Relativistic runaway electron avalanche development near the electric field threshold in inhomogeneous air

Gabriel Sousa Diniz1, Yuuki Wada2, Yutaka Ohira3, Kazuhiro Nakazawa4, Miwa Tsurumi1, and Teruaki Enoto1

1Kyoto University
2Osaka University
3Department of Earth and Planetary Environmental Science, The University of Tokyo
4Nagoya University

June 23, 2023

Abstract

Relativistic Runaway Electrons Avalanches (RREAs) development depends on the applied electric field and the environment air density. This dependency controls the RREA exponential growth length scale. The RREA development affects the bremsstrahlung excess occurring due to the passage of charged particles through the thundercloud’s electric fields, the gamma-ray glow. We used Monte Carlo simulations to develop an empirical model showing the RREA behavior in a realistic atmospheric density profile. The new formulation shows how the density variation modulates the electron population under electric field strengths near the RREA electric field threshold. The model limits the initial RREA altitude range as a function of the electric field strength. The new model is valid between ~ 0.6 and ~ 18 km, covering the relevant heights to investigate the generation of ground-detected gamma-ray glows.
Relativistic runaway electron avalanche development near the electric field threshold in inhomogeneous air

G. S. Diniz¹, Y. Wada², Y. Ohira³, K. Nakazawa⁴, M. Tsurumi¹,⁵,⁶ and T. Enoto¹,⁶

¹Department of Physics, Graduate School of Science, Kyoto University, Kitashirakawa Oiwake-cho, Sakyo-ku, Kyoto-shi, Kyoto, 606-8502, Japan.
²Division of Electrical, Electronic and Infocommunications Engineering Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka, 565-0871 Japan.
³Department of Earth and Planetary Environmental Science, The University of Tokyo, 7 Chome-3-1 Hongo, Bunkyo City, Tokyo 113-8654, Japan.
⁴Kobayashi-Maskawa Institute for the Origin of Particles and the Universe, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8601, Japan.
⁵Graduate School of Science and Engineering, Aoyama Gakuin University, 5-10-1 Fuchinobe, Sagamihara, Kanagawa 252-5258, Japan.
⁶Extreme Natural Phenomena RIKEN Hakubi Research Team, RIKEN Cluster for Pioneering Research, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan.

Key Points:

• A new empirical model quantifies how electron avalanches vanish because of atmospheric density variations with ∼ 10% accuracy.
• The model limits the initial altitude of electron avalanche development for electric field strengths near the avalanche threshold.
• We narrow the possible gamma-ray glow source height range with the new model which is valid through ∼ 0.6 to 18 km.

Corresponding author: Gabriel Sousa Diniz, diniz.gabriel.58j@st.kyoto-u.ac.jp
Abstract

Relativistic Runaway Electrons Avalanches (RREAs) development depends on the applied electric field and the environment air density. This dependency controls the RREA exponential growth length scale. The RREA development affects the bremsstrahlung excess occurring due to the passage of charged particles through the thundercloud’s electric fields, the gamma-ray glow. We used Monte Carlo simulations to develop an empirical model showing the RREA behavior in a realistic atmospheric density profile. The new formulation shows how the density variation modulates the electron population under electric field strengths near the RREA electric field threshold. The model limits the initial RREA altitude range as a function of the electric field strength. The new model is valid between ~ 0.6 and ~ 18 km, covering the relevant heights to investigate the generation of ground-detected gamma-ray glows.

Plain Language Summary

Thunderclouds are energy sources for trespassing charged particles from cosmic rays. This extra energy gain converts itself into electron avalanches, known as Relativistic Runaway Electron Avalanches (RREAs), and further bremsstrahlung, the gamma-ray glow. This phenomenon relates to electric field strengths close to the RREA requirement. Such electric field requirement is density-dependent. The atmospheric density variations affect avalanche development, resulting in isolated avalanches by imposing limits to the avalanche’s initial altitude. We show how RREAs develop in realistic atmosphere density. We present a modification on the characteristic avalanche length under this condition. The initial avalanche altitude is crucial because it completely modifies the density profile trespassed by a descendent electron shower. Finally, we discuss the consequences of isolated RREAs for high-energy emissions and show that the electric field strength constrains the possible initial altitudes for the gamma-ray glow.

