameter. For this choice of300

prior, the posterior distribution has a closed form solution as given in Eq. 12 since it is301

a conjugate pair for the Exponential likelihood (Gelman et al., 2013).302

p
(
λ0|T̂

)
= Gamma (n+ 1/2, t+ 1/2) (12)303

Where n is the number of events and t =
∑

∀i T̂i is the total number of years in the se-304

ries.305

The most likely value of the rate of occurrence given the observations is given by306

the mode of the posterior probability of Eq. 12, also known as the Maximum A-Posteriori307

(MAP) estimate. The MAP estimate and the mean value of the posterior distribution308

for λ0 are given by Eqs. 13 and 14 respectively.309

λ∗
0 = (n− 1/2) / (t+ 1/2) (13)310

λ0 = n/t (14)311

For the dataset of observed event’s magnitudes x̂, the likelihood function is given312

by a product of n GPD densities. There is no conjugate model for this likelihood, but313

a non-informative prior can built for the shape and scale parameters following Castellanos314

and Cabras (2007) (Eq. 15).315

p (ξ, σ) ∝ σ−1 (1 + ξ)
−1

(1 + 2ξ)
−1/2

(15)316

Valid for ξ > −0.5 and σ > 0.317

Then, the un-normalized expression for the posterior can be obtained by Bayes the-318

orem as per Eq. 16, and the predictive posterior distribution for X can be subsequently319

computed as per Eq. 17. In both cases, there is no analytic solution, and samples from320

the distribution can be done via standard Markov Chain-Monte Carlo (MCMC) meth-321

ods (Gelman et al., 2013). These can also be used to compute posterior mean and MAP322

estimates for ξ∗, σ∗.323

p (ξ, σ|x̂) ∝ p (ξ, σ)

n∏
i=1

(1 + x̂iξ/σ)
−(1+ξ)/ξ

(16)324

p (x− u|x̂) =
∫

GPD (x− u|ξ, σ) p (ξ, σ|x̂) dξdσ (17)325
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2.2.2 Probabilistic inundation model326

The inundation model is, in this context, a computational solver of some simpli-327

fied version of the fluid dynamics equations that depend on variable inputs X and cal-328

ibration parameters β. Epistemic uncertainties might come from lack of sufficient infor-329

mation to calibrate the parameters, observation errors, mechanistic simplifying assump-330

tions, and numerical simplification of the equations solver (Kennedy & O’Hagan, 2001).331

We assume here, due to simplicity, that for a given simulator S (X,β) these can be rep-332

resented by uncertainty in the model’s calibration parameters β. More complex proce-333

dures to include model uncertainty can be used to include uncertainty in the model struc-334

ture. For example, a formally probabilistic calibration procedure that includes model struc-335

tural uncertainty as an additive Gaussian Process is discussed in Balbi and Lallemant336

(2023).337

Parameter’s distributions can be obtained using nominal probability models from338

expert’s knowledge (Kalyanapu et al., 2012; Stephens & Bledsoe, 2020) or statistically339

calibrated ones generally via the GLUE methodology (Di Baldassarre et al., 2010; G. T. Aron-340

ica et al., 2012; Kiczko et al., 2013; Romanowicz & Kiczko, 2016; Zahmatkesh et al., 2021).341

In this work, epistemic uncertainty will be represented by probability distributions in342

the roughness parameters only, for the floodplain and for the channel, considering all other343

inputs as constant regarding the calibration procedure. These distributions will be ob-344

tained by means of the GLUE framework, where all possible sets of parameters are as-345

signed a normalized score (i.e. pseudo-likelihood) from an appropriately selected scor-346

ing rule. In the case of flood extent binary observations (as in the case study developed347

in this work), it is typical to use the F-score (as per Eq. 18), a variant of the classical348

