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Abstract

1. Cyanobacterial blooms in freshwater sources are a global concern, and gaining insight into their causes is crucial for effective

resource management and control. 2. In this study, we present a computational framework for the causal analysis of cyanobac-

terial harmful algal blooms (cyanoHABs) in Lake Kinneret. Our framework integrates Convergence Cross Mapping (CCM)

and Extended CCM (ECCM) causal networks with Bayesian Network (BN) models. 3. The constructed CCM - ECCM causal

networks and BN models unveil significant interactions among factors influencing cyanoHAB formation. These interactions

have been validated by domain experts and supported by evidence from peer-reviewed publications. Our findings suggest that

M. flos-aquae levels are influenced not only by community structure but also by nitrate, nitrite, ammonium, phosphate, oxygen,

and temperature levels in the weeks preceding bloom occurrences. 4. We have demonstrated a non-parametric computational

framework for the causal analysis of a multivariate ecosystem. Our framework offers a more comprehensive understanding of the

underlying mechanisms driving M. flos-aquae in Lake Kinneret. It captures complex interactions and provides an explainable

prediction model. By considering causal relationships, temporal dynamics, and joint probabilities of environmental factors, the

proposed framework enhances our understanding of cyanoHABs in Lake Kinneret.
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Abstract

1. Cyanobacterial blooms in freshwater sources are a global concern, and gaining 

insight into their causes is crucial for effective resource management and control.

2. In this study, we present a computational framework for the causal analysis of 

cyanobacterial harmful algal blooms (cyanoHABs) in Lake Kinneret. Our framework 

integrates Convergence Cross Mapping (CCM) and Extended CCM (ECCM) causal

networks with Bayesian Network (BN) models. 

3. The constructed CCM - ECCM causal networks and BN models unveil significant 

interactions among factors influencing cyanoHAB formation. These interactions 

have been validated by domain experts and supported by evidence from peer-

reviewed publications. Our findings suggest that M. flos-aquae levels are influenced

not only by community structure but also by nitrate, nitrite, ammonium, phosphate, 

oxygen, and temperature levels in the weeks preceding bloom occurrences.

4. We have demonstrated a non-parametric computational framework for causal 

analysis of a multivariate ecosystem. Our framework offers a more comprehensive 

understanding of the underlying mechanisms driving M. flos-aquae in Lake 

Kinneret. It captures complex interactions and provides explainable prediction 
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model. By considering causal relationships, temporal dynamics, and joint 

probabilities of environmental factors, the proposed framework enhances our 

understanding of cyanoHABs in Lake Kinneret.
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Freshwater

Introduction

Toxic cyanobacterial blooms (cyanoHABs) have a global impact, altering communities and

producing toxins in lakes and water bodies. These events are influenced by climate 

change 1–3 and various environmental factors 4–8. CyanoHABs negatively impact their 

environment by altering its chemical and physical properties 9, and releasing toxins and 

allelopathic compounds 10. They also impact community structure and composition 11,12. 

Cyanobacterium M. flos-aquae is the dominant toxin-producing species in Lake Kinneret 

and many other freshwater lakes and reservoirs 13. Microcystis blooms often occur in 

warm, nutrient-rich waters with high levels of nitrogen and phosphorus. Additionally, 

Microcystis is known to thrive in alkaline conditions. The ability to cope with alkaline pH 

and to use different N species, grant Microcystis the advantage over other phytoplankton 

species. Factors such as changes in water temperature, light, and water circulation can 

also play a role in the development of Microcystis blooms 14. Since 1995, Lake Kinneret 

has experienced significant and rapid ecological change, leading to increased frequency 

and magnitude of toxic blooms 15,16. The development of cyanoHABs prediction models 

was studied before and reviewed by 17,18 and others. To date, cyanoHABs predictions have

been carried out by both process-based, and data-driven approaches 17. However, it’s 
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important to understand the complex relations of cyanoHABs, community structure, and 

environmental factors.  

The definition of causal relations between components of an ecosystem provides 

a valuable approach for understanding the key drivers and mechanisms behind specific 

events. By examining the relationships and interactions between the different components 

of an ecosystem, such as nutrients levels, phytoplankton communities, and environmental 

factors, we can identify the factors contributing to the development and persistence of 

cyanoHABs in Lake Kinneret. In recent years, causal relations between ecosystem 

components have been increasingly used to examine the drivers and impacts of the 

different components of ecological systems19,20,21,22,23. Traditionally, causal relations 

between variables of the same system, assuming X and Y, are measured by the amount of

information of past X that is encoded into future Y 24–26. Granger Causality (GC) is used to 

identify and measure causality in time series 27. According to GC, X causes Y if the 

predictability of Y decreases when X is removed from the system. However, GC fails in 

dynamic systems consisting of variables that are not completely stochastic, with weak to 

moderate interactions. An alternative method, Convergent Cross Mapping (CCM), was 

recently presented by Sugihara et al. 19. CCM assumes 28 that if two variables X and Y are 

of the same dynamic system, assuming X causes Y, then information about the state of X 

is embedded in Y and can be recovered. Interaction strength and directionality, between 

the two variables, can be quantified by measuring the prediction skill of the two variables 

using an increasing number of system states until convergence. CCM also captures causal

interactions which are not necessarily linear 19. This approach has been successfully 

implemented to reveal the causal effects in complex ecosystems 29–32. Although CCM 

presents impressive performance in the identification of causal interactions in ecosystems,

it carries essential drawbacks: (a) CCM does not supply information on synchrony 

between X and Y occurring by a strong driving force, (b) it does not specify whether the 
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interaction is direct or indirect, and (c) CCM identifies causal interactions but does not 

supply information about their occurrence probabilities. The last point is extremely 

important for the understanding and possible management of complex and dynamic 

ecosystems. More recently, the Extended CCM (ECCM) was presented by Ye et al. 33, 

address the first two drawbacks. ECCM performs multiple CCM calculations at a range of 

time shifts of Y relative to X, to identify the lag of optimal prediction skill, which allows the 

identification of information flow direction. Bayesian networks (BN) are probabilistic 

graphical models that use conditional probability distributions to specify the influence of the

system’s variables on a target variable 34. Yet, when the structure is learned from the data, 

it lacks of directionality and is strongly affected by correlations. Therefore, the reliable 

construction of BNs requires the knowledge of domain experts. BNs have been used 

before for the study of causality in ecosystems 35–37 due to their probabilistic nature.

Here, we suggest a novel causality analysis framework based on the use of CCM

and ECCM for the construction of a target-focused interaction network, on which the BN is 

calculated. Using the complex Lake Kinneret ecosystem as a case study, we constructed a

computational framework to investigate the causes of toxic cyanobacterium M. flos-aquae 

blooms.

Methods

Study site and data

Lake Kinneret (the Sea of Galilee) is a 170 km2 warm meso-eutrophic lake 

located in northern Israel (Figure 1). The lake has a maximum depth of about 43 meters. 

CyanoHABs are especially critical in Lake Kinneret, the only freshwater lake in Israel and 

an essential source of drinking water, irrigation, fishing, and recreational activity. 

Understanding the dynamics leading to toxic blooms and producing accurate predictions of
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cyanoHABs would provide a powerful tool for proactive resource management and control 

of such events. 