1 Introduction

The interaction between charged particles and thundercloud electric fields comprises the primary process of High Energy Atmospheric Phenomena (HEAP) [Babich, 2003]. Such interaction requires more investigation despite extensive research through the decades [Gurevich et al., 1992; Fishman et al., 1994; Torii et al., 2002; Dwyer, 2003; Babich et al., 2004;...
gamma-ray glow is minute-long bremsstrahlung emissions with characteristic MeV energy from Relativistic Runaway Electrons Avalanche (REA) [Gurevich et al., 1992; Chilingarian, 2013; Wada et al., 2021]. The RREA electric field threshold is $E_{\text{th}}(z) = E_{\text{th}0}n_r(z)$; where $E_{\text{th}}(z)$ is the threshold at a given altitude z, $E_{\text{th}0} = E_{\text{th}}(0) = 0.284$ MV/m [Dwyer, 2003; Babich et al., 2004] the threshold at sea level, and $n_r(z)$ the air density at an altitude z relative to the sea level. Recent simulation studies indicate that gamma-ray glows relate to electric field strength, E_S, close to $E_{\text{th}}(z)$ [Sarria et al., 2023; Diniz et al., 2023]. Such E_S makes the RREA development sensitive to air density variations because the electron multiplication have an initial altitude, h_i, where $E_S > E_{\text{th}}(h_i)$ and reach regions with $E_S < E_{\text{th}}(h_i)$.

We present E_S normalized by $E_{\text{th}0}$ in our analysis for convenience, i.e, $\delta_E(E_S) = E_S/E_{\text{th}0}$. Figure 1 shows how the density profile creates vertical regions where the RREA is allowed due to altitude dependency with the vertical distance from source $\Delta h = h_i - z$.

The current work investigates RREA development in a realistic atmospheric vertical density profile. It shows the transition between RREA growth and decay related to the electric field strength, E_S, and the altitude z, see Figure 1. Diniz et al. [2022] showed the electrons’ spatial range extension at the levels $E_S < E_{\text{th}}(z)$, in which there is no avalanche but still a longer-lasting high-energy electron population. Now, we evaluate the regime $E_S > E_{\text{th}}(h_i)$ transitioning to $E_S < E_{\text{th}}(z)$ due to the vertical density change. The regime transition is related to gamma-ray glow emissions observed in Japanese winter [Wada et al., 2021] modeled by Diniz et al. [2023]. We show in Diniz et al. [2023] that $E_S \sim E_{\text{th}}(z)$ are suitable for the Gamma-Ray Observations of Winter THunderclouds (GROWTH) reports [Wada et al., 2021]. Here, we present the third of our paper series pursuing a theoretical framework for gamma-ray glows. The first one is Diniz et al. [2022], and the second paper is Diniz et al. [2023]. They are referred here to as paper I and II, respectively. We describe the number of relativistic electrons, N_{e^-}, as a function of E_S, h_i, and Δh; thus, $N_{e^-} = N_{e^-}(\Delta h, h_i, E_S)$. Finally, we show the physical consequences of the inhomogeneous air density upon RREA and discuss the corollaries regarding gamma-ray glow generation.
2 Simulation setup and analysis method

Our simulations use GEometry ANd Tracking 4 (GEANT4) version 10.4.3 with the standard “FTFP_BERT_EMZ” physics list [Agostinelli et al., 2003; Allison et al., 2006; Allison et al., 2016] including all the relevant physics. The simulation geometry is a cylinder with a 15 km radius and different heights determined by the number of air layers with different discrete densities following the Naval Research Laboratory Mass Spectrometer Incoherent Scatter radar (NRLMSIS) atmospheric model (https://kauai.ccmc.gsfc.nasa.gov/instantrun/msis). We used the standard air composition, which consists of 78.085% nitrogen, 20.950% oxygen, and 0.965% argon. The geometry includes a vertical, upwards homogeneous electric field filling the ambient varying the strength E_S between 0.220 and...
0.270 MV/m in 0.005 MV/m steps. The electric field is homogeneous and time-constant because existing field measurements in thunderclouds do not provide sufficient data of an accurate E profile for our simulation. The air layers have a standard 50 m thickness of different densities. The initial altitude of the point pencil-like electron beam, h_i, varies from 0.75 to 2.50 km in 0.25 km steps. The initial particles are fifty 20 MeV electrons to ensure the avalanche development. The electrons recording are at each interface between two air layers. The simulations include a 100 keV internal energy cutoff for all particles except positrons due to annihilation possibility. We count the electrons with energy above 1 MeV to contribute to the avalanche population and normalize the count by the initial electron number.