Jaccard Index (G. T. Aronica et al., 2012; Papaioannou et al., 2017).349

F (β) =
A−B

A+B + C
(18)350

Where A is the number of correctly predicted pixels, B the number of over-predicted pix-351

els (predicted flooded, observed non-flooded), and C is the number of under-predicted352

pixels (predicted non-flooded, observed flooded).353

The details of the calibration procedure using the GLUE framework can be found354

in Balbi and Lallemant (2023), but they can be summarized in four steps:355

1. Sample a large set of β from their prior distribution356

2. Compute the F-score for the sampled β357

3. Reject all ’non-behavioral’ models using some thresholding criteria: F < f∗
358

4. Standardize the resulting F-scores so that they are all positive and integrate to359

1360

The model fit for each value of β is, then, a measure of its uncertainty, or pseudo-361

posterior probability (as it is not strictly obtained from a probabilistic likelihood). In362

addition, the MAP value for parameter β is the one that yields the best fit (i.e. largest363

F-score).364

2.3 Numerical implementation365

Computing the integral from Eq. 8 requires numerical procedures since no analytic366

solution exist for the posterior distributions of the parameters just described. Since many367

parameters are involved in its computation, a summary of variables and symbols can be368

found in Table 1.369

Equation 8 can be slightly simplified, however, by noting that λ (y|λ0, β, θ) is lin-370

ear on λ0 and its posterior distribution (Eq. 12) is independent from the rest of the pa-371
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Table 1. Summary of variables and symbols

Variable Description

X Flood event’s magnitude (i.e. river peak discharge)
Y Flood IM (i.e. flood depth) at a given point in space
λ0 Mean rate of occurrence of events X ≥ 0
λ (y) Mean rate of occurrence of events Y ≥ y
β Inundation simulator calibration parameters
S (X,β) Inundation simulator
ξ GPD shape parameter
σ GPD scale parameter
u Threshold value for X POT model

(.) Mean value of parameter
(.)

∗
MAP value of parameter (mode of its posterior distribution)

rameters as given by Eq. 19.372

λ (y|data) = λ0

∫
β,ξ,σ

p (Y ≥ y|β, ξ, σ) p (β, ξ, σ|data) dβdξdσ (19)373

Where λ0 is the mean of the posterior distribution of λ0 given by Eq. 14.374

Standard Monte-Carlo (MC) integration techniques can be employed to compute375

such integral. Conceptually the task is straightforward: we need to sample from the pos-376

terior distribution of Y , by sampling first from the posterior of X. This can be done through377

the following steps:378

1. Sample N values from the posterior distribution of β (as per Sect. 2.2.2) and {ξ, σ}379

(from Eq. 16)380

2. For each sample of {ξi, σi}, sample xi from Eq. 17381

3. For each sample xi and βi, compute water depth at all points of interest from the382

simulator yi = S (xi, βi)383

4. Estimate the mean rate of exceedance of y as:

λ (y|data) ≈ λ0

N

∑
i

1 {S (xi, βi) ≥ y}

The number of samples N required for the simulation depends on the percentile384

of the curve (i.e. return period) we are trying to estimate and the precision desired. For385

example, to estimate the 100 years return level y100 we need to estimate an exceedance386

probability p (Y ≥ y100) = (100λ0)
−1

. According to the standard theory of empirical387

estimates of probabilities, based on the Central Limit Theorem (CLT), we can obtain388

an approximate minimum number of simulations for a 95% confidence interval as per,389

N >
1.96

ε2

√
1− p

p
(20)390

Where p is the actual probability being estimated (not exactly known) and ε is the width391

of the relative interval (Melchers & Beck, 2018).392

On the other hand, the computation of the hazard in the classical approach (as given393

by Eq. 5), where no epistemic uncertainties are considered, is much simpler:394

1. Obtain the return levels of the GPD distribution for each return period Tr of in-
terest , and for fixed parameters ξ∗ and σ∗ as given by (see Appendix A for de-
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tails),