The Lake Kinneret Monitoring Program, which has been active since 1969, is 

conducted by the Kinneret Limnological Laboratory, IOLR. Routine measurements of 

physical, biological, and chemical variables are performed 38. The current study utilizes a 

21 year data set (2000-2020) consisting of measured phytoplankton biomass 

(Prasinophyte, Chlorophyta, Diatomaceae, Dinoflagellate, Cyanobacteria, Haptophytes, 

Cryptophytes) in the water column and measurements of the main environmental 

components (nitrite, nitrate, ammonium, oxygen, particulate organic nitrogen, organic 

nitrogen, chloride, total dissolved phosphorus,organic nitrogen dissolved, phosphate, 

turbidity, pH) in the upper 10-m stratum on a weekly-biweekly basis), as well as surface 

water temperature and inflow volume. The environmental variables were calculated as the 

sum per m2 of the upper 10 meters, and the mean of biomass per m2 of the upper 10 

meters was used for the phytoplankton variables. All of the measurements used in this 

study are from the deepest station A, located at the center of the lake.

Data processing 

The dataset was processed as follows. Z-scores of 3 (three standard deviations 

from the mean) were considered as outliers, therefor discarded and interpolated. The data 

set was re-sampled to a 7-day resolution, and was normalized to a range confined 

between 0 and 1 for the CCM calculations. For the BN approach, the data was re-sampled

to a 5-day resolution and was categorized into three categories: ‘0’, ‘1’ and ‘2’ (Table S1). 
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Causal interactions 

Convergent cross mapping

CCM was utilized to elucidate the presence and direction of weak to moderate 

non-linear causal interactions. The principle of CCM is based on the ability to predict the 

system state of a variable (X) by the system state of another variable (Y) 28. If X is causal 

to Y, then information of X should be presented in Y, therefore the state space manifold 

reconstructed for Y should be able to predict the system’s states of X 19. Here, the 21-year 

time series was divided into multiple subsets by a 100-week sliding window and a 10-week

gap between the windows. Lagged coordinate vectors of the different variables were 

calculated, where E is an embedding dimension, and l is the lag step. The optimal E was 

selected based on the simplex projection 39, and the optimal l was selected from the first 

minimum in the mutual information between the time series and a shifted version of itself, 

using the Python package skccm 40. The S-map method 41 was used to test the nonlinearity

of the system with the PyEDM 42 python package, since in the nonlinear system, the 

prediction skill improves as lag increases. In case the optimal E or the optimal l were larger

than 20, default E = 5 and l = 2 were set. The data was split into train (0.75) and test (0.25)

subsets. Prediction skill (p) scores were calculated on an increasing number of system 

states (library size). Here, p was calculated as the mean p that was calculated from the 

sliding windows of converged cross mapping, e.g. sliding windows of the same time series 

which are not of converged cross mapping were excluded.

A target-focused network of interactions was constructed as follows: (a) M. flos-

aquae was set as the target; (b) CCM was calculated for all possible interactions of the 

target with all of the other variables; (c) the variables of causal interactions with the target 

were extracted; (d) CCM was calculated for all possible interactions within the causal 

variables that were extracted above; (e) mean prediction skill (p) < 0.01 was used to filter 
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out very weak interactions; (f) we considered interaction if at least 10 of the sliding 

windows within a certain time series were of converged cross mapping and p >= 0.01. 

We used surrogate time series to test the significance of CCM – ECCM results. 

Surrogate time series are created by modifying the data while preserving certain statistical 

properties of the original time series, such as its mean, variance, trend and 

autocorrelation. If the result of the CCM calculation for the original time series is higher 

than the same calculation done on multiple surrogate time series, then it is considered 

significant. This means that the nonlinear correlation between the two time series is likely 

to be real and not due to chance. Here, Ebisuzaki’s (PyEDM) method 42 was used to 

generate surrogate data sets. If the observed prediction skill was greater than the 0.95 

quantile of CCM prediction skill scores generated from 10,000 surrogate time series, it was

considered significant.

Extended CCM

Extended CCM (ECCM) allows the detection of the optimal delay-lag and 

discriminates the real unidirectional causal relationship from bidirectional causation 

through adjusting the cross-map lag time (l) 33. This method is capable of identifying 

synchronization effects and false interactions that decrease CCM performance. In this 

method, CCM is calculated from a series of shifted data sets 33. In real causal interactions, 

the driving variable X can affect only the present or future Y. Therefore, Y can only predict 

the present or past values of X, but not its future values. Hence, the time lag between 

effect and cause must be non-positive. If the optimal prediction skill lag of both ‘X causes 

Y’ and ‘Y causes X’ is equal to 0 and of similar magnitude, it means that both respond 

instantaneously to a strong driving force. If the optimal prediction skill of ‘X causes Y’ is of 

a negative lag, and the optimal prediction skill ‘Y causes X’ is of a positive lag, then the 

influence of X is strong enough to ‘enslave’ Y due to synchrony 33. When both ‘X causes Y’
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and ‘Y causes X’ present optimal prediction skill of negative lag, the causal interaction is 

bi-directional. Given these guidelines, it is possible to validate the direction of causal 

interactions, determine the delay between the cause and the effect, and identify 

synchrony. Here, ECCM was tested for all causal interactions detected by the CCM 

analysis. For this analysis, a 400 data-points frame was considered using E = 5, l = 2, 

maximum library size of 200 and shift range of -20 to 20 weeks. This information was used

to refine and filter the interactions network.

Simulations

To validate the framework presented here, and to understand the limitations of 

CCM and ECCM, a series of experiments was conducted based on a well-studied 

simulation of four species interactions adopted from equation (3) in 33:

The simulated (eco)system consists of four species / factors whose direct time-

dependent relationships can be expressed by the following synthetic relationships that 

occurred at time steps (lag) of (t+1): 

Y1(t+1) = Y1(t)[3.9 – 3.9Y1(t)],

Y2(t+1) = Y2(t)[3.6 – 0.4Y1(t) – 3.6Y2(t)], 

Y3(t+1) = Y3(t)[3.6 – 0.4Y2(t) – 3.6Y3(t)], 

Y4(t+1) = Y4(t)[3.8 – 0.35Y3(t) – 3.8Y4(t)],

These equations simulate self-dynamics together with direct dependence of Y2 

on Y1, Y3 on Y2, and Y4 on Y3, and consists of complex direct and indirect interactions. 

Although the network is small, it implies similar challenges associated with the analysis of 

real-world ecological interactions. We are aware of the fact that the current simulation is 

homogeneous in manners of system stability and influence of external drivers, while their 

influence in real-world systems fluctuates over time. Therefore, heterogeneous data were 

simulated by generating a weak causally connected data set by multiplying random 
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components by Y2 and Y3, weakening the interactions of Y1, Y2, and Y3. The strong and 

the weak causally connected data were concatenated (1/3 strong causal interactions, and 

2/3 weakened causal interactions) into a single heterogeneous data set. CCM was 

analyzed for the two synthetic types of data analyses - with and without implementing 

sliding windows.

Bayesian network 

Python package bnlearn 43 was used to construct target-oriented BN model based

on categorized (Table S3) 7-year historical data (2014-2020) (Figure S3). BNs are the 

non-parametric statistical method that describes the Bayesian probabilities of the system’s 

components by directed acyclic graphs (DAG). Typically, the construction of BN involves 

multiple steps detailed in 44,45. In our study, BN inference was used to elucidate the 

conditions that may promote the maximization or minimization of M. flos-aquae blooms. 

The BN was constructed based on causal interactions identified by CCM and ECCM. 

Since BN cannot represent feedback loops, it has to be calculated on a DAG structure. 

The CCM interactions network was processed as follows: (a) feedback loops were 

identified using the Python package Networkx 46; (b) feedback loops were removed by 

identifying a feedback loop, and truncate the loop after the target node, or before a 

confounder node; and (c) sink nodes (nodes which don’t consist of out-edges and are not 

M. flos-aquae) were removed. The conditional probability tables were calculated from the 

categorized data set. BN was also constructed by a structure learning approach directly 

from the categorized data sets using the HillClimbing algorithm 45.