Generally, the relativistic electron number, N_{e-}, depends on the position, x, the electric field E, and the electron kinetic energy ϵ. The variation with energy can be neglected in the RREA population dynamics since the relativistic electron multiplication process is the Møller scattering. Its cross-section is inversely proportional to the primary particle velocity, $\propto \frac{\epsilon}{v_1}$, where c is the speed of light and v_1 the primary electron velocity making the production of relativistic electrons constant as the incoming electron energy increases [Sarria et al., 2018]. Finally, we approximate the position dependency to the vertical direction, z, aligned with the applied electric field.

3 Electron avalanche development as a function of E_S and h_i

The RREA population growth in a homogeneous medium is exponential, $N_{e-} \propto e^{z/\lambda_R(E_S, n_r)}$, where $\lambda_R(E_S, n_r)$ is the characteristic avalanche length defined in Equation 1 in meters [Dwyer, 2003] with E_S in MV/m,

\[
\lambda_R(E_S, n_r) = \frac{7.3}{E_S - 0.276n_r} \text{ (m)}. \tag{1}
\]

Equation 1 shows the decrease of density variations importance if $E_S \gg 0.276n_r$. The atmospheric density profile has a scale height of approximately 8 km [Köhn et al., 2017]. Thus, altitude variations of 1 km correspond to $\sim 10\%$ change in density. Such density variations do not alter the RREA dynamics significantly for $E_S \gg E_{th}(z)$. But, the density variations are relevant if $E_S \sim E_{th}(z)$ because the electron population transitions between RREA region and damping regions, see Figure 1. Sarria et al. [2023] and paper II relate the latter electric field regime to gamma-ray glows. Thus, understanding the RREA dynamics in this condition is necessary to describe the gamma-ray glow source.
Figure 2 shows the simulated number of electrons with kinetic energy higher than 1 MeV, $N_e^-(\Delta h, h_i, E_S)$, versus the vertical distance from the initial altitude, Δh, results for different E_S and h_i, indicated by the legend. Panels A refer to $N_e^-(\Delta h, 2\text{ km}, E_S)$ while panels B display $N_e^-(\Delta h, h_i, 0.265\text{ MV/m})$.

![Graph A.1](image)

Figure 2. Number of electrons with kinetic energy higher than 1 MeV, $N_e^-(\Delta h, h_i, E_S)$, as a function of vertical distance from source, Δh, for different electric field strength, E_S, in panel A.1 and different initial altitude, h_i, in panel B.1 – each one is indicated in the legends. The dots are simulation results, and the curves are fitting models by Equation 2. The error bars follow Poisson statistics as in papers I and II. Panels A.2 and B.2 show the respective data-to-fit ratio.

Equation 2 fits Figure 2 data. The fitting becomes more accurate for increasing E_S due to a better avalanche development for E_S increasingly higher than $E_{th}(h_i)$.

$$N_e^-(\Delta h, h_i, E_S) = N_0 e^{\frac{\Delta h}{\alpha_G(E_S, h_i)}} \left(1 - e^{\frac{-\Delta h}{\alpha_D(E_S, h_i)}}\right),$$

(2)
In Equation 2, $\lambda_G(E_S, h_i)$ and $\lambda_D(E_S, h_i)$ are the growth length and damping length, respectively. The fitting constants show $\lambda_G(E_S, h_i)$ and $\lambda_D(E_S, h_i)$ values for each simulation.

In particular, the RREA threshold at 2 km is ~ 0.231 MV/m while the avalanche development starts to be noticeable for $E_S \sim 0.240$ MV/m, in our data set. Stronger electric fields allow RREA development in shorter space. Likewise, the fit quality also improves for increasing h_i, for the same reason as mentioned previously. I.e., an increasing difference between E_S and $E_{th}(h_i)$ at h_i provides a wider space for avalanche development. The regime $E_S \approx E_{th}(h_i)$ requires a larger length than available in the RREA region because of increasing density, see Figure 1. Thus, the RREA does not develop properly, reducing the fitting quality.