xTr = u+

{
σ∗

ξ∗

{
(λ∗

0 · Tr)
ξ∗ − 1

}
, if ξ∗ ̸= 0

σ∗ ln (λ∗
0 · Tr) , if ξ∗ = 0

2. For each Tr, compute water depth at all points of interest for fixed parameters395

β∗ from the simulator yTr = S (xTr, β
∗)396

That is, we compute x for different return periods of interest (also known as re-397

turn levels), and then evaluate the inundation model at each. It is important to note,398

that this two-step approach can be followed but for an entire ensemble of posterior re-399

alizations of parameters {βi, ξi, σi}, to obtain an estimate of the predictive posterior es-400

timate including epistemic uncertainties. This method requires many times more the num-401

ber of calls to the inundation simulator S relative to the four-step procedure described402

above, but has the advantage of obtaining credible intervals for the estimate.403

3 Case study404

The proposed methodology described in Sect. 2 is applied here in a real-world case405

study, with the purpose of analyzing the influence of the inclusion of epistemic uncer-406

tainties in the recurrence model of river discharges (as per Sect. 2.2.1) and in the inun-407

dation model (as per Sect. 2.2.2).408

3.1 Models and data409

The case study is based on a short reach on the upper river Thames in Oxfordshire,410

England, just downstream from a gauged weir at Buscot (Fig. 2). The river at this reach411

has an estimated bankfull discharge of 40 m/s3 and drains a catchment of approximately412

1000 km2. The topography was obtained from stereophotogrammetry at a 50 m scale413

with a vertical accuracy of ±25 cm, obtained from large-scale UK Environment Agency414

maps and surveys. This reach has also been study previously in G. Aronica et al. (2002),415

J. W. Hall et al. (2011) and Balbi and Lallemant (2023)
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Figure 2. Floodplain topography at Buscot, SAR imagery of 1992 flood event (light blue),

channel layout (dark blue) and gauge station location (red dot).

416
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The events are characterized by the river discharge flow only. To develop the re-417

currence model for events, a publicly available daily discharge data series at Buscot weir418

was obtained from the UK National River Flow Archive (see Fig. 3). The series spans419

from 19 years from 1980 to 1998 with some minor gaps that are not expected to affect420

the extreme statistics analysis to perform.421

On the other hand, for the calibration of the inundation model, a satellite obser-422

vation of the flood extent of 1-in-5 year event occurred during December 1992 was used423

(see Fig. 2). The satellite SAR( synthetic aperture radar) image of the flood was cap-424

tured 20 hours after the flood peak when discharge was at a level of 73m3/s (G. Aron-425

ica et al., 2002). The resolution of the image is 50m.426

The computational inundation model used is the raster-based Lisflood-fp model (Neal427

et al., 2012). Lisflood-fp couples a 2D water flow model for the floodplain and a 1D solver428

for the channel flow dynamics. Its numerical structure makes it computationally efficient429

and suitable for the many simulations needed for probabilistic flood risk analysis and model430

calibration.431

A simplified rectangular cross-section is used for the channel with a constant width432

of 20m for the entire reach and a varying height of around 2m. The observed event is433

defined by the boundary condition of a fixed input discharge of x = 73m/s3 at the ge-434

ographic location of the gauging station shown in Fig. 2, and by an assumed downstream435

boundary condition of a fixed water level of approximately 90cm above the channel bed436

height. The short length of the reach and the broadness of the hydrograph imply that437

a steady-state hydraulic model is sufficiently accurate for the calibration (G. Aronica et438

al., 2002).439

The model’s parameters used for calibration are the Manning’s roughness param-440

eters for the channel rch and for the floodplain rfp, both considered spatially uniform441

in the domain of analysis. That is, β = {rch, rfp}. For the calibration method described442

in Sect. 2.2.2, the inundation model was ran for a fixed observed discharge of 73m3/s443

and for a uniform prior for both parameters in the range 0.01− 0.15.444

3.2 Computational implementation445

The statistical models and simulation method described in Sect. 2.3 were imple-446

mented in Python 3.X language (Van Rossum & Drake, 2009), using a 10-core Intel i9-447

