The Southern Ocean carbon cycle 1985-2018: Mean, seasonal cycle, trends and storage

Judith Hauck¹, Luke Gregor², Cara Nissen³, Lavinia Patara⁴, Mark Hague⁵, Precious Mongwe⁶, Seth M Bushinsky⁷, Scott C. Doney⁸, Nicolas Gruber⁹, Corinne Le Quéré¹⁰, Manfredi Manizza¹¹, Matthew R. Mazloff¹², Pedro M. S. Monteiro¹³, and Jens Terhaar¹⁴

¹Alfred Wegener Institute Helmholtz Centre for Polar and Marine Research
²ETH Zurich
³University of Colorado Boulder
⁴GEOMAR Helmholtz-Zentrum für Ozeanforschung Kiel
⁵Environmental Physics, Institute of Biogeochemistry and Pollutant Dynamics, ETH Zurich
⁶Council for Scientific and Industrial Research (CSIR)
⁷University of Hawaii at Mānoa
⁸University of Virginia
⁹ETH Zürich
¹⁰School of Environmental Sciences, University of East Anglia, UK
¹¹Scripps Institution of Oceanography
¹²UCSD
¹³CSIR
¹⁴Climate and Environmental Physics - University of Bern

May 25, 2023

Abstract

We assess the Southern Ocean CO₂ uptake (1985-2018) using data sets gathered in the REgional Carbon Cycle Assessment and Processes Project phase 2 (RECCAP2). The Southern Ocean acted as a sink for CO₂ with close agreement between simulation results from global ocean biogeochemistry models (GOBMs, 0.75±0.28 PgCyr⁻¹) and pCO₂-observation-based products (0.73±0.07 PgCyr⁻¹). This sink is only half that reported by RECCAP1. The present-day net uptake is to first order a response to rising atmospheric CO₂, driving large amounts of anthropogenic CO₂ (Cant) into the ocean, thereby overcompensating the loss of natural CO₂ to the atmosphere. An apparent knowledge gap is the increase of the sink since 2000, with pCO₂-products suggesting a growth that is more than twice as strong and uncertain as that of GOBMs (0.26±0.06 and 0.11±0.03 PgCyr⁻¹ decade⁻¹ respectively). This is despite nearly identical pCO₂ trends in GOBMs and pCO₂-products when both products are compared only at the locations where pCO₂ was measured. Seasonal analyses revealed agreement in driving processes in winter with uncertainty in the magnitude of outgassing, whereas discrepancies are more fundamental in summer, when GOBMs exhibit difficulties in simulating the effects of the non-thermal processes of biology and mixing/circulation. Ocean interior accumulation of Cant points to an underestimate of Cant uptake and storage in GOBMs. Future work needs to link surface fluxes and interior ocean transport, build long overdue systematic observation networks and push towards better process understanding of drivers of the carbon cycle.
The Southern Ocean carbon cycle 1985-2018: Mean, seasonal cycle, trends and storage

Judith Hauck1, Luke Gregor2, Cara Nissen1–3, Lavinia Patara4, Mark Hague2, N. Precious Mongwe5, Seth Bushinsky6, Scott C. Doney7, Nicolas Gruber2, Corinne Le Quéré8, Manfredi Manizza9, Matthew Mazloff9, Pedro M. S. Monteiro4,10, Jens Terhaar11,12,13

1 Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung, Bremerhaven, Germany
2 Environmental Physics, Institute of Biogeochemistry and Pollutant Dynamics, ETH Zurich, Zürich, Switzerland
3 Department of Atmospheric and Oceanic Sciences and Institute of Arctic and Alpine Research, University of Colorado, Boulder, Colorado, USA
4 GEOMAR Helmholtz Centre for Ocean Research Kiel, Kiel, Germany
5 Southern Ocean Carbon-Climate Observatory, CSIR, South Africa
6 University of Hawai‘i Mānoa
7 Dept. of Environmental Sciences, University of Virginia, Charlottesville, VA, USA
8 Scripps Institution of Oceanography, University of California - San Diego, La Jolla, CA
9 School for Climate Studies, Stellenbosch University, South Africa
10 Climate and Environmental Physics, Physics Institute, University of Bern, Switzerland
11 Oeschger Centre for Climate Change Research, University of Bern, Switzerland
12 Department of Marine Chemistry and Geochemistry, Woods Hole Oceanographic Institution, 360 Woods Hole Road, Woods Hole, 02543, Massachusetts, USA

Key Points:

• Ocean models and machine learning estimates agree on the mean Southern Ocean CO₂ sink, but the trend since 2000 differs by a factor of two.
• Compared with RECCAP1, the updated estimate for the Southern Ocean CO₂ uptake is 50% smaller.
• Large model spread in summer and winter indicates that sustained efforts are required to understand driving processes in all seasons.