Sensitivity analysis

Sensitivity analysis was used to assess the impact of changes in the input 

parameters of the BN model on the output of the model. It allows us to understand the 
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robustness of the model and for identifying the input parameters that have the greatest 

impact on the output of the model. SHAP values (SHapley Additive exPlanations) 47 is a 

method used to increase transparency and interpretability of machine learning models by 

showing how each feature contributed to the prediction. We constructed 10,000 random 

permutations of different environmental scenarios, which were used as input vectors to the

BN model. Then, the BN model’s inputs and outputs were introduced to the shap.Explainer

function, and SHAP values were used for the estimation of model sensitivity.

Computation

All calculations, analysis, and visualization were carried out under the Python 

environment and the relevant packages as described above. 

Schematic illustration of the process is presented in (Figure 2).

Results

Blooming patterns of M. flos-aquae

Cyanobacterium M. flos-aquae has been observed in Lake Kinneret from the 

beginning of lake monitoring (1969), but only since 1996 it has frequently formed distinct 

winter-spring blooms (Figure 3a). During these blooms, the peak biomasses were 

moderate before 2009; then, between 2010 and 2016, higher peak biomasses were 

detected; since then, only irregular blooms have taken place. Annual dynamics observed 

during the last 21-year period show that M. flos-aquae abundance starts to increase in 

January, reaching the peak values usually during the second half of February – beginning 

of March. The minimal biomass is detected in August, with a following small increase in 

September (Figure 3b).
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Causal interactions

Method validation using synthetic time-series

The CCM – ECCM approach implementation was validated using a well-studied 

synthetic data set of four components consisting of direct and indirect interactions (Figure 

4a). CCM calculations of the simulated homogeneous time series, without sliding windows,

successfully reconstructed the results presented by Ye et al. (2015). The influence of long-

term indirect interactions was reduced when CCM was calculated using sliding windows 

(Figure 4a). In addition to the homogeneous data set, another version was created, in 

which the strong causal relations were weakened during the last two-thirds of the 

simulation, better representing the dynamics in a real ecosystem. The sliding window 

approach identified more causal interactions compared to the single-frame approach. The 

utilization of sliding windows reduced the identification of false interactions, which occurred

when a single frame was used. The CCM calculation of the homogeneous time series 

using a sliding window technique identified the three direct interactions (y1 → y2, y2 → y3,

and y3→ y4), however, missed a single indirect interaction of y1→ y4. CCM of the 

heterogeneous time series, without sliding windows, identified two direct interactions (y1 

→ y2 and y3 → y4), a single indirect interaction, and a single false interaction. Using 

sliding windows, CCM of the heterogeneous time series identified the three direct 

interactions but missed two indirect interactions (y1→, y4, and y2→ y4).

We compared the proposed CCM - ECCM approach to structure learning and 

Pearson correlations (Figure 4b). Structure learning failed to identify the simulated causal 

interactions, two false interactions in the homogeneous time series, and a single true direct

interaction (y2 → y3) in the heterogeneous data set (Figure 4b). Pearson correlation 

results were too noisy and lacked information regarding directionality (Figure 4b). 
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Identification of causal interactions in Lake Kinneret historical records 

using coupled CCM – ECCM 

CCM results present a complex array of interactions between the environmental 

(physical and chemical) variables and phytoplankton components (Table S2, Figure S1). 

Although more complex models can be more accurate, they may be more challenging to 

understand and interpret. In addition, too many nodes in a BN model can have a number 

of negative effects, including: reduced accuracy, increased computational complexity and 

overfitting 45. Therefore, due to the complex network involving phytoplankton, individual 

species were aggregated by their taxonomic groups. Some of the causal interactions that 

were revealed by CCM (Figure 5a) are correlated (Figure 5b), while the other interactions 

correlate weakly or do not correlate at all. ECCM was used to calculate time-delayed 

interactions, and to identify synchrony and false discoveries in CCM results.  

A total of 23 pairs, which represent all the possible interactions between all the 

environmental and biological variables and M. floss-aquae, were examined by CCM in the 

first iteration. Of those, 11 variables were of CCM prediction skill above 0.01 and used in 

the second iteration. All possible interactions (110, excluding self-interactions) between 

these variables were calculated in the second iteration. 39 interactions presented 

converged prediction skill above 0.01 and were validated using 10,000 surrogates for each

interaction (Figure S2). We examined multiple surrogate cutoffs (0.9, 0.95, and 0.975, 

Table S2). We found that the BN of the interactions above the 0.9 quantiles are of higher 

accuracy compared to the models of the higher cutoffs (Table S2), and it consists of 

interactions supported by domain experts and previous research. Interestingly, the 

interactions of the lower cutoffs consist of more interactions involving biological variables 

(Figure S2). Only one biological variable is above the 0.975 cutoffs, while all the 

environmental variables are above the highest cutoff. The biological variables are more 

sensitive to long-term environmental trends. Following their weaker interactions, they are 
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slightly masked by the surrogate results, which remain this characteristic of the original 

time series. Despite the slight decrease in accuracy, in order to gain information about the 

causes of Microcystis blooms and its interactions with the environment on the one hand 

and to avoid false positive results, we used the 0.95 cutoffs.

Of the 39 interactions, using the interactions above the 0.95 quantiles, 28 (71.8%)

interactions were above this threshold and considered significant. The causal interactions 

were also examined by ECCM, which identified and discarded six false interactions. A total

of 9 variables and 26 interactions constructed the final network.

The CCM scores of the environmental parameters were stronger (median=0.103, 

mean=0.099, std=0.021) in comparison to the scores of the phytoplankton community 

(median=0.068, mean=0.074, std=0.020) on M. flos-aquae (Figure 6a). The median lag 

between the cause to the effect of the environmental parameters (median=2, mean=3.4 

mean=6, std=3.97) was of longer lag in comparison to the interactions of the biological 

parameters (median=1, mean=1.25, std=1.25) (Figure 6b).

Although we did not identify direct interaction between ammonium and M. flos-aquae, 

indirect effects were identified. We did identify this interaction with M. aeruginosa 

(ammonium, six weeks lag), another less abundant Microcystis species in the lake. 

Considering this interaction, domain experts’ opinions, and evidence in the literature, we 

added ‘ammonium causes M. flos-aquae’ to the BN model (Figure 7a). Comparing 

structure learning and parameters learning approaches using the historical data set, four 

interactions were found to overlap (Figure 7b). The structure learning approach identified 

fewer (11) interactions than the CCM - ECCM structure learning (19). Like the simulation 

results, Pearson correlations are too noisy and do not supply information regarding 

interaction directionality (Figure 5b).
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Directed acyclic graph (DAG) and Bayesian network model

The causal interactions network was converted to a DAG in order to construct a 

BN. The resulting DAG consisted of 9 nodes and 19 interactions, to which one direct 

interaction was added, ‘ammonium causes M. flos-aquae’. To avoid over-fitting, we 

confirmed that the number of cases of each state, for each variable, was greater than 20 

44. The dataset was split into training (0.75) and test (0.25) subsets. The BN model was 

calculated based on a shifted time series, where the cause and the effect were aligned 

according to the lags identified by ECCM analysis (Table S2). The model was evaluated 

based on confusion matrix (Figure S3), accuracy and AUC scores. M. flos-aquae BN 

model (Figure 8a) achieved an accuracy of 0.812 and AUC score of 0.817 (Table S3) 

considering a probability cutoff larger than, or equal to 0.5 (Figure 8b). 

Sensitivity analysis and cyanobacteria blooming / non-blooming scenarios

Sensitivity analysis (Figure 9) shows the importance of the individual environmental 

parameters (oxygen, phosphate, nitrite, temperature, and ammonium) and the 

phytoplankton taxonomic groups on the model's output. The influence of nitrate is diluted 

due to its indirect interaction with Microcystis. The individual environmental variables 

present a lower effect on the model's output than the influence of the taxonomic groups.