10700k processor computer. Each evaluation of the inundation model S (X,β) takes ap-448

proximately 4s. For the calibration of the inundation model 19,600 evaluations of the449

simulator were needed to cover the entire grid of β values, and around 100,000 evalua-450

tions were needed for the hazard simulation procedure from Sect. 2.3.451

4 Results452

4.1 Discharge recurrence model453

To define the events and their magnitudes, a threshold of u = 12m3/s and min-454

imum distance between clusters of 7 days (i.e. there has to be 7 days of values below the455

threshold for two events to be considered as separate events) were selected aiming to sat-456

isfy the conditions required by POT standard theory (Bousquet & Bernardara, 2021):457

• The minimum threshold for which the modified scale and shape parameters of the458

fitted GPD of the exceedances remain constant for higher thresholds.459

• The resultant threshold exceedances (cluster’s peaks) should form an independent460

sample.461
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A total of 73 clusters were identified in 18.8yrs of data as shown in Fig. 3. That462

is, on average, 3.9 events per year, and it shows the relative advantage of this type of anal-463

ysis versus the standard annual maximum approach for which there would only be 18464

data points. The posterior distribution of the mean rate λ0, as given by Eq. 12, has a465

mode (i.e. MAP) λ∗
0 = 3.8yrs−1 and a mean value λ0 = 3.9yrs−1. Statistical graphi-466

cal tests, shown in Fig. 4, showed that the resulting series of extreme discharges can be467

considered independent and that the time between events has a good fit to the exponen-468

tial model as assumed in the HPP model.
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Figure 3. Daily discharge for Buscot and identification of flood events by clustering with a

12 m/s3 threshold and 7 days of minimum return. Blue cross indicates event’s peak discharge.

469

Samples of the posterior distribution of the GPD parameters (Eq. 16) were drawn470

by a standard MCMC algorithm of 4 chains of 15,000 samples each. Discarding the first471

half of sample from each as burn-in stage, convergence of the chains was assessed by ver-472

ifying that Gelman-Rubin R-scores remains below 1.01 (Gelman et al., 2013). Goodness-473

of-fit tests showed a good agreement of the exceedances with the GPD. The shape pa-474

rameter ξ is centered around −0.05 while the scale parameter σ is centered around 16.5,475

both with a relatively small skewness (see Fig. 5). The MAP values for the parameters476

practically coincide with these values.477

For each posterior sample of ξ and σ, the probability distribution of the discharges478

follows a GPD. With the ensemble of distributions for each sample, we computed the479

mean curve (i.e. the predictive posterior distribution of X) and the 90% confidence pos-480

terior intervals. These are shown as return period curves in Fig. 6 as computed by,481

Tr (x) = 1/λ∗
0p (X ≥ x) (21)482

A ’deterministic’ hazard curve was also computed using the MAP values for the483

GPD parameters, following the classical approach. It can be seen that epistemic uncer-484

tainties have the effect of increasing the discharges for a given return period, and that485

this effect increases with increasing return period. This is intuitive, as larger return pe-486

riods are more uncertain with limited-length data. Similar results have been obtained487

before (Merz & Thieken, 2005; Romanowicz & Kiczko, 2016; Fawcett & Green, 2018).488

489

4.2 Inundation model490

The statistical calibration of the inundation model was done by using a uniform491

grid for both parameters in the range (0.01, 0.15) with a step of 0.01, and a threshold492
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Figure 4. (a) Autocorrelation plot of discharge series; (b) Probability plot of interarrival

times compared to the exponential distribution.
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of 0.5 to filter out non-behavioral models. This resulted in a total of 543 accepted sim-493

ulations out of 19,600. The bivariate pseudo-posterior distribution for the roughness pa-494

rameters is shown in Fig. 7. The set of parameters that yields the maximum F-score (i.e.495

