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Abstract

Earth’s physiographic features shape the genetic evolution of organisms. Understanding the conditions under which such

features act as barriers to gene flow requires quantifying and articulating the features of both the barrier and the organism(s).

Many such physiographic features, however, have known interdependencies that are not expressed through common multivariate

statistics. Here, we evaluate the use of directed acyclic (causal) graphs and structural equation modeling (SEM) to articulate

and test these relationships. We chose the longstanding and contested Riverine Barrier Hypothesis as a test-case using 28 river-

spanning population genomic datasets of plants and animals associated with 25 rivers across the contiguous United States; data

were paired with seasonality, river width, and river discharge data for those rivers. SEMs revealed insights that could not be

captured by traditional non-structured multivariate statistics. Discharge had the greatest direct effect on low-dispersing species.

However, discharge has negative, indirect effects on other river features making its total effect on population differentiation

negligible. River width was important for low dispersers, but surprisingly, narrower rivers were associated with higher Fst—this

may be due to the association of higher topography with narrower (e.g., headland) parts of rivers. Or, wide lowland rivers may

be more dynamic and facilitate dispersal more than highland rivers. Therefore, topography or landscape history and not wetted

river area may determine barrier efficacy. This proof of concept shows the utility of causal graphs and SEM at articulating and

testing complex relationships between Earth’s physiographic features and the organisms that evolve with them.

INTRODUCTION

The riverine barrier hypothesis Wallace originally articulated in 1854 proposes that rivers act as barriers
that limit, reduce, or prevent migration (and therefore gene flow) among terrestrial populations (Wallace,
1854). With gene flow reduced for enough time, allopatric speciation is expected to occur. This provided an
early hypothesis for why species diversity is high in the Amazon—that it arose through allopatric speciation
across large, impenetrable river channels. Since then, numerous studies have tested this hypothesis across
taxa, climatic and geographic settings, and types of rivers using mark-recapture, species surveys, and (most
commonly) molecular data to assess population structure across river channels. Yet, results have been highly
variable and at times directly conflicting (Table 1), making the riverine barrier hypothesis a topic of great
debate within comparative phylogeography and biogeography. For example, on the Guiana Shield in the
Amazon, Fouquet et al (2015) surveyed frogs across habitat types and body sizes and found mixed results
with significant river-associated divergence in only 13 out of 28 species (Fouquet et al., 2015); those with
positive relationships segregated at least in part by habitat and life history characteristics. Results from
studies of river-related divergence have also been mixed in primates (Boubli et al., 2015; Jalil et al., 2008;
Link et al., 2015) and amphibians (Fonseca et al., 2021; Fouquet et al., 2015; Gehring et al., 2012; Godinho
& Da Silva, 2018), but rivers are often found to not be a barrier among small mammals (Colombi et al.,
2010; Klee et al., 2004; Roratto et al., 2015).
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Intuition suggests that whether rivers restrict dispersal would depend on the mode of dispersal and the traits
or ecology of an organism. High-dispersing species of trees and birds would be impacted to a lesser degree or
not at all. Yet that is not always the case, at least for a species of Amazonian tree (Nazareno et al., 2019a)
and an African bird (as well as its parasitic lice; Voelker et al., 2013). In China, Zhang et al. found that the
Yangtze River restricts seed dispersal in a large shrub but not its pollen dispersal, leading to male biased
cross-river gene flow (Zhang et al., 2007). This example makes sense because pollen can be carried farther
distances on the wind than many seeds. As shown by these examples, the relationship between organismal
characteristics and river-associated divergence is much more varied than intuition would expect, suggesting
aspects of these systems have not yet been sufficiently captured.

While a wide breadth of organismal characteristics have been considered, comparably little attention has
been paid to the characteristics of the rivers themselves (but see Dolby et al., 2019; Jackson & Austin, 2013;
Ruokolainen et al., 2019). Larger river channels should serve as stronger barriers than smaller branches or
tributaries, which was a pattern observed in a shrub species in Amazonia (Nazareno et al., 2017). Some
have predicted that wider river mouths are stronger barriers than narrower headwaters, and this has received
mixed support (Figueiredo-Vázquez et al., 2021; Godinho & Da Silva, 2018; Patton et al., 1994; Peres et al.,
1996). However, it could also be argued that although high elevation portions of rivers are narrower, they
may have greater cross-valley topographic relief and these more dramatic elevation changes could restrict
dispersal more than the flatter, wider low elevation parts of the same rivers. There are many aspects of rivers
that vary, including but not limited to their slope, width, water discharge, and flow characteristics; these
variables are often interrelated (Leopold et al., 1964; Leopold & Maddock,Thomas, 1953; Park, 1977) and
each may have its own role to play in barrier effects. It is therefore possible that the mixed support for the
riverine barrier hypothesis is simply a sampling artifact of studying many different types of organisms over
many different rivers without fully accounting for the diversity or complexity of both.

Resolving the above question requires three analytical advances. First, aspects of the proposed river barrier
must be sufficiently quantified and in a standardized way to allow direct comparison among them both
within and across rivers. Second, the interdependency of the riverine variables must be appropriately consi-
dered. Third, the statistical framework must integrate primary riverine and population divergence data in
a generalizable way such the results of one system can be directly compared to another, avoiding some of
the noise from study to study. Ideally, the framework would capture the complexities of both the river and
organism and in so doing allow us to ask the more nuanced question of, “what are the conditions under which
rivers isolate or structure populations?” as opposed to asking, “dorivers structure populations?”. Where, the
results of the latter are bound to be mixed.

