Pre-existing allergic diseases as risk factors for long-term Long-COVID symptoms: a systematic review of prospective cohort studies

Doreen Wolff¹, Karl Philipp Drewitz¹, Angela Ulrich¹, Doreen Siegels², Stefanie Deckert², Antonia Anabella Sprenger¹, Paula Ricarda Kuper¹, Jochen Schmitt², Daniel Munblit³, and Christian Apfelbacher¹

¹Otto von Guericke Universitat Magdeburg Institut fur Sozialmedizin und Gesundheitsokonomie ²Universitatsklinikum Carl Gustav Carus Zentrum fur Evidenzbasierte Gesundheitsversorgung ³King's College London - Waterloo Campus

June 14, 2023

Abstract

Background: The role of allergy as risk factor for Long-COVID (LC) is unclear. We aimed to systematically review and appraise the epidemiological evidence on allergic diseases as risk factors for LC (PROSPERO: CRD42023391245). Methods: We examined literature for prospective cohort studies with a follow-up duration of 12 months for LC symptoms, published within the timeframe from January 2020 and January 2023 that recruited individuals with confirmed SARS-CoV-2 infection and information on pre-existing allergic diseases. Risk of bias and certainty of evidence were assessed (GRADE). Random effects meta-analyses were used to pool unadjusted ORs within homogeneous data subsets. Results: We identified 13 studies (participants range = 39 - 1,950), all of which were associated with high risk of bias. Four of these studies did not provide data to calculate ORs. Significant associations were observed between increased LC incidences and pre-existing asthma measured in hospital-based populations (n = 6) and pre-existing rhinitis (n = 3) (OR = 1.94; 95% CI [1.08, 3.50]; OR = 1.96; 95% CI [1.61, 2.39]), respectively. However, the level of certainty regarding these exposure outcome associations was very low. Conclusion: Findings show that allergies may increase the risk of LC, although the reliability of this evidence is tenuous.

Hosted file

SR_allergy_LC_20230613.docx available at https://authorea.com/users/628611/articles/649164pre-existing-allergic-diseases-as-risk-factors-for-long-term-long-covid-symptoms-asystematic-review-of-prospective-cohort-studies

Figure 1: Overall PRISMA flow diagram. Study flow chart illustrating the selection of evidence.

Figure 1_Wolff et al.

Figure 2: Risk of bias assessment.

Green/+: low risk of bias; orange/-: unclear risk of bias; red/x: high risk of bias; bright yellow/N.A.: item not applicable. In order for a study to have an overall low risk of bias, every major domain for risk of bias would have to be rated as low risk. If one of the major domains for risk of bias was rated as either high risk or unclear risk, the study was considered to have a high overall risk of bias.

Figure 2_Wolff et al.

		Study	Exposu Events	ire Total	Non-Ex Events	posure Total	Odds Ratio	OR	95%-CI	Weight
	a.	Marando et al. Pazukhina et al. (ADT) Maestre-Muniz et al. Almutairi et al. Fernandez-de-las-Penas et al. Cervia et al.	0 27 27 6 115 16	5 48 39 26 126 17	6 466 282 40 1468 69	33 934 504 346 1824 117		0.38 1.29 1.77 2.29 2.54 — 11.13	[0.02; 7.87] [0.72; 2.32] [0.88; 3.58] [0.87; 6.05] [1.35; 4.76] [1.43; 86.77]	2.1% 28.4% 23.4% 15.4% 26.4% 4.4%
		Random effects model Prediction interval Heterogeneity: $l^2 = 24\%$, $\tau^2 = 0.0$	953, p =	261 0.25		3758	0.1 0.51 2 10	1.94	[1.08; 3.50] [0.67; 5.65]	100.0%
	b.	Jacobs et al. Fischer et al.	39 5	67 6	166 167	346 283		1.51 3.47	[0.89; 2.56] [0.40; 30.12]	94.3% 5.7%
		Random effects model Heterogeneity: $I^2 = 0\%$, $\tau^2 = 0$, ρ	= 0.46	73		629	0.1 0.51 2 10	1.58	[0.14; 18.27]	100.0%
	c.	Pazukhina et al. (CHD) Jacobs et al. Almutairi et al.	8 103 11	26 175 51	63 102 35	330 238 321		1.88 1.91 2.25	[0.78; 4.53] [1.28; 2.83] [1.06; 4.78]	13.8% 67.6% 18.6%
		Random effects model Prediction interval Heterogeneity: $I^2 = 0\%$, $\tau^2 = 0$, p	= 0.93	252		889	0.1 0.51 2 10	1.96	[1.61; 2.39] [0.24; 16.18]	100.0%
	d.	Fumagalli et al. Pazukhina et al. (CHD)	4 1	10 5	99 70	244 354		0.98 1.01	[0.27; 3.55] [0.11; 9.22]	74.5% 25.5%
		Random effects model Heterogeneity: $I^2 = 0\%$, $\tau^2 = 0$, p	= 0.98	15		598	0.20 51 2 5	0.99	[0.80; 1.22]	100.0%