MAP parameters) were rch = 0.029, rfp = 0.045 giving F = 0.54.496

4.3 Flood hazard497

Close to 15,000 thousand posterior samples of water depth Y at all points in the498

region were obtained, following the simulation procedure described in Sect. 2.3. This al-499

lowed to empirically estimate the posterior exceedance recurrence λ (Y ≥ y|data) for ev-500
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ery pixel and, consequently, the hazard curve. The number of simulations ran implies501

that exceedance probabilities as small as 10−4 can be estimated with a 10% interval ac-502

cording to Eq. 20. For a mean value λ0 = 3.8yrs−1, this is equivalent to RPs of up to503

1, 500yrs.504

Figure 8 shows the flood depth hazard curves for different points in the floodplain.505

The posterior predictive curves are compared with the classical approach that uses the506

deterministic discharge hazard curve (dotted black curve in Fig. 6) and the MAP pa-507

rameters for the inundation simulator. In every case, it can be seen that the flood depth508

values of the posterior predictive curves increase faster than the classical approach as509

the return period grows, in a similar fashion observed in the discharge hazard model of510

Fig. 6. Furthermore, the two curves are very similar for lower return periods.511

The 100yrs flood hazard map was developed by computing the 100yrs flood depth512

from the posterior predictive curves at each point (see Fig. 9). This map is compared513

in plot (a) of Fig. 10 with the traditional hazard map computed using the best inunda-514

tion model with the deterministic estimate of the 100yrs discharge. The increasing flood515

depth for the posterior predictive map can be seen to be replicated for every pixel in the516

region of analysis with the exception of some isolated pixels right next to the channel.517
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This effect, as in the discharge hazard curve, is exacerbated with increasing return pe-518

riods as can be seen in plot (b) and (c) of the figure for the 250yrs and 500yrs maps com-519

parison.520

5 Discussion521

5.1 On the influence of epistemic uncertainties in hazard estimates522

From an engineering design perspective, the water height used to design a struc-523

ture for a specified safety level (i.e. return period) will be larger when including epis-524

temic uncertainties. Results show that this is true for every pixel in the region of anal-525

ysis as can be seen from the maps in Fig. 10 and the curves in Fig. 11 for a specific pixel.526

That is, when including our lack of knowledge and information on the process, we need527

to be more conservative in design to ensure an appropriate level of reliability. Further-528

more, this trend increases with the return period, and is practically negligible for more529

–16–



manuscript submitted to Water Resources Research

0 1 2 3
x distance [km]

0.0

0.5

1.0

1.5

2.0

y 
di

st
an

ce
 [k

m
]

0.0 0.5 1.0 1.5 2.0

Flood depth [m]

Figure 9. 100yrs flood hazard map using posterior predictive flood depth at each point

recurrent events. This result is somewhat intuitive as we usually have less knowledge on530

rare events, and similar conclusions have been obtained by other researchers in hydro-531

logical hazards (Merz & Thieken, 2005; Fawcett & Green, 2018).532

To further understand and generalize this result, however, we need to understand533

the relative influence of epistemic uncertainties on the discharge recurrence model and534

on the inundation model. To do this, we obtained the hazard curves while including epis-535

temic uncertainties one model at a time, as shown in Fig. 11. It can be seen that the536

effect of more conservative water depths for any given return period is entirely due to537

epistemic uncertainties in the recurrence model. This trend reflects the heavier tails of538

the posterior distribution of the discharges (as also seen in Fig. 6) that mainly repre-539

sents uncertainty due to the limited-length observed time series used to build the model.540

That is, using an 18-years data record, there are practically no observations of much higher541

return periods which is reflected in the larger uncertainty.542

Uncertainty on the inundation model parameters, on the other hand, seems to have543

a relatively constant decreasing effect over return periods. That is, it gives lower (i.e. less544

conservative) water depths for a given recurrence relative to the classical approach. This545

is related to the shape of the posterior distribution of the parameters, but also on the546

non-linear nature of the S transformation. Thus, the influence of epistemic uncertainty547

in the inundation model parameters is related to the type of observations used for cal-548

ibration (i.e. binary flood extent observations in this case), the statistical procedure used549