The altitude of N_e ($\Delta h, h_i, E_S$) maximum, $z_{max}(E_S, h_i)$, can be retrieved by differentiating Equation 2 in respect to Δh, resulting in Equation 3,

$$\Delta h_{max}(E_S, h_i) = \frac{\lambda_D(E_S, h_i)}{2} = h_i - z_{max}(E_S, h_i).$$

Figure 3 shows the dependence of $\lambda_G(E_S, h_i)$, $\lambda_D(E_S, h_i)$, and $\Delta h_{max}(E_S, h_i)$ behavior as a function E_S and h_i, separately. Following Equation 2, $\lambda_G(E_S, h_i)$ must approach $\lambda_R(E_S, n_r)$ for either large E_S and large h_i to recover the exponential growth previously established [Dwyer, 2003] because any of these conditions represents the regime $E_S \gg E_{th}(h_i)$.

Figure 3 panels (A.3) and (B.3) display the model accuracy through comparison between the Δh_{max} from fitting (Δh_{max}^{fit}) and data (Δh_{max}^{data}), both normalized by h_i. The convergence of Δh_{max} to h_i shows the RREA better development with an increasing difference between E_S and $E_{th}(h_i)$. Resulting in the approximation of Equation 2 to the already established Dwyer [2003] empirical formulation for high E_S or h_i, see Figure 3 panels (A.1) and (B.1).

Combining the electric field strength analysis of Figure 3 (A) with the initial shower altitude evaluation of Figure 3 (B) we reach the multi-variable forms,

$$\lambda_G(E_S, h_i) = B_G - \frac{A_G h_i}{\delta_E(E_S)},$$

(4)
Figure 3. Growth ($\lambda_G(E_S, h_i)$) and damping ($\lambda_D(E_S, h_i)$) lengths, and the vertical distance between the N_c- ($\Delta h, h_i, E_S$) maximum and the initial altitude, h_i, Δh_{max} (normalized by h_i), as functions of E_S and h_i for the cases in Figure 2. Panels (A.1) and (B.1) compare the respective growth lengths with the characteristic avalanche length, $\lambda_R(E_S, n_e)$. Panels (A.3) and (B.3) compare Δh_{max} retrieved from the data ($\Delta h_{\text{data}}^{\text{max}}$) and retrieved from the fitting ($\Delta h_{\text{fit}}^{\text{max}}$). In panels (A), $\lambda_G(E_S, 2 \text{ km})$ and $\lambda_D(E_S, 2 \text{ km})$ are fitted as: $\lambda_G(E_S, 2 \text{ km}) = (0.936 \pm 0.040)/\delta_E(E_S) - (0.835 \pm 0.045)$ and $\lambda_D(E_S, 2 \text{ km}) = (19.872 \pm 0.77)\delta_E(E_S) - (15.803 \pm 0.699)$. In panels (B), $\lambda_G(0.265 \text{ MV/m}, h_i)$ and $\lambda_D(0.265 \text{ MV/m}, h_i)$ are fitted as: $\lambda_G(0.265 \text{ MV/m}, h_i) = (-0.089 \pm 0.008)h_i + (0.347 \pm 0.014)$ and $\lambda_D(0.265 \text{ MV/m}, h_i) = (1.828 \pm 0.048)h_i - (0.889 \pm 0.087)$. The errors are the square root of the covariance matrix diagonal terms.

$$\lambda_D(E_S, h_i) = A_D\delta_E(E_S)h_i - B_D.$$ \hspace{1cm} (5)

In Equations 4 and 5, A_i and B_i, with the subindex "i" relative to either growth (G) or damping (D) quantities, are the multi-variable fitting constants. A two variable fitting within
our valid data grid ($E_S > E_{th}(h_i)$ regime) provides, $A_G = 0.014 \pm 0.013$, $B_G = 0.256 \pm 0.030$ km, $A_D = 1.508 \pm 0.241$, $B_D = 0.760 \pm 0.422$ km.

4 Discussion and conclusion

The atmospheric density variation damps the RREA development for electric field strengths close to $E_{th}(h_i)$. The RREA region is smaller than the electric field region because the electron multiplication starts at an altitude of $E_S > E_{th}(h_i)$ and descend to locations where $E_S < E_{th}(z)$. An analog dynamic should be present throughout the thundercloud complex electrical structures such as the thundercloud reactor model [Stadnichuk et al., 2021].