In this study we aimed to satisfy these requirements and evaluate the riverine barrier hypothesis by analyzing
genomic data from published literature for 28 population pairs of plant and animal species traversing 25 river
systems across the contiguous United States (Figure 1). We obtained river discharge, discharge seasonality,
and river width measurements for locations where population genomic data was available across a river
channel. We first used traditional multivariate statistical techniques to assess which river characteristic(s),
if any, explain genetic differentiation among organisms, and compared these to results from a graph-based
statistical approach, structural equation modeling (SEM). SEM is based on directed acyclic graphs (DAGs)
that capture known direct and indirect relationships (i.e., pathways; Table 2) among variables (Figure S1).
In this case, known empirical relationships among riverine attributes were captured and their individual and
interactive controls on genomic differentiation (Fst) were assessed.

In short, we find that the graph-based approaches reveal attributes of the interaction between rivers and
population evolution beyond what can be learned from non-structured multivariate analyses. This result
marks a material advancement in our ability to articulate and ascribe putatively causal relationships within
Earth-life systems (Dolby, 2021; Dong, 2022; Igea & Tanentzap, 2021; Vernham et al., 2023) and integrate
geological and genetic datasets more broadly—a fundamental need within convergence science (Dawson et
al., 2022; Dolby et al., 2022).

MATERIALS & METHODS

2
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Curation of genomic data

We mined published literature for population genomic datasets that met several criteria, the data: i) were
publicly accessible, ii) provided GPS coordinates for sampled individuals, iii) contained at least three indivi-
duals per sampled population, and iv) had populations separated by a river channel (see Table S1 for data
sources). Only terrestrial species were chosen for analyses as aquatic, semiaquatic, or amphibious species
likely disperse within river systems and could complicate results. Datasets used either whole genome sequen-
cing (WGS) or Restriction-Site Associated DNA sequencing (RADseq). Importantly, the original studies did
not necessarily generate data to study riverine barriers, and so the datasets may reflect additional features
or evolutionary patterns that we did not address and may therefore increase variance in our models. For
each paper, we recorded the genus and species, organism group, accession numbers, GPS coordinates, and
type of genomic data (WGS or RADseq). The final dataset included birds, grasses, lizards, rodents, snakes,
and trees (Table 3).

Calculation of Fst

We calculated Fst using either the VCF file or multiFasta sequences provided by the original study, and
therefore relied on the original read processing, filtering, mapping, and variant calling used therein (links
to data are in Table S1). Files were imported using the read.multiFASTA() function from the apex package
(v1.0.4, Jombart et al., 2017). All files were converted to genind files using vcfR package (v1.12.0, Knaus
& Grünwald, 2017) in R Studio (v.1.3.1073, R Core Team, 2021) and individuals were grouped into three
populations, two groups that represent individuals closest to the river on either side, and a third group
consisting of more geographically distant individuals (this third group was not used). The genind file was
converted to a heirfstat file using the heirfstat package (v0.5-11, Goudet, 2005) and a pairwise Fst value was
calculated between the two river-associated populations (Table 3). We ran a T-Test on the final Fst dataset
to check if Fst values were biased between the two types of genomic data (WGS and RADseq).

Dispersal Classification

Based on the expectation that high and low dispersing species would be affected differently by a riverine
barrier, the genomic data were divided into two datasets: high dispersal and low dispersal based on estimates
from available literature and databases (Table 4). High dispersal organisms are the species in our data set
that have the potential to travel farther due to dispersal modes. If a quantitative dispersal estimate could
not be found for a species, dispersal was estimated based on other members of the genus or was estimated
based on characteristics of its taxonomic group.

River hydrology: Discharge and seasonality

We obtained water discharge data from the USGS National Water Information System (U.S. Geological
Survey, 2020) for discharge stations closest to where the genomic data were located based on visual inspection
in Google Earth. For those specific discharge sites we batch downloaded daily discharge data between January
01, 2019 and December 31, 2021 using the dataRetrieval package (v2.7.11, Cicco et al., 2022) in R and
recorded discharge in units of 1000 ft3/second. This timeframe was chosen because it was the longest period
that contained data for all discharge sites and this resulted in between 1 to 22 discharge sites per river segment
(Table 5). With these data we calculated the average daily discharge across discharge site per river segment.
The discharge sites for Stockton, CA (San Juaquin River); Tucson, AZ (Santa Cruz River); Columbus, GA
(Chattahoochee River); and 280 Atlanta, GA (Chattahoochee River) were removed because they were in or
near urban centers and/or were too engineered to obtain accurate and ‘natural’ river width and hydrology
measurements.

Seasonality was calculated over daily discharge values averaged per river segment in two different ways: mean
Seasonality Ratio (SR) and seasonality Range over Mean (ROM). The Seasonality Ratio (SR) is calculated
by comparing the mean daily discharge of one hydrologic season (July 1st to September 30th) by another
(January 1st to March 31st) across discharge sites at each river segment and then this ratio was averaged over
the three years (2019–2021). These dates were chosen to represent the monsoon season of the southwestern

3
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US which leads to flashy (i.e. highly variable) discharge in this region (Sheppard et al., 2002). The timing of
wet/dry seasons may vary across the US and was not further assessed in the study.

For average ROM, the daily discharge was averaged by month; the range of mean monthly discharge values
within the summer monsoon season was divided by the mean of monthly discharge values for that year. The
per-year ROM was then averaged over the three sampled years (2019–2021). Because this measurement of
discharge variability is standardized by average discharge, the values are more comparable across rivers of
different sizes.

River shape: Width

The river width was measured in kilometers at five locations within or near each discharge station and the
mean, median, and standard deviation of these values was calculated per river segment. Width calculations
were made in Google Earth using the measurement tool and these measurements included visible floodplains
delimited by alluvial fan deposits, high escarpments, and/or riparian zones. Therefore, river width here
measured the ‘channel belt’, encapsulating more than just the wetted river area. Without obvious features
delimiting the floodplain, only the width of the actual river was used (Figure S2). We avoided urban areas
where it was difficult to see channel features and where most rivers were leveed as evidenced from anomalously
straight portions of the river. Measurements near dams were avoided and instead taken a sufficient distance
upstream or downstream to avoid the pooling or low-flow areas associated with dams. Finally, the river
mouth where it meets the ocean was also excluded as the geometry of this area is often unlike the rest of
the channel. It is worth noting that we made a second dataset using a global river database (GRWL, Allen
& Pavelsky, 2018); although it is comprehensive, it did not contain many smaller rivers in this study and so
we did not use this dataset in further analyses.

