Resting-state EEG in marathon runners compared to sedentary controls

Joanna Moussiopoulou¹, Mirjam Handrack¹, Benjamin Pross¹, Oliver Pogarell¹, Daniel Keeser¹, Martin Halle², Peter Falkai³, Johannes Scherr², Alkomiet Hasan², and Astrid Roeh⁴

¹University Hospital Munich Department of Psychiatry and Psychotherapy
²Technical University of Munich Hospital Rechts der Isar
³Ludwig Maximilians University Munich
⁴BKH Augsburg

June 15, 2023

Abstract

Background: Previous studies have described various neuroplasticity effects of physical activity (PA). EEG studies have described effects mostly during or shortly after short bouts of PA. This is the first study to investigate the capability of EEG to display PA-induced long-lasting plasticity in runners compared to a sedentary control group. Methods: Thirty trained runners and thirty age- and sex-matched sedentary controls (SC) were included as a subpopulation of the ReCaP (Running effects on Cognition and Plasticity) study. PA was measured with the International Physical Activity Questionnaire (IPAQ). Resting state EEG of the runners was recorded in the tapering phase of the training for the Munich marathon 2017. Power spectrum analyses were conducted using standardized Low-Resolution Electromagnetic Tomography (sLORETA) and included the following frequency bands: delta: 1.5-6 Hz, theta: 6.5-8.0 Hz, alpha1: 8.5-10 Hz, alpha2: 10.5-12.0 Hz, beta1: 12.5-18.0 Hz, beta2: 18.5-21.0 Hz, beta3: 21.5-30.0 Hz and total power (1.5-30 Hz). Results: PA (IPAQ) and BMI differed significantly between the groups. The other included demographic parameters were comparable. Statistical non-parametric mapping showed no significant power differences in EEG between the groups. Discussion: Heterogeneity in study protocols, especially in time intervals between PA cessation and EEG recordings and juxtaposition of acute PA-induced effects on EEG in previous studies could be possible reasons for the differences in results. Future studies should record EEG at different time points after PA cessation and in a broader spectrum of PA intensities and forms to further explore the capability of EEG in displaying long-term PA-induced neuroplasticity.
5. Deutsches Zentrum für Herz- und Kreislauf-Forschung (DZHK) e.V. (German Center for Cardiovascular Research), Partner Site Munich Heart Alliance, Munich, Germany

* contributed equally

Keywords: physical activity, marathon, running, plasticity, EEG

Word count: 3215 (Introduction-Conclusion)

Word count abstract: 250

Tables: 2 (no color needed)

Figures: 0

Declarations of interest: none

This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors

Corresponding author:

Dr. med. Joanna Moussiopoulou, M.D.

Department of Psychiatry and Psychotherapy, University Hospital, Ludwig Maximilian University Munich, Nussbaumstr. 7, 80336, Munich, Germany.

Tel.: +49 89 4400 55505 Fax: +49 89 4400 55348

E-mail address: Joanna.Moussiopoulou@med.uni-muenchen.de

Hosted file

manuscript_moussiopoulou_ReCaP.docx available at https://authorea.com/users/629342/articles/649639-resting-state-eeg-in-marathon-runners-compared-to-sedentary-controls