Equations 4 and 5 imposes geometrical limitations upon the Equation 2 model as $\lambda_G(E_S, h_i)$ and $\lambda_D(E_S, h_i)$ need to be positive to have physical meaning. These geometrical limitations are,

$$H_S(E_S) = \frac{B_G\delta_E(E_S)}{A_G}, \quad (6)$$

$$H_I(E_S) = \frac{B_D}{A_D\delta_E(E_S)}. \quad (7)$$

$H_S(E_S)$ and $H_I(E_S)$ are the superior and inferior limits for the initial shower altitude, $H_S(E_S) \geq h_i \geq H_I(E_S)$. The limits $H_S(E_S)$ and $H_I(E_S)$ further constrain the RREA region. And the range of possible RREA initial altitudes reduces as weaker is the electric field because $\lim_{E_S \to 0} H_S(E_S) = 0$ and $\lim_{E_S \to 0} H_I(E_S) = \infty$.

Considering the parameter values found at the end of Section 3, the boundaries for the initial shower altitude from Equations 6 and 7 become $H_S(E_S) = (18.286\pm17.114)\delta_E(E_S)$ km and $H_I(E_S) = (0.504 \pm 0.291)/\delta_E(E_S)$ km. The errors result from uncertainty propagation from the fitting parameters. These values are relative to our discrete data grid of E_S and h_i. Thus, a denser data grid will reduce the errors and change the boundaries. In the context of this work, our main interest is in gamma-ray glow ground measurements correlated with winter Japanese thunderclouds [Wada et al., 2021]. Hence, the boundary values cover our purposes.

Figure 4 evaluates the model boundaries and validity. Panel A shows $z_{max}(E_S, h_i)$ from Equation 3 as a function of E_S and h_i. The conditions that limit the model applicability,
The fitting quality may be measured by the difference between Δh_{max} from the data ($\Delta h_{\text{max}}^{\text{data}}$) and from the fitting ($\Delta h_{\text{max}}^{\text{fit}}$) using Equation 3 for the data points that fulfill the condition $E_S > E_{\text{th}}(h_i)$.

\[z_{\text{max}}(E_S, h_i) = h_i - \frac{h_i}{2} \frac{E_S}{E_{\text{th}}(h_i)} \]

Figure 4. Panel (A) shows the height of avalanche maxima $z_{\text{max}}(E_S, h_i)$ as a function of electric field strength E_S and altitude z, displayed by the contour lines with values in kilometers. The dashed red line marks the RREA avalanche threshold, $E_{\text{th}}(z)$. The green and blue dashed lines are the model applicability superior and inferior limits $H_S(E_S)$ and $H_I(E_S)$ showing the valid region for the present model, respectively. Panel (B) displays the model validity regarding our discrete data grid. The upper panel (B.1) shows the relative difference between Δh_{max} from the fitting model ($\Delta h_{\text{max}}^{\text{fit}}$) and from the simulated data ($\Delta h_{\text{max}}^{\text{data}}$) as a function of E_S (considering the condition $E_S > E_{\text{th}}(h_i)$). The lower panel (B.2) shows the difference between E_S and $E_{\text{th}}(h_i)$ normalized by $E_{\text{th}0}$. Each color is for a different h_i indicated by the legend in (B.1).

There are 88 simulated configurations, 52 satisfying the validity condition. Of the 52 valid ones, 69.2% match with the fitting by a 10% difference and 80.7% within a 20% difference. Panel B.1 outliers points show that the data and fitting agreement is sensible to how stronger E_S is than $E_{\text{th}}(h_i)$. Panel B.2 shows the normalized difference between the used E_S
and $E_{th}(h_i)$. The electric field strength, E_S, must be higher than $E_{th}(h_i)$ to assure the model applicability, thus, all the configurations above zero are valid.

There are two error sources: (1) the model does not contemplate the particles’ horizontal displacement, and (2) the two-dimensional fitting leads to relatively large error bars in comparison to the average values due to the valid data grid shape, see Figure 4 panel (B.2). The error (1) source is negligible as the RREA threshold ($E_{th}(z)$) is a result of the horizontal displacement Dwyer [2003]. Error (2) makes the single dimensional fittings of $\lambda_G(E_S, h_i)$ and $\lambda_D(E_S, h_i)$ (Figure 3) more accurate than the two dimensional fitting (Figure 4). Nevertheless, we show the two-dimensional fitting to visualize the model corollary, $z_{max}(E_S, h_i)$.