Estimating geographic distance

The genomic data used in this study came from different sources and so collecting strategies likely differed.
To account for the effect of geographic distance between sampled populations, for each genomic dataset we
calculated the minimum Euclidean distance between individuals of the two cross-river populations using
individuals’ GPS locations. We chose minimum distance as opposed to mean or maximum distance with
the rationale that this would most closely reflect the opportunity these populations have to interact in the
absence of a physical barrier.

Generalized linear and generalized linear mixed models

To determine what we could learn about river characteristics and population differentiation through tra-
ditional statistics, we used a generalized linear model (GLM) as well as a generalized linear mixed model
(GLMM) to determine the effect of taxonomic group. For GLMs, the glm() function in the lme4 package
(v1.1-31, Bates et al., 2015) was used. Fst was designated as the dependent variable while seasonality, mean
discharge, and mean river width were independent variables and the same model was run on the four data-
sets: seasonality (SR and ROM) and dispersal groups (high and low). The same approach was taken for the
GLMMs except the glmer() function was used instead and the taxonomic group was set as a random effect.
We used a Gaussian link function in both sets of models based on exploration of the data distribution.

Constructing Directed Acyclic Graphs (DAGs)

We built a set of DAGs (DAG 1–3) that articulate known relationships among the river variables in this
study and their anticipated effect on genomic differentiation (Table 2), measured as Fst. DAGs assume there
are no directed cycles or loops within the graph structure, and we do not have reason to believe this study
violates that assumption. Each graph structure was chosen for a specific theoretical or analytical purpose.

DAG1 is the simplest graph structure and articulates the three river variables with directed paths to Fst
and no other relationships among them (i.e., no interdependence or internal river structure; Figure 2a). This
structure is equivalent to the GLM structure, allowing a direct comparison to a more traditional multivariate

4
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statistical approach that could reasonably be used to understand such relationships, and therefore serves as
a positive control.

DAG2 articulates the paths in DAG1 plus the known empirical relationship in which river width is pro-
portional to river discharge (Leopold & Maddock, 1953). Secondly, because our calculations of seasonality
contained averaged daily discharge, there is an additional path between mean daily discharge and seasonality.
Therefore, in addition to direct pathways, DAG2 has two indirect pathways to Fst through river width and
seasonality that are known from first principles or published literature. Comparing the results from DAG1
and DAG2 structures allows us to assess if we learn anything by accounting for the internal structure of river
systems.

DAG3 is the most complex and includes latent variables, which are conceptual or difficult to measure varia-
bles. Latent variables are particularly important for representing theoretical constructs that may be incom-
pletely represented by a single variable but are nonetheless important to our understanding of the system
(common examples are happiness or intelligence). In this case, DAG3 shows that the river variables can be
conceptualized into two types: hydrology and shape. The effect of river hydrology on river shape is specified
in this model through a directed path river shape is measured by the sole manifest (i.e., measured) variable
of river width.

All four datasets were analyzed under these three DAG structures (DAGs1–3) with structural equation
modeling analysis. Under a scenario where there is no riverine barrier effect, the expectation is that the path
coefficients of directed paths leading to Fst would be low or zero.

Structural Equation Modeling (SEM)

All SEMs were run in R using lavaan (v0.6-11, Rosseel, 2012). Standardized and unstandardized path coef-
ficients, total effects, and global model fit indices (CFI, RMSEA, SRMR) were calculated using the sem(),
summary(), and fitMeasures() functions. Graphs were generated with the semPaths() function and due to
the differences in scale among variables, we interpreted mainly standardized path coefficients. Structural
equation models were run for DAGs1–3 without geographic distance (hereafter, SEM1–3) and with geogra-
phic distance (hereafter, SEMd1–3). Each model was run for high and low dispersal datasets as well as ROM
and ratio seasonality measurements (four datasets each), resulting in a total of 24 model runs.

Because DAGs are often built to articulate the knowledge or theory of a system that is not yet fully under-
stood, a key utility of SEM is the considered reciprocity between empirical model results and theory of that
system. In fact, one often reaches new insights simply by building the models themselves. Post-hoc model
revision is one such opportunity for theory-empirical reciprocity in which new insights gained by the SEM
process can be used to re-specify the models and run the data through them anew. That said, the spirit of
SEM is to evaluate the fit of data to a model, not to develop the best fitting model for a dataset as the goal
is a generalizable understanding of the system and any given dataset is only one instantiation of that system
(and which may be biased or incomplete). Thus, model revisions should be kept to a minimum. With this
in mind, after reviewing the results of the 24 models, we performed one round of model revision in which
wepost-hoc ran SEMd2 (the best-fitting model) a second time with an additional path from mean river width
to geographic distance (SEMd2-alt; see discussion for justification).

RESULTS

Genomic data curation and cross-river Fst

Our final dataset included 28 genomic population pairs from 12 species distributed across 25 different rivers;
some papers produced multiple datasets and some genomic datasets spanned different parts of the same river
(referred to as “river segments” in methods). Fst values ranged from 0.00 to 0.39 with a skew towards low
Fst values (Figure S3). There was no significant difference in Fst detected via the two-tailed T Test between
WGS and RADseq data (p = 0.31) after removing one value (P. ovata, Fst = 0.33) that was a significant
outlier (Dixon’s test run on RADseq data, p = 0.004), so these were combined in analyses (Figure S4). This
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is in line with another study that did similar analyses and also did not find significant differences in Fst
between RADseq and WGS datasets (Araya-Donoso et al., 2022).