Mean scenarios were calculated based on permutations that produced high or low 

probabilities of M. flos-aquae bloom formation (Figure 10). Lower probabilities of M. flos-

aquae blooms are associated with higher values of oxygen, nitrite, and Haptophytes but 

lower values of temperature, phosphate, nitrate, and ammonium. In contrast, higher 

blooming probabilities were associated with higher temperature, phosphate, nitrate, and 

ammonium values but lower nitrite, oxygen, and Haptophytes (mainly Erkenia 

subaequiciliata). These differences may pinpoint the potential factors favorable for 

developing higher M. flos-aquae biomass. 
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A notable finding from our study was the measured 6-week lag between changes in 

temperature and the subsequent effects on M. flos-aquae. This temporal relationship 

provides compelling evidence that winter temperatures in Lake Kinneret are causal to the 

occurrence of spring blooms. Furthermore, we observed temperature differences when 

comparing the mean maximization scenario (Figure 10a) to the mean minimization 

scenario (Figure 10b). Specifically, the mean maximization scenario depicted higher 

temperatures than the mean minimization scenario. This scenario-based analysis provides

valuable insights into the potential consequences of elevated temperatures on the 

ecological dynamics of Lake Kinneret. It suggests that under warmer conditions, there may

be an increase in the intensity or frequency of algal blooms.

In addition, the destratification of the lake, following lake overturn, which typically occurs in

the second half of December or in January, elevates high concentrations of nutrients from 

the lower anoxic nutrient-rich layers of the lake to the nutrient-poor upper layer. Mixing 

occurs one to two months before the M. flos-aquae biomass peak. Mean scenarios also 

show the importance of higher ammonium and phosphate for M. flos-aquae growth, 

suggesting that the overturn-caused nutrient (ammonium and phosphate) supply to the 

upper productive layer is an important precondition for M. flos-aquae bloom development.

Discussion

Our framework for causal analysis represents an improvement over previous 

computational approaches in understanding the causes of cyanoHABs in Lake Kinneret. 

Traditional methods often relied on correlation-based analyses, which only provided limited

insights into the complex interactions and causal relationships among different factors 17. 

These approaches do not consider all three essential aspects - delayed effects, causality, 

and event probabilities. In contrast, our framework utilizes a targeted and focused 

approach by constructing CCM - ECCM causal networks and developing BN models 
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based on these networks. This allows a more comprehensive understanding of the 

underlying mechanisms driving bloom formation. Our framework considers the temporal 

aspect by considering the weeks leading up to the blooming events. This temporal 

perspective provides a better understanding of various factors' delayed effects and 

cumulative influences, leading to an explainable predictive capability.

We validated the CCM - ECCM approach using a synthetic time series studied 

previously by Ye et al. (2015). Moreover, we reconstructed a more challenging system in 

which the causal relations of the above system were weakened during the simulation. 

Although the sliding window approach performed better than the single frame CCM 

calculations, it missed two indirect interactions. This approach may only partially identify 

indirect interactions of longer delayed effects. The targeted CCM - ECCM approach 

performs better than the structure learning approach, which failed to identify the 

interactions. The model has revealed several key relationships among the factors 

influencing cyanoHABs formation in Lake Kinneret. These interactions shed some light on 

the complex interplay between variables and provide a deeper understanding of the 

underlying mechanisms. Some of the noteworthy interactions include:

Effect of temperature on Microcystis. - Higher temperatures may affect 

increased Microcystis growth (Figure 10), although the optimal temperature is varied 

between the different Microcystis species. Higher temperatures were found to promote the 

development of toxic sub-populations 48,49. Another study in which the interactions of BN 

were constructed by domain experts 50 shows that phosphorus and temperature are 

important for the development of cyanobacterial blooms. The monthly mean in Lake 

Kinneret (Figure 3b) shows the highest values of M. flos-aquae biomass in March, and 

relatively low values when the water gets warmest around June-August. 

Effect of nitrate, nitrite and ammonium on Microcystis. - Ammonium, a 

reduced species of nitrogen, was found to be preferred by Microcystis over nitrate 13. High 
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nitrate levels were also found to promote development of toxic Microcystis populations 51. 

As part of the nitrification process, nitrite is oxidized into nitrate in the presence of 

dissolved oxygen, which occurs in Lake Kinneret between January and April following the 

annual overturn. Here, nitrite was found to be related to lower values of Microcystis, 

suggesting that faster or earlier nitrification might promote Microcystis growth. 

Effect of phosphate on Microcystis. - Higher phosphorus values cause 

increased Microcystis growth 48, although biomass increase of various Microcystis species 

may be favored by different phosphorus levels 52. According to our results, an increase of 

phosphate may affect M. flos-aquae biomass within 9 weeks. 53 showed that although the 

early growth stage of Microcystis population is affected by nitrate-to-ammonium ratio and 

phosphate concentration, its maximum growth rate is determined by a minimal phosphate 

concentration.

Effect of Oxygen on Microcystis. -Microcystis is highly tolerant to anoxic 

conditions 54,55. The results show relatively immediate influence of oxygen on Microcystis. 

Our approach successfully captured these relations (Figure 5a, 10), and suggests that 

lower oxygen levels, in the right conditions, promote M. flos-aquae growth. This might be 

following the lack of other species blooms, which would increase oxygen levels due to 

photosynthesis. It also should be taken into account that a decrease in oxygen is 

associated with higher temperatures due to lower oxygen dissolution. 

Inter-species interactions. - The formation of Microcystis colonies was found to 

be related with its bacterial microbiome 56,57 and the presence of multiple phytoplankton 

taxonomic groups 58. The interactions between Microcystis and other community members 

is dynamic and bi-directional 59,60. According to our results, M. flos-aquae is affected by 

other community members too. Inter-species interactions in the lake might be due to 

mutualism, amensalism, or competition. Both amensalism and competition may reduce 

Microcystis growth rate. Competition delayed effect lag might be longer, while amensalism 
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through allelopathy is assumed to follow a shorter lag time. Indeed, the analysis of CCM 

scores, delayed effect lag time and model sensitivity results shed some light on the 

complex interactions of M. flos-aquae with the phytoplankton community in its 

environment. The interactions of M. flos-aquae with other phytoplankton species in the 

lake are weaker then its interactions with the environmental parameters. Even-though, 

Microcystis reacts faster to changes in community structure. These results are aligned with

61 which show that in diverse ecosystems biodiversity effects are more important than 

environmental effects as drivers of biomass.

Effect of temperature on nitrate and ammonium. - Higher temperatures can 

increase the rate of decomposition of organic matter and as a result, increase nitrate and 

ammonium levels in the water. Higher temperatures increase ammonia, nitrate, total 

nitrogen and phosphate concentrations in freshwater ecosystem 62. On the other hand, 

increased winter inflows from watersheds and turnover-driven destratification are annual 

processes in the monomictic Lake Kinneret, occurring during the coldest season and affect

nutrients level in the water body. In addition, following the turnover, large amounts of nitrite

are oxidized to nitrate when arrive to the hypolimnion.   

Effect of temperature on oxygen. - As lake temperatures increase, the amount 

of dissolved oxygen it can hold, decreases 63. Higher temperatures also increase 

phytoplankton photosynthesis rate, which in turn increase dissolved oxygen levels in the 

upper layers 64. 