Figure 3: Forest plots resulting from random-effects meta-analyses. Odds ratios > 1 indicate that Long-COVID is more likely to occur in participants in the exposure group, i.e. participants with pre-existing allergic conditions, than in the non-exposure group. Panel a: Association between pre-existing asthma measured in a hospital-based population and incidences of Long-COVID. Panel b: Association between pre-existing asthma measured in the general population and incidences of Long-COVID. Panel c: Association between pre-existing minits and incidences of Long-COVID. Panel c: Association between pre-existing minits and incidences of Long-COVID. Panel c: Association between pre-existing minits and incidences of Long-COVID. Panel c: Association between preexisting allergies and incidences of Long-COVID. ADT = adults. CHD = children. CI = confidence interval. OR = odds ratio.

Figure 3_Wolff et al.

MOOSE (Meta-analyses Of Observational Studies in Epidemiology) Checklist

A reporting checklist for Authors, Editors, and Reviewers of Meta-analyses of Observational Studies. You must report the page number in your manuscript where you consider each of the items listed in this checklist. If you have not included this information, either revise your manuscript accordingly before submitting or note N/A.

Reporting Criteria	Reported (Yes/No)	Reported on Page No.
Reporting of Background		
Problem definition		
Hypothesis statement		
Description of Study Outcome(s)		
Type of exposure or intervention used		
Type of study design used		
Study population		
Reporting of Search Strategy		
Qualifications of searchers (eg, librarians		
and investigators)		
Search strategy, including time period		
included in the synthesis and keywords		
Effort to include all available studies,		
including contact with authors		
Databases and registries searched		
Search software used, name and		
version, including special features used		
(eg, explosion)		
Use of hand searching (eg, reference		
lists of obtained articles)		
List of citations located and those		
excluded, including justification		
Method for addressing articles		
published in languages other than		
English		
Method of handling abstracts and		
unpublished studies		
Description of any contact with authors		
Reporting of Methods		
Description of relevance or		
appropriateness of studies assembled for		
assessing the hypothesis to be tested		
Rationale for the selection and coding of		
data (eg, sound clinical principles or		
convenience)		
Documentation of how data were		
classified and coded (eg, multiple raters,		
blinding, and interrater reliability)		
Assessment of confounding (eg,		
comparability of cases and controls in		
studies where appropriate		

Reporting Criteria	Reported (Yes/No)	Reported on Page No.
Assessment of study quality, including		
blinding of quality assessors;		
stratification or regression on possible		
predictors of study results		
Assessment of heterogeneity		
Description of statistical methods (eg,		
complete description of fixed or random		
effects models, justification of whether		
the chosen models account for predictors		
of study results, dose-response models,		
or cumulative meta-analysis) in sufficient		
detail to be replicated		
Provision of appropriate tables and		
graphics		
Reporting of Results		
Table giving descriptive information for		
each study included		
Results of sensitivity testing (eg,		
subgroup analysis)		
Indication of statistical uncertainty of		
findings		
Reporting of Discussion		
Quantitative assessment of bias (eg,		
publication bias)		
Justification for exclusion (eg, exclusion		
of non–English-language citations)		
Assessment of quality of included studies		
Reporting of Conclusions		
Consideration of alternative explanations		
for observed results		
Generalization of the conclusions (ie,		
appropriate for the data presented and		
within the domain of the literature review)		
Guidelines for future research		
Disclosure of funding source		

Once you have completed this checklist, please save a copy and upload it as part of your submission. DO NOT include this checklist as part of the main manuscript document. It must be uploaded as a separate file.