River hydrology and shape

Average daily discharge ranged across several orders of magnitude (8–13,300 ft3/s), suggesting our study
captured a high degree of variation in river size and climate. The Mojave River (in California) and San
Pedro River (in Arizona) had lowest flow, while the Colorado River (in Arizona) and Mississippi River (in
Minnesota) had the highest. Measures of seasonality ranged from 0.04–5.61 for seasonality ratio (SR) and
0.26–6.44 for range over mean (ROM). The two metrics indicate similar patterns with Muddy River (Nevada)
and Deschutes River (Oregon) making up the low end of seasonality and the San Pedro River (Arizona) and
Mojave River (California) marking the high end of seasonality. This ordering suggests these seasonality
measures captured climate differences across the US, for example rivers of the southwest experience summer
monsoons and are expected to have higher discharge variability than rivers in climates with more consistent
precipitation like the Pacific Northwest. For simplicity, in the main text we only report results for the
models using the ROM seasonality measurement because they are better normalized across river size and
the variance of ROM was wider, suggesting perhaps it may be more discriminatory (Figure S5). Mean river
width varied from quite narrow for the Croton River (0.06 km, NY) and Knife River (0.06 km, Minnesota)
to very wide for the Savannah (2.72 km) and Chattahoochee (1.53 km) rivers (both in Georgia) with a mean
of 0.52 km across all river segments.

Generalized linear models and mixed models

The GLM showed very low explanatory power of river characteristics on Fst, with river width showing the
largest of the three (-0.032) for low dispersers and seasonality highest (0.068) for high dispersers (Table S2).
The regression coefficient for river width on Fst was negative for both high and low dispersers, which is
counter to the expectation (Table 2) and the seasonality regression was positive while the expectation was it
would be negative. The generalized linear mixed model showed no variance explained by taxonomic group.
This may indicate that species responses to rivers were idiosyncratic, but it is likely that this analysis was
underpowered and it is unlikely that would hold in a larger dataset (Table S3).

SEMs

The SEM1 (Figure 2a) for low and high dispersal showed unstandardized path coefficients identical to the
GLMs (Table S2), indicating that the SEM analysis behaved as expected. Global model fit indices (CFI-
comparative fit index, RMSEA-root mean square error of approximation, and SRMR-standardized root-mean
squared residual) met the threshold for good model fit, but this is an artifact of the model being saturated
(i.e. having zero degrees of freedom). Tellingly, the Chi-square p-value for model fit was significant (p-value
= 0), indicating the model and data are statistically significantly different from each other. This is reasonable
since we know SEM1 excluded known relationships among river variables (Table 2).

Accounting for internal river channel structure, standardized path coefficients for SEM2 showed discharge
had the largest direct impact on Fst for low dispersers and seasonality had the highest coefficient for high
dispersers (Figure 2b), as was observed in SEM1. The signs of paths were consistent between high and
low dispersal datasets which was expected. However, as observed in the GLMs, river width had a negative
relationship with Fst, which was unexpected. All global model fit indices passed their respective thresholds
for good model fit for SEM2 (Tables 6, S4). Additionally, the p-value of the model was not significant, which
means that model and data are not statistically different from one another, also indicating good model fit.

Accounting for endogenous latent variable structure, SEM3 presented consistent results with SEM2 except
that for high dispersers, the path from hydrology to Fst had a negative sign and the path coefficient from
hydrology to shape shrank to near zero. While the degrees of freedom were the same for SEM3 and SEM2,
the latent variable structure is broadly considered a more complex model, and it may be likely that the
datasets were too small to adequately estimate these relationships. There are three signs of this. First,
paths of SEMs 1 and 2 are consistent and SEM3 differs. Second, the run for SEM3 using seasonality ratio
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instead of ROM for seasonality did not converge (Table S4), suggesting inadequate statistical power. Third,
global fit indices for SEM3 were good overall but worse than SEM2, producing borderline SRMR values
(0.09 and 0.10 for low and high dispersal, respectively) and 0.25 for RMSEA (good model fit should be <
0.8). Finally, SEM3 does not include the direct path from discharge to seasonality and this may be a model
misspecification. These results are likely more a reflection of the limited data available in this study, and
not a true assessment of the utility of latent variables in this context.

Intriguingly, including geographic distance in the models had a large effect on paths among low dispersers
but almost no effect on paths for high dispersers (Figure 2 vs Figure 3; Table S5), which makes biological
sense. By adding geographic distance, the median percent change in the absolute value of direct paths
to Fst between SEM1–3 and SEMd1–3 was 31% and 3% for low and high dispersing datasets, respectively
(Table S5). By accounting for variance contributed to Fst by geographic distance, the effect of other variables
became weaker in low dispersers with little change for high dispersers. The difference was consistent between
models 1 and 2 with a percent reduction of 43% for discharge, 31% for ROM seasonality, and 17% for river
width. As mentioned above, SEM3 may be a good model but is probably overidentified relative to the data
provided. Indeed, SEMd3 had more dimensions of freedom and performed less well than SEM3 (Table 6),
further suggesting more data would be needed to evaluate complex models.

Choosing the best SEM

SEM2 was the best fitting model for both datasets. SEM2d was equally well fitting for the low dispersers,
but not the high dispersers. This finding is biologically realistic as the increased model complexity of adding
the path (distance - Fst) yields three additional degrees of freedom and would therefore result in poorer fit
indices for high dispersers because, for them, that path is non-informative, so a simpler model is justified. So
while SEM2d is not supported for high dispersers, it may in fact be the best model for low dispersers. With
that understanding, we favor SEM2 and SEM2d and primarily focus our interpretations on these models.