Effect of nitrate on phosphate. - There are two counteracting effects of nitrate 

on phosphorus release from the sediments. Reduced nitrate increases the release of 

phosphate from some sediments, while nitrate also inhibits the release of iron-bound 

phosphorus from the sediment 65,66. Higher phosphate levels promote phytoplankton 

growth 67,68, which leads to increased decomposition of organic matter due to the increase 
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of total biomass 69. This might also affect ammonium because both nitrate and ammonium 

are portions of total nitrogen.

Effect of oxygen on phosphorus and phosphate. - Wu 70 showed that 

anaerobic conditions are more conducive to the release of phosphorus from the sediment 

than aerobic conditions. The effect of oxygen on the release and availability of phosphorus

is complex and depends on the presence of other inorganic moieties in the lake 71. 

Phosphate and oxygen concentrations are also related to phytoplankton biomass, which 

consumes oxygen at low light in the lower layers of the lake but increases oxygen levels in

the upper layers where photosynthesis occurs. 

It is important to note that these identified interactions are based on the specific 

context of Lake Kinneret.

The lags between cause and effect, calculated by ECCM (Figure 10, Table 2), support the 

above evidence. The effect of temperature on oxygen, nitrite, and nitrate is immediate (1-2

weeks) in ecological time scales. The interactions between phosphate and nitrogen 

species are more prolonged (8-11 weeks). These interactions are mediated by slow 

reduction processes in the sediment and biological processes in the lake. Long delayed 

effects are either slow processes, as mentioned above, or indirect effects through the 

sequence of events.

Intuitively, the importance of higher ammonium and phosphate for M. flos-aquae growth is 

in contrast to the temperature because with overturn, the temperature of the upper layer 

decreases. This may lead to shallow warm temperatures while most of the water column is

cooler. However, Microcystis blooms occur only following sufficient warm, calm winter 

days 72. Here we use temporal information of the lag between the cause and the effect 

(Figure 10), which shows that multiple processes of different time ranges affect Microcystis

blooms. First, during the winter, around December – February, loads of nitrate, 

ammonium, and phosphate are washed from the drainage area into the lake. Later, 
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warmer temperatures during the winter affect oxygen and nutrient levels. Global warming 

was found to delay the overturn in lakes 73, which reduces nitrite levels in the upper layer. 

In the absence of other prosper species in the lake, this sequence of events increases the 

probability of Microcystis blooms.

Synergistic effects refer to the phenomenon where the joint influence of multiple variables 

on an outcome is greater than the sum of their individual effects. This effect is particularly 

relevant when studying complex systems, where the interactions between variables can 

lead to nonlinear dynamics. In BNs, the network structure, represented as a DAG, allows 

for identifying synergistic and cumulative interactions among variables 74. By considering 

the joint probability distribution of variables and their conditional dependencies, BNs can 

reveal synergistic effects within the system. Indeed, sensitivity analysis of the BN model 

presents a relatively weak effect of each parameter. However, their synergistic effect on 

the output values (Microcystis blooming probability) is of a broader range (Figure 8).

The results show that biological parameters are of higher importance in the 

sensitivity analysis of the BN model, while environmental parameters have higher CCM 

scores compared to the biological parameters. This can be explained by considering a 

synergistic effect between environmental and biological parameters. The apparent 

contradiction between the sensitivity analysis and the CCM scores could be attributed to 

the interplay and combined influence of these two sets of parameters. 

The results could indicate that while biological parameters are individually 

important and exhibit strong statistical associations, their effects might be enhanced or 

modulated by the presence of certain environmental conditions. The combination of both 

sets of parameters working together may result in a more comprehensive understanding of

the system's behavior, with the environmental parameters playing a crucial role in shaping 

and driving the overall dynamics.

490

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514



The proposed framework presents a novel approach to understanding complex 

processes in ecological systems. However, there are still specific weaknesses that should 

be acknowledged: a. uncertainty in BN modeling: the accuracy of the BN models heavily 

relies on the availability and quality of data for training and validation. In addition, 

thresholds used for categorization and insufficient or noisy data may affect the reliability 

and generalizability of the models. b. data limitations: The framework's effectiveness is 

contingent on comprehensive and high-quality data availability. Incomplete or sparse data 

may limit the ability to accurately identify and capture all relevant causal relationships. c: 

Simplified representation: While the framework provides a more comprehensive 

understanding of the underlying mechanisms, it still relies on simplifications and 

assumptions to model the complex interactions among variables. This simplification may 

overlook specific interactions within the system, potentially leading to incomplete 

conclusions. d: hidden variables: not directly observed but impact the observed data. 

Incorporating hidden variables would allow for a more comprehensive representation of 

the causal structure. e: still depends on human interpretation of the ECCM results. And f: 

Interactions involving biological components tend to be masked by long-term trends, which

should be considered.

Despite these weaknesses, the framework can offer valuable insights and contribute to 

understanding ecological systems. It provides a targeted and focused approach that 

considers the causal interactions and the temporal aspect, allowing for a better 

understanding of lagged effects and cumulative influences. Incorporating causality and 

dependent probabilities give the framework a more explainable predictive capability than 

traditional analyses.

Further improvements can be made in data collection and model refinement to address the

weaknesses. Gathering more comprehensive and high-quality data, including long-term 

and continuous monitoring, can enhance the accuracy and robustness of the CCM causal 
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networks and BN models. Additionally, incorporating unobserved variables can capture a 

more comprehensive representation of complex ecological systems.

We presented a computational framework of coupled CCM - ECCM and BN for causal 

analysis of complex ecosystems. As a case study, we focused on the bloom-forming M. 

flos-aquae species in deep subtropical Lake Kinneret. Given the causal interactions 

identified by CCM - ECCM and reviewed by domain experts, the structure of the causal 

network can be used as a basis for a BN model. Although it has been used in the 

ecological context, this is the first attempt to use BN models in conjunction with CCM and 

ECCM to understand the freshwater ecosystem. M. flos-aquae in Lake Kinneret is 

associated, by complex interactions, with the phytoplankton community but also driven by 

environmental variables such as temperature, nitrate, ammonium, nitrite and phosphate.
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from the Zenodo [Zenodo URL] under the corresponding DOI [DOI].

References

1. Feng, L. et al. Dominant genera of cyanobacteria in Lake Taihu and their 

relationships with environmental factors. J. Microbiol. 54, 468–476 (2016).

2. Paerl, H. W. & Huisman, J. Minireview Climate change : a catalyst for global 

expansion of harmful cyanobacterial blooms. 1, 27–37 (2009).

3. Padisák, J. Cylindrospermopsis raciborskii (Woloszynska) Seenayya et Subba Raju, 

an expanding, highly adaptive cyanobacterium: worldwide distribution and review of 

its ecology. Archiv Für Hydrobiologie Supplementband Monographische Beitrage 

vol. 107 563–593 (1997).

4. Robarts, R. D. & Zohary, T. Temperature effects on photosynthetic capacity, 

respiration, and growth rates of bloom forming cyanobacteria. ‐ New Zeal. J. Mar. 

Freshw. Res. 21, 391–399 (1987).

5. Ninio, S., Lupu, A., Viner-Mozzini, Y., Zohary, T. & Sukenik, A. Multiannual 

variations in Microcystis bloom episodes – Temperature drives shift in species 

composition. Harmful Algae 92, 101710 (2020).

6. Benincá, E. et al. Chaos in a long-term experiment with a plankton community. 

Nature 451, 822–825 (2008).

7. Cao, H. S. et al. Effects of wind and wind-induced waves on vertical phytoplankton 

distribution and surface blooms of microcystis aeruginosa in lake taihu. J. Freshw. 

Ecol. 21, 231–238 (2006).

567

569

570

571

572

573

574

575

576

577

578

579

580

581

582

583

584

585

586

587

588

589

590



8. Reichwaldt, E. S. & Ghadouani, A. Effects of rainfall patterns on toxic cyanobacterial

blooms in a changing climate: Between simplistic scenarios and complex dynamics. 