(i.e. F-score pseudo-likelihood), and also the non-linearity of the inundation simulator550

itself. Given that water levels are relatively constrained by the topography, it is not ex-551

pected that the inundation simulator presents a radically high non-linearity. Thus, the552

highly skewed shape of the roughness parameters posterior distribution (Fig. 7), obtained553

from the GLUE method, with respect to the MAP values might be the main driver re-554

sponsible for the underestimation in flood hazard. However, further analysis is required555

in order to deeply understand how this influence varies in different settings (i.e. differ-556

ent observations, different calibration methods and inundation models), and understand557

if this effect can be magnified in some contexts.558
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5.2 On the usefulness of the output559

From a risk analysis standpoint, we might be interested in computing some dam-560

age measure, or any higher-level decision metric, that reflects the impact of the flood in561

human communities. The framework is analogous to the one described here, but instead562

we are interested in the distribution of the decision metric Z over all the potential haz-563

ard events. We can straightforwardly compute this from the probability distribution of564
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Figure 11. Hazard curves for water depth at location x = 1.30km, y = 1.05km

the IM, as in Eq. 22, since the vulnerability model is generally dependent on the y level.565

λ (z) ≈
∫

p (Z ≥ z|y)︸ ︷︷ ︸
Vulnerability

model

λ0p (y)︸ ︷︷ ︸
Hazard
model

dy (22)566

Equation 22 shows that we actually need the recurrence of water depth y (and even-567

tually other IMs like duration, or velocity) at any site of interest in order to compute568

the risk. For most modern vulnerability models then, a probability of flood map for a569

given return period is not useful since it does not provide the required information. The570

hazard maps, as developed in this work, provide a reliable estimate of the recurrence λ0p (y)571

while also accounting for epistemic uncertainties. Specifically the maps show the water572

depths for a given return period that can be transformed into an exceedance probabil-573

ity as per Eq. 2.574

It is important to note that the maps reflect marginal probabilities and do not take575

into account spatial correlation in the flood process, as they are built by individually com-576

puting the hazard curves at each point. In other words, the resulting hazard maps (as577

in Fig. 9) do not show a real flood event. For this reason, the hazard maps are useful578

for site-specific hazard, and eventually risk analysis, but not for analyzing spatially-distributed579

assets. However, these maps were built from an ensemble of simulated flood maps as per580

the MC simulation approach described in Sect. 2.3. This ensemble is a direct output of581

the inundation simulator, and thus, can be used to estimate damage for spatially dis-582

tributed exposure while propagating epistemic uncertainties in the hazard model.583

5.3 On the separation of aleatory and epistemic uncertainties584

The posterior predictive estimate for the hazard proposed in this work combines585

in one metric both the aleatory and epistemic uncertainty. While this is important for586

risk-based decision making, it does not directly help exploiting the main distinction be-587

tween the two: that epistemic uncertainties can potentially be reduced by further col-588

lecting data or improving our models.589

Qualitatively speaking, the departure of the posterior predictive curves from the590

deterministic hazard curve (Fig. 11) can be interpreted as a measure of the relevance591

of epistemic uncertainties on top of aleatory uncertainties. In this sense, it can be noted592

that for the case study developed, epistemic uncertainty on the future occurrence of dis-593
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charge events seems to be more impactful than uncertainty on the inundation model pa-594

rameters; at least for return periods of 100 years and above.595

Developing uncertainty bounds for the hazard curve estimates is the typical way596

of showing the sensitivity of the hazard estimates on the model’s parameters, and their597

overall relevance. This was done for the hazard curve of discharges in Fig. 6. Doing the598

same for the flood depths would require to compute a hazard curve for each posterior599

sample of parameters with the consequent added computational demand. An ensemble600

of 100 hazard curves was computed and is shown in Fig. 12 together with the posterior601

predictive (i.e. the mean curve of the ensemble) and the deterministic hazard curve.
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Figure 12. Ensemble of posterior samples of the hazard curves for water depth at location