Within SEM2, SEM2d, and SEM2d-alt, the total effect of discharge on Fst (direct and indirect paths) was
near zero for low dispersers (-0.02, 0.14, 0.04) and high dispersing datasets (-0.04, -0.04, -0.07), respectively.
This is because its negative indirect paths cancel out its positive direct pathway. This is in contrast to the
direct effect of width on Fst, which was -0.37, -0.48, -0.24 for low dispersers and -0.1 in all SEM2 models
for high dispersers. Considering the total effects shows that compared to discharge, river width has a much
higher effect on Fst than would be indicated by non-graph-based multivariate analysis (i.e., GLMs).

DISCUSSION

This study sought to evaluate the longstanding riverine barrier hypothesis by capturing elements of river
complexity in directed acyclic graphs along with population genomic data of 28 plant and animal populations
across 25 rivers. Generalized linear models indicate low overall predictive power of seasonality, river discharge,
and river width on genetic differentiation of low and high dispersers, with similar coefficients for the three
variables (Table S2). SEM1 mirrored the direct-only pathway structure of the GLM and was a poor fitting
model based on chi square goodness of fit tests compared to SEM2 (see Results; Table 6). This result
demonstrates how collapsing the internal relationships known to exist among the river variables results in a
model that is unable to appropriately partition variance among the components of river systems.

The best fitting models (SEM2, SEM2d) reveal that when system structure is properly accounted for, the
positive direct effect of discharge on population differentiation is canceled out by its negative, indirect effects
on other river components. When considering direct effects only, discharge did have the greatest effect on
Fst for low dispersers, and seasonality had the greatest effect for high dispersers (Figures 2b, 3b). But when
considering total effects, the barrier effect of discharge is canceled out by its other indirect effects on the
system, leaving river width and seasonality roughly equal influencers on Fst of low dispersers (SEM2: -0.37,
0.43, respectively), and seasonality as the single greatest control on Fst for high dispersers, which are affected
little by discharge or river width as expected.

The signs of the effect of width on Fst and geographic distance on Fst were both negative, which is strongly
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counterintuitive. However, this was consistent in both the GLMs and across SEMs, suggesting it is either an
artifact of the dataset, or there are important components of this system not yet understood. Accounting
for geographic distance between populations had a large effect on low dispersers and little effect on high
dispersers, which makes intuitive sense even though the sign of this path is also opposite the expectation
(Table 2; Araya-Donoso et al., 2022). This indicates the graph structure is able to disentangle the effect of
geographic distance from the river barrier effect.

Modeling rivers as systems

SEM2 and SEM2d were the best-fitting models, which we interpret to be because they account for relation-
ships that are known to exist among the river variables without overly complicating the graph structure
relative to the data supplied. SEM1 collapses internal pathways and redistributes that variance over direct
pathways, and in doing so underestimates the importance of river width. The path coefficients given in
SEM2 support know features of river systems. For example, average daily discharge has a negative (inverse)
effect on discharge seasonality, which conforms to our expectation that smaller rivers (i.e., those with lower
mean discharge) tend to be flashier (i.e., have more variable flow) than larger, higher-discharge rivers (Baker
et al., 2004). Another way to consider this is rivers that have high average discharge necessarily drain larger
catchments, larger catchments capture more climate heterogeneity and are therefore less affected by local to
regional weather patterns.

SEM2/SEM2d confirm the known positive relationship between discharge and river width, where segments
of rivers with more water discharge are wider. As flow accumulates downstream, channel width, depth,
and flow velocity increase to accommodate the higher water discharge (Leopold & Maddock, 1953). The
magnitude of this pathway differed between high and low dispersers, which we interpret is likely due to
limited sample size. The relationship between discharge and width is nonlinear (Leopold & Maddock, 1953),
and therefore may be poorly represented by the partial linear regression performed in SEM and may also
require more data to sufficiently capture the different parts of that relationship.

River width, distance, and Fst

The GLM and SEMs revealed a negative relationship between river width and Fst (Figures 2, 3), which is
counterintuitive and indicates that the wider the river, the lower the genetic differentiation associated with
that river. It was expected that magnitude of effect of width on low dispersers would be higher than on
high dispersers, which is observed. However, the negative sign of this relationship is either an artifact of
the dataset or model, or it is a real aspect of the relationship. If real, it shows we mis-conceptualized our
predictions (Table 2) and through the process of SEM have indeed learned something new. Additional data
and analysis would reveal whether the sign of the relationship persists and therefore resolve if it is a data
problem, a model problem, or a accurate reflection of the system.

If the negative path is true to the system, it could be due to the topographic setting of rivers: at higher
elevation, rivers are closer to their headwaters and often associated with higher topographic relief. Topo-
graphic relief could pose an additional barrier to movement and in many cases it could be a primary driver
of differentiation; this would yield a negative width-Fst relationship. Indeed, this result is consistent with
prior results in an Amazon frog species where higher divergence was associated with the Upper Napo River,
which hosts higher topographic relief, than the wider Lower Napo River (Funk et al., 2007). In a cursory
attempt to assess this further, we took cross-section profiles of the rivers in this study at discharge sites
using Google Earth, and recorded the high and low points of those transects as a proxy for topographic
relief. After averaging discharge transects per river segment, a linear regression against river width showed a
weak but negative relationship (Figure S6). The negative relationship between width and Fst can therefore
be potentially accounted for by local effects of topography. However, more targeted sampling and modeling
work is needed to evaluate these relationships in detail.