Corresponding author: Judith Hauck, judith.hauck@awi.de
Abstract
We assess the Southern Ocean CO$_2$ uptake (1985-2018) using data sets gathered in the REgional Carbon Cycle Assessment and Processes Project phase 2 (RECCAP2). The Southern Ocean acted as a sink for CO$_2$ with close agreement between simulation results from global ocean biogeochemistry models (GOBMs, 0.75±0.28 PgC yr$^{-1}$) and pCO$_2$-observation-based products (0.73±0.07 PgC yr$^{-1}$). This sink is only half that reported by RECCAP1. The present-day net uptake is to first order a response to rising atmospheric CO$_2$, driving large amounts of anthropogenic CO$_2$ (C$_{ant}$) into the ocean, thereby overcompensating the loss of natural CO$_2$ to the atmosphere. An apparent knowledge gap is the increase of the sink since 2000, with pCO$_2$-products suggesting a growth that is more than twice as strong and uncertain as that of GOBMs (0.26±0.06 and 0.11±0.03 Pg C yr$^{-1}$ decade$^{-1}$ respectively). This is despite nearly identical pCO$_2$ trends in GOBMs and pCO$_2$-products when both products are compared only at the locations where pCO$_2$ was measured. Seasonal analyses revealed agreement in driving processes in winter with uncertainty in the magnitude of outgassing, whereas discrepancies are more fundamental in summer, when GOBMs exhibit difficulties in simulating the effects of the non-thermal processes of biology and mixing/circulation. Ocean interior accumulation of C$_{ant}$ points to an underestimate of C$_{ant}$ uptake and storage in GOBMs. Future work needs to link surface fluxes and interior ocean transport, build long overdue systematic observation networks and push towards better process understanding of drivers of the carbon cycle.

Plain Language Summary
The ocean takes up CO$_2$ from the atmosphere and thus slows climate change. The Southern Ocean has been long known to be an important region for ocean CO$_2$ uptake. Here, we bring together all available data sets that estimate the Southern Ocean CO$_2$ uptake, from models that simulate ocean circulation and physical and biological processes that affect the ocean carbon cycle, from surface ocean observation-based estimates, from atmospheric transport models that ingest atmospheric CO$_2$ observations, and from interior ocean biogeochemical observations. With these data sets, we find good agreement on the mean Southern Ocean CO$_2$ uptake 1985-2018, which is 50% smaller than previous estimates when recalculated for the time period and spatial extent used in the previous estimate. However, the estimates of the temporal change of the Southern Ocean CO$_2$ uptake differ by a factor of two and thus are not in agreement. We further highlight that knowledge gaps exist not only in winter when observations are typically rare, but equally in summer when biology plays a larger role, which is typically represented in a too simplistic fashion in the dynamic models.

1 Introduction
The Southern Ocean (Figure 1) is the primary conduit between the surface and the deep ocean (Talley, 2013; Morrison et al., 2022) making it a key region for the global carbon cycle and the climate system across time-scales from paleo to present day and into the future (Canadell et al., 2021). Firstly, water mass formation of Antarctic surface water occurs during large-scale upwelling of deep, old and carbon-rich water masses due to strong westerly winds (Russell et al., 2006; Marshall & Speer, 2012). Part of this water moves northwards by Ekman transport and contributes to the formation of Southern mode and intermediate waters (Ito et al., 2010; Sallée et al., 2012; Morrison et al., 2022) together with subtropical water masses (Iudicone et al., 2016). Another part moves southward and circulates in the large gyres of the Weddell and Ross Seas (Klittek et al., 2005). A fraction of these Antarctic surface waters densify on the Antarctic shelves through cooling and brine rejection during sea-ice formation on the Antarctic shelves to then flow
down the Antarctic slope and form Antarctic Bottom Water (Orsi et al., 1999; Jacobs, 2004).