x = 1.30km, y = 1.05km

602

Figure 12 shows that uncertainty in the model’s parameters can yield hazard curves603

that are vastly different from one another, resulting in large uncertainty bounds. This604

type of analysis can encourage modellers to obtain more data and/or refine the knowl-605

edge of the models used in order to reduce it.606

5.4 On the modelling methodology607

The inclusion of epistemic uncertainties in the computation of flood hazard result608

in a non-uniqueness of the parameters (and models eventually) used to compute the haz-609

ard curves. Thus, there is not a single discharge for a given return period, and there is610

not a single flood map for any given input discharge. As a result, there is no direct trans-611

lation between the discharge for a given return period and its corresponding flood map.612

The water depth for a given return period, as per Eq. 19, has now contributions from613

all possible discharges which is a more accurate representation of knowledge (and un-614

certainty).615

There are many methodologies to include this uncertainty in the modelling pro-616

cess, and we have chosen to rely on rigorous probabilistic modelling based on a Bayesian617

framework. The Bayesian methodology allows to consistently include modeller’s knowl-618

edge and data from different sources into posterior estimates of probabilities. In partic-619

ular, this work has limited the epistemic uncertainties to uncertainty over the param-620

eters of some models appropriately chosen (i.e. the GPD model for the discharges and621

the Lisflood simulator for the inundation model), but further prior distributions can be622

set over different models without affecting the workflow of the method proposed.623
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Finally, other deeper sources of uncertainty cannot be discarded in risk analysis and624

include what Spiegelhalter and Riesch (2011) named ’indeterminacy’ and ’ignorance’.625

The former are associated with known limitations in understanding and modelling abil-626

ity, while the latter is associated with unknown limitations of understanding. Different627

approaches have been proposed to deal with epistemic uncertainties that are not fully628

quantifiable including these deeper sources of uncertainties; these were not treated in this629

work and the reader is referred to (Spiegelhalter & Riesch, 2011; Goldstein, 2011; Beven,630

2014).631

5.5 On the computational challenges632

From a computational perspective, the inclusion of epistemic uncertainties via the633

Bayesian posterior predictive distribution of IMs means that we need to perform lots of634

simulations of the inundation model in order to compute the hazard curves. This con-635

trasts with the traditional approach where we only need to run the inundation model636

once to obtain the 100yrs flood hazard (see Sect. 2.3). Furthermore, the number of sim-637

ulations needed grow with the return period according to Eq. 20.638

This can result in an unfeasible computational burden, particularly for very large639

return periods. Ongoing advances in computer technology, on the other hand, are pro-640

ducing faster computers that will make simulation approaches like the one proposed, eas-641

ier to deal as time progresses. In this context, it is expected that this type of numeri-642

cal analysis will become more common in future research.643

In any case, it is also important the implementation of efficient simulation tech-644

niques in order to reduce the computational cost. There are mainly two families of tech-645

niques that can be implemented in order to reduce the computational time required to646

compute the desired probabilities: using a more efficient simulation algorithm that tar-647

gets the desired return period faster, such as importance sampling (Zio, 2013); and mak-648

ing each run of the inundation model faster by using a statistical emulator (Jiang et al.,649

2020).650

6 Conclusions651

We propose and develop in this work, a methodology to compute flood hazard curves652

and maps including epistemic uncertainty on the model’s parameters. The framework653

aims, not only to consistently include this uncertainty into robust hazard estimates, but654

also to produce useful output for risk analysis and engineering decision-making.655

Rather than computing probabilities for an uncertain T-yrs peak discharge event,656

we propose to compute the flood depth distributions from all possible events within a657

given time-frame. The posterior distribution of the models’ parameters were computed658

to include epistemic uncertainty, and the average recurrence-rate over these distributions659