Another possible explanation for the negative relationship between width and Fst could lie in the history
of the riverine barrier. Rivers are not static features of landscapes, and some rivers shift more than others.
Rivers with a more dynamic history may promote more gene flow across the channel than those that have
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remained stationary. Generally, alluvial rivers, which have channels formed by sediments, tend to be more
dynamic than bedrock rivers whose position may be controlled by underlying geologic features (Schumm,
1985). Alluvial rivers experience processes such as meander cut-offs and avulsions, both of which may serve to
frequently re-connect populations of terrestrial organisms. In our study, many of the wide rivers may fall into
the more dynamic alluvial category (e.g., Savannah, Chattahoochee) while narrower bedrock rivers may have
had a more fixed position over time (e.g., Colorado, Rio Grande). This comparison offers another possible
explanation for the unexpected negative relationship between Fst and channel width observed in our dataset.
Indeed, in comparative study of Amazonian birds, (Johnson et al., 2023) found that greater landscape
stability in forest uplands led to higher genetic structure than in more dynamic lowland environments. This
is another fruitful hypothesis generated from these SEM results that can be evaluated with future work.

Interestingly, geographic distance and Fst also had a negative relationship, counter to our expectation,
however the coefficient for high dispersers was nearly zero (as expected). After reviewing results from the 24
models, we respecified SEM2d to include an internal path from river width to geographic distance (SEM2d-
alt, Figure 4) to determine if the negative relationships was an effect of the river width to Fst path being
negative. As expected for low dispersers, this pathway was positive and strong and so it is possible the
negative effect of distance on Fst can be attributed to the same source as the negative relationship of river
width to Fst. It is interesting, however, that for high dispersers all of these relationships are negligible, as
expected.

Do rivers affect high dispersers?

This approach would be strengthened with better dispersal data for the species, or by targeting new data
collection for organisms with different dispersal levels. We used the high dispersers as a negative control as
they should not be affected by the river attributes to the same degree as low dispersers. Results supported
this expectation, and discharge having a mid-to-low impact. For high dispersers, seasonality was by far the
greatest control on Fst, with higher measures of seasonality associating with stronger population differentia-
tion. We interpret this to be a broad climate signal that is difficult to interpret in more detail at this stage.
It could also be an artifact of the dataset as the grass psyllium (Plantago ovata ) was represented in many of
the southwestern (highly seasonal) rivers. There is evidence that this species is locally adapting as indicated
by outlier loci that may be under selection (Shryock et al., 2021) and is capable of selfing (Sharma et al.,
1993). Both of these processes would increase Fst for reasons unrelated to a riverine barrier, and because of
the frequency of the species in the greater dataset could bias our SEM results.

Use of DAGs in geogenomics and biogeography

Many of the physiographic features thought to be important to structuring or isolating populations (rivers,
mountains, land-sea connectivity) are multifaceted, meaning their characteristics and their effect on biology
can be explained in several ways. Representing individual facets within a graph structure allows their
articulation and quantification, assessment of their direct and indirect relationships, and their comparison
(Dolby, 2021). More than that, the earth processes that form and shape these features are fundamentally
interrelated, and often these interdependencies are relatively well understood, at least at the level needed
to construct such graphs. Doing so may motivate and indeed require substantive collaboration across the
fields.

The results here offer a nuanced understanding of how rivers may structure populations, but by no means
does it resolve the riverine barrier hypothesis. It did, however, restructure our thinking of these systems in
a way that motivates new experiments. For example, the negative path from river width to Fst suggests
that explicitly modeling regional topography, landscape history, and river width together may be important
to resolving this hypothesis. It also revealed that while river discharge has a strong direct impact on Fst for
low dispersing organisms, it exerts other impacts on the system that mitigate that effect.

The mixed evidence regarding the riverine barrier hypothesis to date may be a sampling effect where two
multifaceted features, rivers and species, are compared without adequately quantifying the attributes of
both. Perhaps the largest strength DAGs offer is the ability to apply the same causal structure to different
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datasets and in doing so greatly reduce study-to-study variance, or at a minimum illuminate its possible
sources. For example, the analyses done here within the contiguous US could be readily applied across rivers
in China or to the large river systems in South America that were the original inspiration for this hypothesis.
We could additionally collect more data for the rivers studied here and rerun the models to determine which
relationships remain and which were artifacts of the data. Adopting the same graph structure allows for the
aggregation of results beyond any individual study to better understand the conditions of river-mediated
isolation, and probably many other physiographic systems at the boundary of earth processes and biological
evolution.
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Table 1 Summary of results from literature where the riverine barrier hypothesis was tested, including the
focal taxa, geographic location, and qualitative summary of fundings. Number of taxa included in the study
(some studies had many populations but only one species). These results are displayed qualitatively in the
last column as the river was: red - a significant barrier, light purple - a low-level barrier, dark purple –
results were mixed (positive and negative) by river or taxon, or green - not a barrier.

Reference Taxon Location N Result

Boubli et al., 2015 primates Brazil 10
Cáceres, 2007 small mammal Brazil 4
Colombi et al., 2010 Small mammal Brazil 1
Godinho & Da
Silva, 2018

frogs Amazonia 577

Figueiredo-Vázquez
et al., 2021

salamanders Iberian Peninsula 1

Fonseca et al., 2021 frogs Brazil 1
Fouquet et al., 2015 frogs Guiana shield 28
De Fraga & De
Carvalho, 2022

frogs and reptiles Brazil 89

Funk et al., 2007 frogs Amazon basin 1
Gascon et al., 1998 frogs Brazil 4
Gascon et al., 2000 Frogs, small

mammals
Brazil/Peru >29

Gehring et al., 2012 amphibians Madagascar 4
Gonçalves-Sousa et
al., 2022

lizards Brazil 63

Jalil et al., 2008 primates Borneo 1
Klee et al., 2004 Small mammal US 1
Kopuchian et al.,
2020

birds Del Plata basin 7

Link et al., 2015 primates Colombia 1
Nazareno et al.,
2017

shrub Brazil 1

Nazareno et al.,
2019b

woody plants Brazil 3

Nazareno et al.,
2019a

tree Brazil 1

Patton et al., 1994 Small mammal Amazonia 1
Peres et al., 1996 Primate Brazil 1
Roratto et al., 2015 Small mammal Brazil 1
Townsend et al.,
2009

lizards Madagascar 28

Vieira et al., 2022 insect Brazil 14
Voelker et al., 2013 birds & lice Congo basin 10
Zhang et al., 2007 plant China 1

Table 2 Description and justification of pathways used to build the directed acyclic graphs that were tested
(DAG1–3; Figures 2–4).