Historically, in pre-industrial times, the Southern Ocean was a net source of CO$_2$ to the atmosphere due to upwelling of carbon-rich deep waters (Mikaloff Fletcher et al., 2007). Importantly, the large-scale upwelling that drove the natural outgassing fluxes in the polar and subpolar Southern Ocean still occurs today. However, since industrialisation, increasing atmospheric levels of CO$_2$ have shifted the thermodynamic equilibrium of CO$_2$ partial pressure between the ocean and the atmosphere in the favor of the latter, thus overcompensating the natural outgassing (e.g., Hoppema, 2004). The contemporary net flux in the Southern Ocean can thus be understood as the sum of the outgassing of natural CO$_2$ and uptake of anthropogenic CO$_2$ (Gruber et al., 2009; Gruber, Landschützer, & Lovenduski, 2019). Importantly, the Southern Ocean has acted as the primary region of uptake for anthropogenic CO$_2$ in the industrialized era (Sarmiento et al., 1992; Orr et al., 2001; Caldeira & Duffy, 2000; Khatiwala et al., 2009; Frölicher et al., 2015; Mikaloff Fletcher et al., 2006), which is attributed to upwelling of old water masses (with low anthropogenic carbon) in a region of high wind speeds, as well as subsequent transport of excess carbon from the surface into the ocean interior through the formation of Subantarctic Mode and Antarctic Intermediate Water (Waugh et al., 2006; Mikaloff Fletcher et al., 2006; Bopp et al., 2015; Langlais et al., 2017; Saltée et al., 2012). In the absence of evidence of substantial changes in the biological carbon pump over the past decades, the role of biology for anthropogenic carbon uptake is thought to be small (Murnane et al., 1999; Holzer & DeVries, 2022). However, the biological carbon pump can have a strong imprint on the net fluxes during the summer when primary production draws down natural CO$_2$ at the surface (e.g., E. Jones et al., 2012, 2015).

While the general importance of the Southern Ocean for the ocean carbon sink is recognised, it is also the region with the largest uncertainty in the mean and trend of the sink (Hauck et al., 2020; Friedlingstein et al., 2022). This is partly because the observation-based estimates and model-based estimates measure different components of the ocean carbon sink, and assumptions on fluxes associated with river discharge need to made, which carry high uncertainty themselves (Aumont et al., 2001; Lacroix et al., 2020). Further, the decadal variability of the Southern Ocean and the underlying mechanisms thereof are a key contributor to the uncertainty and are a topic of continued discussion (Le Quéré et al., 2007; Landschützer et al., 2015; Gruber, Landschützer, & Lovenduski, 2019; Hauck et al., 2020; McKinley et al., 2020; Canadell et al., 2021). A stagnation in the growth of the Southern Ocean carbon sink in the 1990s is commonly attributed to a strengthening of the westerly winds and associated intensified upwelling of carbon- and nutrient-rich deep water (Le Quéré et al., 2007; Lovenduski et al., 2007; Hauck et al., 2013). Indeed, evidence for this stronger upwelling is indirectly observed by enhanced surface nutrient concentrations in all Southern Ocean basins (Hoppema et al., 2015; Panassa et al., 2018; T. Iida et al., 2013; Ayers & Strutton, 2013; Pardo et al., 2017). The early 2000’s marked the start of the so-called reinvigoration of the Southern Ocean carbon sink (Landschützer et al., 2015). The strength of the reinvigoration is uncertain due to the observation-based products potentially overestimating the trends owing to data sparsity (Landschützer et al., 2015; Gloege et al., 2021; Hauck et al., 2023), while further analysis on the trends in the models is needed. Furthermore, the drivers of the reinvigoration are less well understood than for the stagnation, but it may be linked to changes in the atmospheric forcing (Gruber, Landschützer, & Lovenduski, 2019) and/or changes in the overturning circulation (DeVries et al., 2017). There is also evidence that both the stagnation and the reinvigoration are part of a global response to variations in atmospheric CO$_2$ growth rate, ocean temperature and circulation induced by the 1992 eruption of Mount Pinatubo (McKinley et al., 2020; Eddebbar et al., 2019).

The Southern Ocean carbon sink is projected to continue to play an important role in the future carbon cycle as shown by Earth System Model simulations (Hauck et al.,
2015; Kessler & Tjiputra, 2016; Canadell et al., 2021; Terhaar et al., 2021). However, there are indications that system changes may occur, such as a shift to a larger proportion of the CO$_2$ uptake occurring in the polar Southern Ocean (Hauck et al., 2015), and a strong sensitivity of Southern Ocean carbon storage to physical ventilation and warming (Katavouta & Williams, 2021; Terhaar et al., 2021; Bourgeois et al., 2022).