Water Res. 46, 1372–1393 (2012).

9. Ibelings, B. W., Vonk, M., Los, H. F. J., van der Molen, D. T. & Mooij, W. M. FUZZY 

MODELING OF CYANOBACTERIAL SURFACE WATERBLOOMS: VALIDATION 

WITH NOAA-AVHRR SATELLITE IMAGES. Ecol. Appl. 13, 1456–1472 (2003).

10. Sukenik, A. et al. Inhibition of growth and photosynthesis of the dinoflagellate 

Peridinium gatunense by Microcystis sp. (cyanobacteria): A novel allelopathic 

mechanism. Limnol. Oceanogr. 47, 1656–1663 (2002).

11. Svirčev, Z. B., Tokodi, N., Drobac, D. & Codd, G. A. Cyanobacteria in aquatic 

ecosystems in Serbia: effects on water quality, human health and biodiversity. Syst. 

Biodivers. 12, 261–270 (2014).

12. Wang, K., Razzano, M. & Mou, X. Cyanobacterial blooms alter the relative 

importance of neutral and selective processes in assembling freshwater 

bacterioplankton community. Sci. Total Environ. 706, 135724 (2020).

13. Harke, M. J. et al. A review of the global ecology, genomics, and biogeography of 

the toxic cyanobacterium, Microcystis spp. Harmful Algae 54, 4–20 (2016).

14. Wilhelm, S. W., Bullerjahn, G. S. & McKay, R. M. L. The Complicated and Confusing

Ecology of Microcystis Blooms. MBio 11, (2020).

15. Hadas, O., Kaplan, A. & Sukenik, A. Long-term changes in cyanobacteria 

populations in lake kinneret (Sea of galilee), israel: An eco-physiological outlook. Life

5, 418–431 (2015).

16. Sukenik, A., Zohary, T. & Markel, D. Lake Kinneret. Lake Kinneret 561–575 (2014) 

doi:10.1007/978-94-017-8944-8.

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614



17. Rousso, B. Z., Bertone, E., Stewart, R. & Hamilton, D. P. A systematic literature 

review of forecasting and predictive models for cyanobacteria blooms in freshwater 

lakes. Water Res. 182, 115959 (2020).

18. Cruz, R. C., Costa, P. R., Vinga, S., Krippahl, L. & Lopes, M. B. A review of recent 

machine learning advances for forecasting harmful algal blooms and shellfish 

contamination. J. Mar. Sci. Eng. 9, (2021).

19. Sugihara, G. et al. Detecting causality in complex ecosystems. Science (80-. ). 338, 

496–500 (2012).

20. Plowright, R. K., Sokolow, S. H., Gorman, M. E., Daszak, P. & Foley, J. E. Causal 

inference in disease ecology: investigating ecological drivers of disease emergence. 

Front. Ecol. Environ. 6, 420–429 (2008).

21. Adams, S. M. Establishing Causality between Environmental Stressors and Effects 

on Aquatic Ecosystems. Hum. Ecol. Risk Assess. An Int. J. 9, 17–35 (2003).

22. Doi, H., Yasuhara, M. & Ushio, M. Causal analysis of the temperature impact on 

deep-sea biodiversity. Biol. Lett. 17, 2–7 (2021).

23. Bonotto, G., Peterson, T. J., Fowler, K. & Western, A. W. Identifying Causal 

Interactions Between Groundwater and Streamflow Using Convergent Cross‐

Mapping. Water Resour. Res. 58, (2022).

24. Moraffah, R., Karami, M., Guo, R., Raglin, A. & Liu, H. Causal Interpretability for 

Machine Learning - Problems, Methods and Evaluation. ACM SIGKDD Explor. 

Newsl. 22, 18–33 (2020).

25. Lucas, T. C. D. A translucent box: interpretable machine learning in ecology. Ecol. 

Monogr. 90, 1–17 (2020).

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637



26. Zhao, Q. & Hastie, T. Causal Interpretations of Black-Box Models. J. Bus. Econ. 

Stat. 39, 272–281 (2021).

27. Granger, C. J. W. Investigating Causal Relations by Econometric Models and Cross-

spectral Methods Authors ( s ): C . W . J . Granger Published by : The Econometric 

Society Stable URL : http://www.jstor.org/stable/1912791 Accessed : 25-03-2016 19 :

26 UTC Your use of the JS. Econometrica 37, 424–438 (1969).

28. Deyle, E. R. & Sugihara, G. Generalized Theorems for Nonlinear State Space 

Reconstruction. PLoS One 6, e18295 (2011).

29. Barraquand, F., Picoche, C., Detto, M. & Hartig, F. Inferring species interactions 

using Granger causality and convergent cross mapping. Theor. Ecol. 14, 87–105 

(2021).

30. Zhang, Z. et al. Identifying changes in China’s Bohai and Yellow Sea fisheries 

resources using a causality-based indicator framework, convergent cross-mapping, 

and structural equation modeling. Environ. Sustain. Indic. 14, 100171 (2022).

31. Nakayama, S., Takasuka, A., Ichinokawa, M. & Okamura, H. Climate change and 

interspecific interactions drive species alternations between anchovy and sardine in 

the western North Pacific: Detection of causality by convergent cross mapping. Fish.

Oceanogr. 27, 312–322 (2018).

32. Chang, C.-W. et al. Causal networks of phytoplankton diversity and biomass are 

modulated by environmental context. Nat. Commun. 13, 1140 (2022).

33. Ye, H., Deyle, E. R., Gilarranz, L. J. & Sugihara, G. Distinguishing time-delayed 

causal interactions using convergent cross mapping. Sci. Rep. 5, 1–9 (2015).

34. Milns, I., Beale, C. M. & Smith, V. A. Revealing ecological networks using Bayesian 

network inference algorithms. Ecology 91, 1892–1899 (2010).

638

639

640

641

642

643

644

645

646

647

648

649

650

651

652

653

654

655

656

657

658

659

660

661



35. Aguilera, P. A., Fernández, A., Fernández, R., Rumí, R. & Salmerón, A. Bayesian 

networks in environmental modelling. Environ. Model. Softw. 26, 1376–1388 (2011).

36. McCann, R. K., Marcot, B. G. & Ellis, R. Bayesian belief networks: applications in 

ecology and natural resource management. Can. J. For. Res. 36, 3053–3062 

(2006).

37. Barton, D. N. et al. Bayesian networks in environmental and resource management. 

Integr. Environ. Assess. Manag. 8, 418–429 (2012).

38. Sukenik, A., Zohary, T. & Markel, D. The monitoring program. Lake Kinneret Ecol. 

Manag. 561–575 (2014).

39. Sugihara, G. & May, R. M. Nonlinear forecasting as a way of distinguishing chaos 

from measurement error in time series. Nature 344, 734–741 (1990).

40. Nick Cortale. skcmm [Computer software]. (2016).

41. Chang, C. et al. Reconstructing large interaction networks from empirical time series

data. Ecol. Lett. 24, 2763–2774 (2021).

42. Sugihara, G. PyEDM [computer software].

43. Taskesen, E. bnlearn [Computer software]. (2020).

44. Chen, S. H. & Pollino, C. A. Good practice in Bayesian network modelling. Environ. 

Model. Softw. 37, 134–145 (2012).

45. Marcot, B. G. Common quandaries and their practical solutions in Bayesian network 

modeling. Ecol. Modell. 358, 1–9 (2017).

46. Aric A. Hagberg, D. A. S. and P. J. S. Exploring network structure, dynamics, and 

function using NetworkX. Proc. 7th Python Sci. Conf. 11–15 (2008).