Equations 3 and 5 show the $z_{max}(E_S, h_i)$ behavior regarding the electric field strength and the initial altitude,

$$\frac{\partial z_{max}(E_S, h_i)}{\partial h_i} = 1 - \frac{A_D\delta(E_S)}{2}, \tag{8}$$

$$\frac{\partial z_{max}(E_S, h_i)}{\partial E_S} = -\frac{A_D h_i}{2E_{th0}}. \tag{9}$$

Equation 8 shows a global maximum as a function of the electric field strength, E_S, where $E_S = 2E_{th0}/A_D$. Considering $A_D = 1.508 \pm 0.241$, Equation 8 is positive for E_S below $\sim 0.367 \pm 0.060$ MV/m. Thus, $z_{max}(E_S, h_i)$ will increase until E_S is enough to well develop the RREA. The fully developed RREA will decrease $z_{max}(E_S, h_i)$ because the electrons are moving downwards and the population maximum will always be the avalanche final point. On the other hand, Equation 9 is always negative regardless h_i value. Thus, an horizontal line in Figure 4 panel (A) will present a negative $z_{max}(E_S, h_i)$ rate that decreases with larger h_i.

There is some freedom on where to consider the initial shower altitude since there is a constant cosmic-ray flux hitting thunderclouds at all times. The initial shower altitude is at the beginning of the electrified space. In the gamma-ray glow framework, this point would be the top of the region between the negative charge center and the lower positive charge center at the cloud base considering the classical tripolar cloud structure [Takahashi, 1978; Williams, 1989] for ground detection such as [Wada et al., 2021].
Winter thunderclouds in Japan have base altitude of 0.2–0.8 km [Takahashi, 1978] which allowed several gamma-ray glow observations [Torii et al., 2002; Tsuchiya et al., 2012; Wada et al., 2019, 2021]. Recently, Paper II reported geometric requirements to explain the gamma-ray glow spectra, reported by Wada et al. [2021], considering air with a homogeneous density of ground level. The configurations include three geometric coordinates, acceleration region of vertical length, H_E, electric field strength, E_S and, an attenuation region of vertical length, H_a, making a triad of (E_S, H_E, H_a). The coordinates triad that produces spectra closest to the observations are (0.31 MV/m, 1 km, 0.4 km) and (0.30 MV/m, 0.9 km, 0.3 km).

We must set the equivalent E_S to transpose these coordinates to the inhomogeneous air situation. The values, 0.30 and 0.31 MV/m, are 1.056 and 1.091 times the E_{th0}, respectively. The initial shower altitude is $h_i = H_E + H_a$ which means, for the two coordinate sets, 1.2 and 1.4 km. The RREA threshold for these altitudes, $E_{th}(z)$, is 0.251 and 0.246 MV/m. The equivalent electric field strength for the inhomogeneous air ambient should be ~ 1.056–1.091 times $E_{th}(z)$ at h_i between 1.2–1.4 km. Thus, the gamma-ray glow observations [Wada et al., 2021] are likely correlated with E_S ranging from 0.260–0.274 MV/m which is lower than both the estimated values when considering homogeneous air ambient and E_{th0}. Such electric field strength levels produced an isolated and damped RREA determining the gamma-ray glow source region.

The results from Paper II count with a null-electric field regions while the current work considers regions completely filled with electric field. Thus, an analysis dedicated to find the actual electric field strength related with Wada et al. [2021] measurements is reserved to future works.

Both evaluations, paper II and the present work, consider homogeneous electric fields within the acceleration region. The electric field may vary in time and space. Such variations would modify the RREA dynamic in reality. Thus, the missing points to resolve the gamma-ray glow process are the electric field accurate geometry and the electric field variation with time inside the thundercloud.
Open research

The simulations of this work use the GEANT4 version 10.4.3 available at, https://geant4.web.cern.ch. The data regarding the present analysis is at the dataset Diniz and Enoto [2023].

Acknowledgments

This work, G.D. and T.E. are supported by Hakubi Research Project and MEXT/JSPS KAKENHI Grant No. 22H00145, and 22KF0190. Y.W. is supported by KAKENHI Grant No. 22K14453. K.N. is supported by the KAKENHI Grant No. 21H00166. Y.O. is supported by the KAKENHI Grant No. 19H01893 and No. 21H04487. They were done with the RIKEN BIG WATERFALL HOKUSAI computer system.