(i.e. predictive posterior distribution) was used as a point estimate for the hazard. As660

a result, the flood hazard maps developed provide information related to the water-depths661

for different recurrence rates (or return periods) that can be readily used for further dam-662

age analysis including the forward propagation of epistemic uncertainties. The mathe-663

matical notation was kept intentionally generic to encourage its use in other natural haz-664

ards applications.665

The results of the real-world case study developed, showed significant differences666

between the hazard estimates considering epistemic uncertainties and the classical ones667

without. In particular, the results show that not considering epistemic uncertainties might668

underestimate the water-depths hazard at any point in the region of analysis, resulting669

in less reliable decisions and designs. Furthermore, this tendency aggravates with larger670

return periods, that tend to be the main focus in many risk analysis. A deeper analy-671
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sis shows that uncertainty in the prediction of future discharges as a product of a short-672

length observation series, is the main driver responsible for the underestimation in flood673

hazard. A similar pattern can be observed in the recurrence curves for the peak discharges674

in line with some results from the literature (Merz & Thieken, 2005; Romanowicz & Kiczko,675

2016; Fawcett & Green, 2018).676

On the other hand, the influence of the uncertainty in the inundation model pa-677

rameters (i.e. floodplain and channel roughness) proved to be less significant. Results678

show that this uncertainty seems to have a constant effect over return periods, towards679

the conservative side; that is, it yields lower hazard values than using the classical ap-680

proach. This seemingly non-intuitive influence requires further studies to understand how681

it generalizes to different applications and contexts (i.e. different calibration approaches,682

different computational simulators, different available data), although a potential expla-683

nation is the highly skewed shape of the posterior distribution (see Fig. 7) relative to684

the MAP parameters used in the classical approach.685

On the computational aspects, the proposed numerical methodology requires the686

simulation of thousands of inundation maps. This ensemble can be straightforwardly used687

in spatially distributed vulnerability models covering a continuous range of return pe-688

riods. It comes at the expense, however, of a much larger computational burden than689

the classical approach where only a few runs for selected return periods are needed. Tech-690

nological advances are expected to rapidly reduce the development-time of this simula-691

tion approach, particularly in applications that are practically feasible today. Addition-692

ally, this should also encourage researchers to find ways of optimizing the computation693

of the estimates by using more efficient sampling algorithms or cheaper emulators of the694

inundation model.695

To summarize, we have shown that the inclusion of epistemic uncertainties can sig-696

nificantly modify the estimates of hazard estimates that are later used for risk assess-697

ments and damage mitigation decision-making. This is particularly exacerbated for rare698

and big events (i.e. longer return periods). A framework that can consistently include699

these in robust probabilistic outputs is, we believe, therefore a major advance for risk700

analysis.701

Appendix A The GPD distribution702

This appendix summarizes the probability functions for the Generalized Pareto Dis-703

tribution (GPD), to avoid confusion in the definition and meaning of the parameters used.704

p (x|ξ, σ) =


(
1 + ξ

σy
)− ξ+1

ξ

, if ξ ̸= 0

exp
(
− y

σ

)
, if ξ = 0

(A1)705

F (x|ξ, σ) =

1−
(
1 + ξ

σy
)−1/ξ

, if ξ ̸= 0

1− exp
(
− y

σ

)
, if ξ = 0

(A2)706

Where the support of X is x ≥ 0 when ξ ≥ 0, and 0 ≤ x ≤ −σ/ξ when ξ < 0.707

Return levels xTr for this distribution can be computed from,708

Tr =
1

1− F (xTr|ξ, σ)
(A3)709

Open Research Section710

All the data used as input in this work (DEM, daily discharge series, flood extent711

observation) is publicly available and the sources were mentioned in the manuscript. The712
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open-source software Lisflood-fp was used as inundation simulator (http://www.bristol713

.ac.uk/geography/research/hydrology/models/lisflood/). All the simulations and714

figures were performed Python 3.X (https://www.python.org/) scripts developed by715

the authors. All the code used to develop the results and figures mentioned in this manuscript,716

as well as the input data and the Lisflood-fp binaries used, are publicly available on GitHub717

https://github.com/mbalbi/epistemic flood hazard.git.718
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