47. Shapley, L. S. A value for n-person games. Class. game theory 69, (1997).

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684



48. Davis, T. W., Berry, D. L., Boyer, G. L. & Gobler, C. J. The effects of temperature 

and nutrients on the growth and dynamics of toxic and non-toxic strains of 

Microcystis during cyanobacteria blooms. Harmful Algae 8, 715–725 (2009).

49. Imai, H., Chang, K.-H., Kusaba, M. & Nakano, S. -i. Temperature-dependent 

dominance of Microcystis (Cyanophyceae) species: M. aeruginosa and M. 

wesenbergii. J. Plankton Res. 31, 171–178 (2008).

50. Moe, S. J., Haande, S. & Couture, R.-M. Climate change, cyanobacteria blooms and

ecological status of lakes: A Bayesian network approach. Ecol. Modell. 337, 330–

347 (2016).

51. Yoshida, M., Yoshida, T., Takashima, Y., Hosoda, N. & Hiroishi, S. Dynamics of 

microcystin-producing and non-microcystin-producing Microcystis populations is 

correlated with nitrate concentration in a Japanese lake. FEMS Microbiol. Lett. 266, 

49–53 (2007).

52. Yue, T., Zhang, D. & Hu, C. Comparative studies on phosphate utilization of two 

bloom-forming Microcystis spp. (cyanobacteria) isolated from Lake Taihu (China). J. 

Appl. Phycol. 26, 333–339 (2014).

53. Kim, H., Jo, B. Y. & Kim, H. S. Effect of different concentrations and ratios of 

ammonium, nitrate, and phosphate on growth of the blue-green alga 

(cyanobacterium) Microcystis aeruginosa isolated from the Nakdong River, Korea. 

ALGAE 32, 275–284 (2017).

54. Chen, X. et al. The secretion of organics by living Microcystis under the dark/anoxic 

condition and its enhancing effect on nitrate removal. Chemosphere 196, 280–287 

(2018).

55. Brunberg, A.-K. Benthic overwintering of Microcystis colonies under different 

environmental conditions. J. Plankton Res. 24, 1247–1252 (2002).

685

686

687

688

689

690

691

692

693

694

695

696

697

698

699

700

701

702

703

704

705

706

707

708

709



56. Wang, W. et al. Experimental evidence for the role of heterotrophic bacteria in the 

formation of Microcystis colonies. J. Appl. Phycol. 28, 1111–1123 (2016).

57. Hoke, A. K. et al. Genomic signatures of Lake Erie bacteria suggest interaction in 

the Microcystis phycosphere. PLoS One 16, e0257017 (2021).

58. Zhang, M. et al. Feedback Regulation between Aquatic Microorganisms and the 

Bloom-Forming Cyanobacterium Microcystis aeruginosa. Appl. Environ. Microbiol. 

85, (2019).

59. Omidi, A., Pflugmacher, S., Kaplan, A., Kim, Y. J. & Esterhuizen, M. Reviewing 

Interspecies Interactions as a Driving Force Affecting the Community Structure in 

Lakes via Cyanotoxins. Microorganisms 9, 1583 (2021).

60. Schweitzer Natan, O., Ofek Lalzar, M., Sher, D. & Sukenik, A. The microbial ‐ ‐

community spatially varies during a Microcystis bloom event in Lake Kinneret. 

Freshw. Biol. 68, 349–363 (2023).

61. Chang, C. W. et al. Causal networks of phytoplankton diversity and biomass are 

modulated by environmental context. Nat. Commun. 13, 1–11 (2022).

62. Li, H. Y., Xu, J. & Xu, R. Q. The Effect of Temperature on the Water Quality of Lake. 

Adv. Mater. Res. 821–822, 1001–1004 (2013).

63. Jankowski, T., Livingstone, D. M., Bührer, H., Forster, R. & Niederhauser, P. 

Consequences of the 2003 European heat wave for lake temperature profiles, 

thermal stability, and hypolimnetic oxygen depletion: Implications for a warmer 

world. Limnol. Oceanogr. 51, 815–819 (2006).

64. Antonopoulos, V. Z. & Gianniou, S. K. Simulation of water temperature and 

dissolved oxygen distribution in Lake Vegoritis, Greece. Ecol. Modell. 160, 39–53 

(2003).

710

711

712

713

714

715

716

717

718

719

720

721

722

723

724

725

726

727

728

729

730

731

732

733



65. Søndergaard, M., Jeppesen, E. & Jensen, J. P. Hypolimnetic Nitrate Treatment to 

Reduce Internal Phosphorus Loading in a Stratified Lake. Lake Reserv. Manag. 16, 

195–204 (2000).

66. Tiren, T. & Pettersson, K. The influence of nitrate on the phosphorus flux to and from

oxygen depleted lake sediments. Hydrobiologia 120, 207–223 (1985).

67. Davison, W., George, D. G. & Edwards, N. J. A. Controlled reversal of lake 

acidification by treatment with phosphate fertilizer. Nature 377, 504–507 (1995).

68. Gardner, E. M., McKnight, D. M., Lewis, W. M. & Miller, M. P. Effects of nutrient 

enrichment on phytoplankton in an alpine lake, Colorado, U.S.A. Arctic, Antarct. Alp. 

Res. 40, 55–64 (2008).

69. Ma, S.-N. et al. Effects of nitrate on phosphorus release from lake sediments. Water 

Res. 194, 116894 (2021).

70. Wu, Y., Wen, Y., Zhou, J. & Wu, Y. Phosphorus release from lake sediments: 

Effects of pH, temperature and dissolved oxygen. KSCE J. Civ. Eng. 18, 323–329 

(2014).

71. Hupfer, M. & Lewandowski, J. Oxygen Controls the Phosphorus Release from Lake 

Sediments - a Long-Lasting Paradigm in Limnology. Int. Rev. Hydrobiol. 93, 415–

432 (2008).

72. Hozumi, A., Ostrovsky, I., Sukenik, A. & Gildor, H. Turbulence regulation of 

Microcystis surface scum formation and dispersion during a cyanobacteria bloom 

event. Inl. Waters 10, 51–70 (2020).

73. Anderson, E. J. et al. Seasonal overturn and stratification changes drive deep-water 

warming in one of Earth’s largest lakes. Nat. Commun. 12, 1688 (2021).

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

755

756



74. Simeoni, C. et al. Evaluating the combined effect of climate and anthropogenic 

stressors on marine coastal ecosystems: Insights from a systematic review of cumulative 

impact assessment approaches. Sci. Total Environ. 861, 160687 (2023).

 

757

758

759

760

761

762

763

764

765

766

767

768

769

770

771

772

773

774

775

776

777

778

779

780

781

782



Figures and tables

Figure 1 – Study site. Lake Kinneret, northern Israel.

783

784

785

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801



Figure 2 – Schematic description of the proposed framework. 1) Multivariate time 

series consists of the target (M. flos-aquae) and the other variables; 2) Data processing, 

including normalization, outliers detection, interpolation and categorization; 3) CCM is 

calculated between the target(s) and all of the other variables, followed by a second CCM 

step between all the causal variables; 4) Causal interactions from step 3 are validated and 

further filtered by ECCM analysis; 5) Cause-to-effect lags extractions, and construction of 

the causal network structure; 6) Parameters are shifted according to cause-to-effect lags, 

and used for BN model training, based on network structure from step 5; 7) Model 

sensitivity evaluation based on 10,000 permutations and random forest feature 

importance; and 8) Causal Bayesian network model.
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Figure 3 – a. M. flos-aquae values between years 2000 – 2020; and b. monthly 

means.
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Figure 4 – Simulation results calculated by the proposed framework: (a) 

homogeneous and heterogeneous data sets CCM were calculated using sliding-window 

and without sliding-window (color scale shows CCM prediction skill. Light blue-weaker, 

Dark blue-stronger); and (b) Pearson correlations (color scale shows correlation score. 