In this study, we aim to synthesize and assess information on the Southern Ocean carbon sink over the period 1985 to 2018 in the framework of the REgional Carbon Cycle Assessment and Processes project, phase 2 (RECCAP2). This work builds on a previous assessment, RECCAP phase 1 (referred to as RECCAP1 for clarity), for the period 1990 to 2009 (Lenton et al., 2013). In RECCAP1, the Southern Ocean was defined as the ocean south of 44$^\circ$S (building on earlier classification in the atmospheric inversion community), which, however, cut through the major anthropogenic CO$_2$ uptake region at the northern edge of the Southern Ocean. The assessment was based on five global ocean biogeochemical models, eleven atmospheric inversions, ten ocean inversions and a single pCO$_2$ observation-based data set, the climatology of Takahashi et al. (2009). RECCAP1 resulted in a best estimate of the net Southern Ocean CO$_2$ uptake (1990-2009) of 0.42±0.07 PgC yr$^{-1}$ based on all models (including inversions), with a surface pCO$_2$-based climatology (Takahashi et al., 2009) suggesting a lower number of 0.27±0.13 PgC yr$^{-1}$ (Lenton et al., 2013). The interannual variability was estimated to be ±25% around this mean value. The largest proportion of the mean flux occurred in the region 44-58$^\circ$S which spans large parts of the Subantarctic Zone and of the Polar Frontal Zone with similar contributions from the Atlantic, Pacific and Indian Ocean sectors. In the Antarctic Zone (south of 58$^\circ$S), individual estimates did not agree on the sign of the net CO$_2$ flux.

A major advance since RECCAP1 is the release and continued updating of the Surface Ocean CO$_2$ Atlas (SOCAT Bakker et al., 2016), which currently provides 33.7 million quality-controlled and curated surface ocean pCO$_2$ measurements with an accuracy of <5 µatm in the 2022 release (Bakker et al., 2022). The release of SOCAT allowed for the development of the surface ocean pCO$_2$ observation-based products (pCO$_2$-products) that interpolate and extrapolate sparse ship-based observations from SOCAT to global coverage. Based on these maps of surface pCO$_2$, the air-sea CO$_2$ flux is then calculated using gas-exchange parameterizations and input data fields such as sea surface temperature and wind fields (R. H. Wanninkhof, 2014). Since RECCAP1, a diverse set of statistical and machine-learning approaches have been developed (e.g., Landschützer et al., 2014; Rödenbeck et al., 2014; Gregor et al., 2019; Chau et al., 2022). The pCO$_2$-products allowed for observation-based investigation of interannual and decadal variability. They confirmed the reported stagnation of the Southern Ocean carbon sink in the 1990s (Le Quéré et al., 2007), and identified the aforementioned reinvigoration in the 2000s (Landschützer et al., 2015; Ritter et al., 2017). However, these pCO$_2$-products have made the Southern Ocean’s long-standing issue of sparse observations even more evident. Observation system simulation experiments (OSSEs) have shown that these methods are prone to regional and temporal biases (Denvil-Sommer et al., 2021) and some pCO$_2$-products may overestimate the decadal variability by 30% (Gloege et al., 2021). In fact, a recent study showed that the SOM-FPN pCO$_2$-product used in the reinvigoration study of Landschützer et al. (2015) overestimates the model-based decadal trend 2000-2018 by 130% in an ocean model subsampling experiment (Hauck et al., 2023). However, these OSSEs have also shown that augmenting ship-based observations with well-placed, high accuracy pCO$_2$ observations from autonomous platforms can reduce these biases (Denvil-Sommer et al., 2021; Djueutchouang et al., 2022; Hauck et al., 2023).