# Pathway Expected relationship Obs. Justification of path

1 Discharge - seasonality Negative Yes Higher discharge associated with larger catchment, larger catchment is less susceptible to seasonal fluctuations
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# Pathway Expected relationship Obs. Justification of path

2 Discharge - river width Positive Yes Higher water discharge associated with wider channels, empirically confirmed for rivers across the US and globally
3 Discharge - Fst Positive Yes Higher flow would be harder for organisms to swim or drift across
4 River width - Fst Positive No Wider rivers would be harder for an organism to swim or drift across
5 Seasonality - Fst Negative No High seasonality implies periods of low flow where the river may be easy to cross
6 River width - geographic distance Mixed Yes Wider rivers have banks farther apart, therefore absolute distance must be greater than narrow rivers
7 Geographic distance - Fst Positive no Isolation by distance principle, it is easier to disperse locally than farther away

Table 3. Information for the 28 genomic datasets used in this study, including associated references,
sample sizes (N), associated river barrier, and data type (GBS – genotype by sequencing, RADseq – Restric-
tion Associated DNA). Fst refers to the pairwise Fst calculated in this study for cross-river populations.

Group Genus Species River N Fst Data Type Reference

Snake Rhinochelius lecontei Pecos 8 0.10 WGS (Boubli et al., 2015)
Snake Arizona elegans Colorado 8 0.09 WGS (Myers et al., 2019)
Snake Masticophis flagellum Rio Grande 8 0.03 WGS (Myers et al., 2019)
Snake Masticophis flagellum San Pedro 8 0.40 WGS (Myers et al., 2019)
Snake Crotalus scutulatus Rio Grande 8 0.04 WGS (Myers et al., 2019)
Snake Pituophis catenifer Rio Grande 8 0.07 WGS (Myers et al., 2019)
Snake Pituophis catenifer San Pedro 8 0.00 WGS (Myers et al., 2019)
Snake Crotalus atrox Gila 8 0.05 WGS (Myers et al., 2019)
Snake Crotalus atrox San Pedro 8 0.04 WGS (Myers et al., 2019)
Snake Crotalus atrox Rio Grande 8 0.02 WGS (Myers et al., 2019)
Snake Crotalus atrox Santa Cruz 8 0.02 WGS (Myers et al., 2019)
Lizard Anolis carolinensis Savannah 8 0.04 RAD-seq (Manthey et al., 2016)
Lizard Anolis carolinensis Chattahoochee 8 0.10 RAD-seq (Manthey et al., 2016)
Rodent Peromyscus leucopus Housatonic 15 0.12 WGS (Munshi-South et al., 2016)
Rodent Peromyscus leucopus Wallkill 17 0.02 WGS (Munshi-South et al., 2016)
Rodent Peromyscus leucopus Croton 15 0.06 WGS (Munshi-South et al., 2016)
Grass Plantago ovata Mojave 24 0.33 RAD-seq (Shryock et al., 2021)
Grass Plantago ovata Colorado 23 0.10 RAD-seq (Shryock et al., 2021)
Grass Plantago ovata Muddy 24 0.09 RAD-seq (Shryock et al., 2021)
Grass Plantago ovata Virgin 24 0.05 RAD-seq (Shryock et al., 2021)
Tree Quercus rubra Kettle 25 0.05 RAD-seq (Quijano et al., 2020)
Tree Quercus ellipsoidalis Mississippi 24 0.13 RAD-seq (Quijano et al., 2020)
Tree Quercus rubra St. Louis 28 0.08 RAD-seq (Quijano et al., 2020)
Tree Quercus rubra Knife 24 0.07 RAD-seq (Quijano et al., 2020)
Tree Quercus rubra Nemadji 26 0.13 RAD-seq (Quijano et al., 2020)
Tree Quercus rubra Kawaishiwi 24 0.28 RAD-seq (Quijano et al., 2020)
Bird Junco h. oreganus Deschutes 6 0.00 WGS (Friis et al., 2018)
Bird Junco h. oreganus San Joaquin 16 0.01 WGS (Friis et al., 2018)

Table 4. Organism dispersal table with estimated dispersal distance for species used in this study. If
a species did not have literature on the dispersal ability, the genus was used as an approximation. If no
similar genus existed in the data of a species, the taxonomic classification was used to group the organism.
+Estimation made also using data from NatureServ Explorer (https://explorer.natureserve.org).
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Species Taxon Dispersal (km) Reference

Anolis carolinensis Lizard 0.06 (Quijano et al., 2020)
Arizona elegans Snake ˜1–10 (Blouin-Demers & Weatherhead, 2002)+
Crotalus atrox Snake 1.40 (Landreth, 1973)
Crotalus scutulatus Snake 1.40 (Landreth, 1973)
Junco hyemalis oreganus Bird ˜5 (Liebgold et al., 2013) +
Masticophis flagellum Snake 0.65 (Johnson et al., 2007)
Peromyscus leucopus Mouse 0.03 (Krohne et al., 1984)
Pituophis catenifer Snake 0.73 (Bishop et al., 2016)
Plantago ovata Grass 600 (Iwanycki Ahlstrand et al., 2019)
Quercus ellipsoidalis Tree 1.57 (Axer et al., 2021)
Quercus rubra Tree 1.57 (Axer et al., 2021)
Rhinochelius lecontei Snake ˜1–10 (Blouin-Demers & Weatherhead, 2002)+

Table 5. River data for each river and river segment used in this study. River segments are sections of
a river paired to a specific genomic dataset; some genomic datasets spanned different portions of the same
river, these are indicated by a suffix after the hyphen. Both measures of seasonality (ratio and range over
mean, ROM) are reported, along with standard errors (SE).