Blues-negative. White-zero. Reds-positive) and Bayesian structure learning results 

suggest different interactions.
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Figure 5 – (a) CCM and ECCM interactions were calculated from historical 

records of the years 2000-2020, as described in Methods (Figure 2, steps 1-4) (Color 

scale shows CCM score in the range of 0 (light blue) to 1 (dark blue)) (b) Correlations 

between the same causal variables (Color scale shows Pearson correlations between -1 

(blue) to 1 (red)).
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Figure 6 –  Boxplots of the CCM prediction skill (a) results and delayed effect 

values (weeks) calculated from ECCM results. The boxplots are categorized to biological 

(n=4) and environmental (n=5) components.
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Figure 7 – Causal interactions identified by (a) CCM - ECCM approach, feedback 

interactions were removed and (b) structure learning. Y-axis is the causal parameter, and 

x-axis is the affected parameter. 
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Figure 8 – Model validation. Bayesian network model was trained using the 

training dataset, and validated using the testing dataset. Probability < 0.5 considered ‘0’, 

and probability >= 0.5 considered ‘1’. (a) Observed (blue) and predicted probabilities 

(orange) of M. flos-aquae bloom formation. (b) Box plot of observed versus predicted 

probabilities of M. flos-aquae bloom formation.
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Figure 9 – Sensitivity analysis using SHAP. The beeswarm plot display the 

summary of how the different features impact the model’s output. Each values of each 

permutation is represented by a single dot on each feature row. The X position of the dot is

determined by the SHAP value of that feature. Color is used to display the original value of

a feature. Features are sorted based on their impact on the BN model, with the most 

influential features at the top.
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Figure 10 – Permutations mean scenarios that a. maximize blooming probabilities

(probability > 0.5, n=272); and b. minimize blooming probabilities (probability < 0.5, 

n=104). (Cyan color indicates low meanvalue, red color indicates high mean value. e.g. 

red>orange>yellow>green>cyan). Numbers adjacent to the edges are the delayed effect in

weeks. Black edges are of immediate effects (<= 2 weeks), suggested as direct 

interactions; Gray edges are of long-term effects (> 2 weeks), suggested as indirect 

interactions.
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Supplementary – Figures and Tables

Figure S1 – Results of CCM converged prediction skill cases.
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Figure S2 – Strip plot of the prediction-skill results that were calculated from 

10,000 surrogate time-series between each of the pairs (gray). Hyphen sings represent the

0.9 (lower, black), 0.95 (middle, blue) and 0.975 (upper, red) quantile of the 10,000 

surrogate CCM results. Red dots are the ‘true’ CCM values which were calculated from the

time-series.
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Figure S3 – Microcystis values between years 2014-2020, weekly, interpolated.
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Figure S4 – Confusion matrix. X axis, observed; Y axis, predicted.
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Table S1 – Categorization cutoffs.

Variable Unit Categories and cutoffs
Nitrite mg/l quantile 0.4/quantile 0.9, '0'/'1'/'2'
Nitrate mg/l quantile 0.4/quantile 0.9, '0'/'1'/'2'
Ammonium mg/l quantile 0.3/quantile 0.85, '0'/'1'/'2'
Oxygen mg/l quantile 0.55/quantile 0.75, '0'/'1'/'2'
Organic nitrogen (particulate) mg/l quantile 0.3/quantile 0.75, '0'/'1'/'2'
Organic nitrogen mg/l quantile 0.3/quantile 0.75, '0'/'1'/'2'
Chloride (Cl) mg/l quantile 0.3/quantile 0.75, '0'/'1'/'2'
Organic nitrogen (disolved) mg/l quantile 0.3/quantile 0.75, '0'/'1'/'2'
Phosphate mg/l quantile 0.5/quantile 0.75, '0'/'1'/'2'
Turbidity NTU quantile 0.3/quantile 0.75, '0'/'1'/'2'
pH logaritmic units 8.25/8.45, '0'/'1'/'2'
Prasinophyte Biomass, μg/ml quantile 0.75, '0'/'1'
Chlorophyta Biomass, μg/ml quantile 0.75, '0'/'1'
Diatomaceae Biomass, μg/ml quantile 0.75, '0'/'1'
Dinoflagellate Biomass, μg/ml quantile 0.75, '0'/'1'
Cyanobacteria Biomass, μg/ml quantile 0.75, '0'/'1'
Haptophytes Biomass, μg/ml quantile 0.75, '0'/'1'
Cryptophytes Biomass, μg/ml quantile 0.75, '0'/'1'
Temperature Celsius 18.5/21.5, '0'/'1'/'2'
Inflow Weekly mean of L^3/sec quantile 0.3/quantile 0.75, '0'/'1'/'2'
Microcystis flos-aquae mg/l quantile 0.75, '0'/'1'
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Table S2 – CCM - ECCM results.

x1 x2 Prediction skill is_Valid Delayed effect (weeks)
Temperature Oxygen 0.6290153436 1 0
Temperature Microcystis flos-aquae 0.1107374773 1 6
Temperature Nitrite 0.4304891828 1 2
Temperature Chlorophyta 0.05535191585 1 19
Temperature Nitrate 0.6315040961 1 2
Temperature Phosphate 0.4107513852 1 7
Temperature Organic nitrogen (particulate) 0.07022176498 1 6

Oxygen Microcystis flos-aquae 0.102973285 1 2
Oxygen Nitrite 0.4404129888 1 2
Oxygen Nitrate 0.6085768545 1 0
Oxygen Phosphate 0.4095347803 1 8
Oxygen Organic nitrogen (particulate) 0.05177181098 1 2
Oxygen Diatomaceae 0.098132401 1 10

Microcystis flos-aquae Organic nitrogen (particulate) 0.08366328284 1 1
Nitrite Oxygen 0.3481733729 1 0
Nitrite Microcystis flos-aquae 0.09900214412 1 0
Nitrite Nitrate 0.5189754535 1 0
Nitrite Phosphate 0.3148284607 1 11

Chlorophyta Oxygen 0.08254788438 1 0
Chlorophyta Nitrite 0.07004027086 1 14
Haptophytes Phosphate 0.07476616031 0

Nitrate Oxygen 0.6719748037 0
Nitrate Microcystis flos-aquae 0.0629061588 1 0
Nitrate Nitrite 0.488140103 1 0
Nitrate Phosphate 0.3952869711 1 8
Nitrate Diatomaceae 0.08335491777 1 12

Phosphate Oxygen 0.2897313105 1 17
Phosphate Microcystis flos-aquae 0.1196515027 1 9
Phosphate Nitrite 0.3234634705 1 20
Phosphate Haptophytes 0.05701362075 0
Phosphate Nitrate 0.3972019158 1 0

Organic nitrogen (particulate) Phosphate 0.05714645571 0
Diatomaceae Oxygen 0.1044963754 1 1
Diatomaceae Nitrite 0.05068454162 0
Diatomaceae Phosphate 0.09336061053 0
Chlorophyta Microcystis flos-aquae 0.07108051147 1 3
Prasinophyte Microcystis flos-aquae 0.06482822008 1 1
Haptophytes Microcystis flos-aquae 0.1047188031 1 0
Diatomaceae Microcystis flos-aquae 0.05837271527 1 1
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Table S3 – BN model results using interactions above different surrogate quantile

cutoffs (0.9, 0.95 and 0.975).

Quantile
Number of nodes in

DAG
Number of

interactions in DAG
Accuracy AUC

0.9 11 22 0.812 0.826
0.95 9 19 0.812 0.817
0.975 8 18 0.791 0.8
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