The gap in ship-based pCO$_2$ observations is slowly being addressed by a second major advance, that is autonomous measurement devices. Among these are pH-equipped biogeochemical Argo floats (BGC-floats) (Williams et al., 2016; Johnson et al., 2017). With this approach, float pH measurements are combined with multi-linear regression-derived alkalinity (Williams et al., 2016; Carter et al., 2016, 2018, 2021), to calculate es-
timates of pCO$_2$. Although uncertainties of the BGCFloat based estimates of pCO$_2$ are, to date, higher (theoretical uncertainty of 11 µatm, Williams et al., 2017) than for direct pCO$_2$ measurements (2 µatm, Bakker et al., 2016), some of these indirect pCO$_2$ estimates fill critical gaps in the sparsely sampled winter months. These novel data, either on their own (Gray et al., 2018) or as additional input for pCO$_2$-products (Bushinsky et al., 2019), reported a strong winter outgassing of CO$_2$ in the subpolar Southern Ocean for the years 2015 through 2017 that also led to a substantially smaller estimate of the annual Southern Ocean CO$_2$ uptake for these years. However, these larger-than-expected winter outgassing estimates were challenged by airborne flux estimates and direct pCO$_2$ measurements from a circumpolar navigation by an uncrewed sailing drone (Long et al., 2021; Sutton et al., 2021). The sailing drone observations were in agreement with ship-based pCO$_2$-product estimates throughout all seasons (Sutton et al., 2021). The authors attributed the discrepancy between BGCFloats and other estimates to either a bias of the float measurement devices or interannual variability. In support of the latter argument, the BGCF-Argo-based air-sea CO$_2$ flux in the years 2017-2019 also did not reveal the strong winter outgassing signal of the years 2015 and 2016 (Sutton et al., 2021).

Another advance since RECCAP1 is that more global ocean biogeochemical models (GOBMs) have become available with improvements in resolution and physical and biogeochemical process representation (R. H. Wanninkhof et al., 2013; Friedlingstein et al., 2022). While the ability of the GOBMs to capture interannual variability of air-sea CO$_2$ fluxes (FCO$_2$) was questioned by the larger variability of pCO$_2$-product estimates (Le Quéré et al., 2018), the lower interannual variability of GOBMs now falls within the range of the larger ensemble of pCO$_2$-products (McKinley et al., 2020; Hauck et al., 2020). For the decadal variability of FCO$_2$, there is a moderate agreement between GOBMs and pCO$_2$-products on a stagnation of the sink in the 1990s and an increase of the sink in 2002-2011 but with a larger amplitude of the multi-year/decadal variability in the pCO$_2$-products (McKinley et al., 2020; Hauck et al., 2020; Gruber et al., 2023). Although the GOBMs compare reasonably well to global and Southern Ocean observations of surface ocean pCO$_2$ (Hauck et al., 2020), their estimates of the global ocean carbon sink remain below those of interior ocean anthropogenic carbon accumulation estimates from 1994 to 2007 (Gruber, Clement, et al., 2019), atmospheric inversions, observed O$_2$/N$_2$ ratios (Friedlingstein et al., 2022; Tohjima et al., 2019), and a similar underestimation was found in Earth System Models (Terhaar et al., 2022).

The final major advance in the last decade are regional and global data-assimilating global ocean biogeochemistry models (Verdy & Mazloff, 2017; Carroll et al., 2020). These models bring together the process-based knowledge from GOBMs, but use data assimilation schemes to minimize mismatches between simulated fields, and physical and biogeochemical observations.

Despite these recent advances in observations and models, the Southern Ocean is still the region with the largest discrepancy in mean CO$_2$ flux (although within the uncertainty of the fluxes associated with river discharge which are implicitly included in the observation-based estimates, but not in the models, see sections 2.2.1 and 2.3.1) and variability, as well as largest model spread (Friedlingstein et al., 2022; Canadell et al., 2021). In this study, we aim to quantify the Southern Ocean (following the RECCAP2 biome shown in Figure 1) surface CO$_2$ fluxes and interior storage of anthropogenic carbon over the period 1985-2018 from different classes of models and observations, and to identify knowledge gaps and ways forward.

This study is organized in the following way. In our methods, we describe the region (section 2.1), the datasets that we use throughout this synthesis (section 2.2), and how the data were processed (section 2.3). Our results contain first the estimates of the mean fluxes 1985-2018 and their decomposition into anthropogenic and natural fluxes, and atmospheric CO$_2$ versus climate effects (section 3.1). This is followed by an analysis of summer and winter fluxes and the full seasonal cycle, where we also decompose
pCO$_2$ into seasonal thermal and non-thermal contributions (section 3.2). We then analyze the regionally averaged temporal trends of CO$_2$ flux and also of pCO$_2$ in comparison with in situ pCO$_2$ observations, as well as atmospheric CO$_2$ and climate effects as drivers of the trends (section 3.3). In the final part of the results, the study then evaluates the GOBM simulation results with observation-based estimates of ocean interior storage of anthropogenic carbon in the Southern Ocean (section 3.4). The discussion first summarizes the results with a comparison of the RECCAP1 and RECCAP2 results (section 4.1). We also discuss the drivers of the seasonal cycle (section 4.2), the interannual and decadal variability (section 4.3), and the zonal asymmetry of the fluxes in the Southern Ocean (section 4.4). Lastly, we discuss how our study links with and can inform observational programs (section 4.5), before presenting a conceptual characterization of the Southern Ocean carbon cycle in the conclusions (section 5).