Name Average Daily Discharge ± SE Seasonality Ratio ± SE Seasonality ROM Width Mean Width Standard Deviation No. Discharge sites

Chattahoochee 7730 ± 92 0.37 ± .01 1.52 1.53 1.46 6
Colorado-elegans 7040 ± 77 1.03 ± 0.03 0.90 0.53 0.50 4
Colorado-ovata 11900 ± 79 1.49 ± 0.01 0.86 0.26 0.11 2
Croton 201 ± 5 0.47 ± 0.03 1.93 0.06 0.28 4
Deschetes 3270 ± 35 0.81 ± 0.02 0.52 0.20 0.11 3
Gila 88 ± 3 1.01 ± 0.06 2.29 0.88 0.60 8
Housatonic 1610 ± 29 0.64 ± 0.03 1.74 0.32 0.36 2
Kawishiwi 355 ± 9 0.85 ± 0.03 3.45 0.16 0.11 3
Kettle 833 ± 8 0.90 ± 0.08 3.44 0.87 0.25 1
Knife 81 ± 5 0.70 ± 0.10 4.43 0.06 0.05 1
Mississippi 13300 ± 215 0.85 ± 0.03 2.27 0.79 0.91 4
Mojave 8 ± 2 0.04 ± 0.01 5.91 0.35 0.20 3
Muddy 43 ± 0 0.91 ± 0.01 0.27 0.59 0.35 2
Nemadji 423 ± 23 0.64 ± 0.07 3.38 0.36 0.08 1
Rio Grande- atrox 573 ± 8 1.02 ± 0.02 1.74 0.61 0.69 9
Rio Grande- catenifer, scutulatus 415 ± 11 3.98 ± 0.18 2.69 0.11 0.05 3
Rio Grande- elegans, flagellum 614 ± 8 0.92 ± 0.02 1.86 0.57 0.60 12
San Juaquin 940 ± 26 0.39 ± 0.02 1.50 0.52 0.43 8
San Pedro 26 ± 3 5.61 ± 0.62 6.44 0.16 0.21 4
Santa Cruz 30 ± 2 2.60 ± 0.32 3.25 0.20 0.12 6
Savannah 11800 ± 109 0.41 ± 0.01 1.45 2.72 2.51 4
St. Louis 1133 ± 42 0.59 ± 0.04 3.31 0.22 0.24 2
Pecos 69 ± 1 2.26 ± 0.05 2.55 0.42 0.52 22
Virgin 193 ± 5 0.29 ± 0.01 2.25 0.27 0.20 3
Wallkill 741 ± 17 0.38 ± 0.02 2.07 0.12 0.17 3

Table 6. Summary of model results and global fit indices for SEM models. Indices are Comparative
Fit Index (CFI), Root-mean squared error of approximation (RMSEA), and Standardized root-mean Squared
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Residual (SRMR) and degrees of freedom (DF) are reported for both the specified user model and the baseline
model (S/B). A value less than 0.08 is considered good for SRMR and RMSEA; a value over 0.90 is a good
threshold for CLI (Xia & Yang, 2019). A p-value greater than 0.05 considers the model fit for the Chi-square
goodness of fit test. SEM1 and SEMd1 have zero degrees of freedom (are saturated) and therefor the models
of fit are artifactual. SEM2 is the best-fit model in this study. Values that meet the threshold for good
model fit are bolded.

Model DF, S / B Dataset Chi-Square P-Value CFI RMSEA SRMR

SEM1 0 / 3 Low Dispersal 0.00 1.00 0.00 0.00
High Dispersal 0.00 1.00 0.00 0.00

SEM2* 1 / 6 Low Dispersal 0.59 1.00 0.00 0.02
High Dispersal 0.86 1.00 0.00 0.02

SEM3 1 / 6 Low Dispersal 0.16 0.96 0.25 0.10
High Dispersal 0.36 1.00 0.00 0.09

SEMd1 0 / 4 Low Dispersal 0.00 1.00 0.00 0.00
High Dispersal 0.00 1.00 0.00 0.00

SEMd2 3 / 9 Low Dispersal 0.54 1.00 0.00 0.05
High Dispersal 0.18 0.67 0.23 0.16

SEMd3 4 / 10 Low Dispersal 0.00 0.65 0.42 0.28
High Dispersal 0.22 0.64 0.19 0.18

SEMd2-alt 3 / 10 Low Dispersal 0.04 0.84 0.34 0.09
High Dispersal 0.19 0.64 0.22 0.16
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Figure 1. Map of study area and river networks.(A) Locations of rivers sampled in this study are
shown through discharge sites. (B) An example set of rivers from the southwest with associated individuals
within population pairs (squares) and discharge sites. River width was calculated at five locations near each
discharge site and averaged. Not all species are plotted in this area to ease visualization.
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Figure 2. Results of the structural equation models (SEM1–3) without geographic distance. Stan-
dardized path coefficients are shown for the low dispersal (pink) and high dispersal (blue) datasets. Circles
represent latent variables, rectangles represent manifest (measured) variables.

Figure 3. Results of the structural equation models (SEMd1–3)accounting for geographic distance
within the structure.Standardized path coefficients are shown for the low dispersal (pink) and high dispersal
(blue) datasets. Circles represent latent variables, rectangles represent manifest (measured) variables.
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Figure 4. Results of the structural equation model for SEMd2-alt , which is the model from
SEMd2 with an additional path to account for the relationship between river width and geographic distance.
Standardized path coefficients are shown for the low dispersal (pink) and high dispersal (blue) datasets.
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