References

certi, A. Ivanchenko, V. Ivanchenko, F. Jones, S. Jun, P. Kaitaniemi, N. Karakatsa-
nis, M. Karamitros, M. Kelsey, A. Kimura, T. Koi, H. Kurashige, A. Lechner, S. Lee,
F. Longo, M. Maire, D. Mancusi, A. Mantero, E. Mendoza, B. Morgan, K. Murakami,
T. Nikitina, L. Pandola, P. Paprocki, J. Perl, I. Petrović, M. Pia, W. Pokorski, J. Que-
sada, M. Raine, M. Reis, A. Ribon, A. Ristić Fira, F. Romano, G. Russo, G. Santin,
T. Sasaki, D. Sawkey, J. Shin, I. Strakovsky, A. Taborda, S. Tanaka, B. Tomé, T. Toshito,
H. Tran, P. Truscott, L. Urban, V. Uzhinsky, J. Verbeke, M. Verderi, B. Wendt, H. Wen-
zel, D. Wright, D. Wright, T. Yamashita, J. Yarba, and H. Yoshida (2016), Recent de-
velopments in geant4, Nuclear Instruments and Methods in Physics Research Section A:
Accelerators, Spectrometers, Detectors and Associated Equipment, 835, 186 – 225, doi:
https://doi.org/10.1016/j.nima.2016.06.125.

Babich, L. (2003), Highenergy phenomena in electric discharges in dense gases: theory,
experiment and natural phenomena, Futurepast Inc., Arlington, Virginia, USA.

Fundamental parameters of a relativistic runaway electron avalanche in air, Plasma
Physics Reports, 30(7), 616–624, doi:10.1134/1.1778437.

Chilingarian, A. (2013), Thunderstorm Ground Enhancements (TGEs) - New High-Energy
Phenomenon Originated in the Terrestrial Atmosphere, Journal of Physics Conference

Coleman, L. M., and J. R. Dwyer (2006), Propagation speed of runaway electron avalanches,

Diniz, G., Y. Wada, Y. Ohira, K. Nakazawa, and T. Enoto (2022), Atmospheric elec-
tron spatial range extended by thundercloud electric field below the relativistic run-
away electron avalanche threshold, Journal of Geophysical Research: Atmospheres,
127(3), e2021JD035958, doi:https://doi.org/10.1029/2021JD035958, e2021JD035958
2021JD035958.

Diniz, G. S., and T. Enoto (2023), Relativistic runaway electron avalanche develop-
ment near the electric field threshold in inhomogeneous air [dataset], mendeley,

Diniz, G. S., Y. Wada, Y. Ohira, K. Nakazawa, M. Tsurumi, and T. Enoto (2023), Ambient
conditions of winter thunderstorms in japan to reproduce observed gamma-ray glow en-
ergy spectra, Journal of Geophysical Research: Atmospheres, 128(10), e2022JD038,246,

Figure 1.
Vertical distance from the source altitude, h (km)

Electric field strength, E_S (MV/m)

$$E_{th}(z) = E_{th0}n_r(z)$$

$E(0.23) = 0.810$

$E(0.24) = 0.845$

$E(0.25) = 0.880$

$E(0.26) = 0.915$

$E(0.27) = 0.951$

RREA region

Damping region

RREA boundary

Altitude, z (km)
Figure 3.
Figure 4.
Altitude of the RREA maximum, z_{max} (km)

Electric field strength, E_s (MV/m)

- Red dashed line: RREA threshold, E_{th}
- Green dashed line: h_i superior boundary, H_S
- Blue dashed line: h_i inferior boundary, H_i

\[z_{\text{max}}(E_s, h_i) = h_i - \frac{\lambda_0(E_s, h_i)}{2} \]

Model validity

Electric field strength, E_s (MV/m)

- $h_i = 0.75$ km
- $h_i = 1.0$ km
- $h_i = 1.25$ km
- $h_i = 1.5$ km
- $h_i = 1.75$ km
- $h_i = 2.0$ km
- $h_i = 2.25$ km
- $h_i = 2.5$ km

- Valid
- Invalid

Electric field strength normalized by RREA threshold at ground level, δ_{E_s}