2 Methods

2.1 Regions

We use the RECCAP2 regions (DeVries, 2022) to define the Southern Ocean and its northern boundary (Figure 1). This definition of the Southern Ocean covers the subtropical seasonally stratified biome (STSS), the subpolar seasonally stratified biome (SPSS), and the ice biome (ICE) and is based on the global open ocean biome classification of Fay and McKinley (2014). This covers a larger area than the definition used in RECCAP1 (44-58$^\circ$S, 58-75$^\circ$S Lenton et al., 2013) and has the advantage that it does not cut through the subtropical region with its large CO$_2$ flux into the ocean. The northernmost extent of the Southern Ocean in this definition is 35$^\circ$S. For parts of our analysis, we further separate the Atlantic, Indian, and Pacific Ocean sectors along longitudes of 20$^\circ$E, 147$^\circ$E, and 290$^\circ$E (Figure 1).

2.2 Data sets

Here, we introduce data sets across four different data classes that are used for the assessment of the Southern Ocean CO$_2$ fluxes and storage, namely: ocean biogeochemistry models (14), surface pCO$_2$-based data-products (11), data assimilated and ocean inverse models (3), and atmospheric inversion models (6).

2.2.1 Ocean biogeochemistry models

We used 13 global ocean biogeochemistry models (GOBMs) and 1 regional ocean biogeochemistry model (Table 1). These models simulate ocean circulation and biogeochemical fluxes caused by physics (advection, mixing, gas-exchange) and by biological processes. They are forced with atmospheric fields from reanalysis products, e.g., by either heat and freshwater fluxes directly or by air temperature, wind speed, precipitation and humidity, which are converted to heat and freshwater fluxes using bulk formulae (see references in Table 1; Large et al., 1994). From these 14 models, eleven models are global ocean models with roughly $1^\circ \times 1^\circ$ resolution, and two global models (FESOM, REcoM_HR and ORCA025-GEOMAR) and the regional model (ROMS-SouthernOcean-ETHZ) are available in ca. 0.25$^\circ \times 0.25^\circ$ resolution. Details of global model set-ups are given in (DeVries et al., 2023). The ROMS-based regional Southern Ocean model has a northern boundary at 24$^\circ$S.

For the ocean-models listed above, up to four different simulations were provided (see also Table S1 and DeVries et al., 2023). These differ in whether atmospheric CO$_2$ and all other atmospheric forcing variables vary on interannual time scales, are repeated for a single year, or follow a multi-year climatology. In simulation A, the historical run, both atmospheric CO$_2$ and all other physical forcing variables vary on interannual time scales. In simulation B, the preindustrial control run, a repeated year or climatological
Table 1. Overview of data sets used in this paper. Sorted by data class, here: Global Ocean Biogeochemistry Models (GOBMs), Regional Ocean Biogeochemistry Model, and data assimilated models.

<table>
<thead>
<tr>
<th>Data set</th>
<th>Time period</th>
<th>Specific information</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Global Ocean Biogeochemistry Models Simulations</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CESM-ETHZ</td>
<td>1985-2018</td>
<td>A, B, C, D</td>
<td>Lindsay et al. (2014); S. Yang and Gruber (2016)</td>
</tr>
<tr>
<td>CNRM-ESM2-1</td>
<td>1985-2018</td>
<td>A, B, C, D</td>
<td>Séférian et al. (2019); Berthet et al. (2019); Séférian et al. (2020)</td>
</tr>
<tr>
<td>EC-Earth3</td>
<td>1985-2018</td>
<td>A, B, C, D</td>
<td>Désscher et al. (2022)</td>
</tr>
<tr>
<td>FESOM_REcoM_HR</td>
<td>1985-2018</td>
<td>A, B</td>
<td>Hauck et al. (2013); Schourup-Kristensen et al. (2014, 2018)</td>
</tr>
<tr>
<td>FESOM_REcoM_LR</td>
<td>1985-2018</td>
<td>A, B, C, D</td>
<td>Hauck et al. (2013); Schourup-Kristensen et al. (2014); Hauck et al. (2020)</td>
</tr>
<tr>
<td>MOM6-Princeton</td>
<td>1985-2018</td>
<td>A, B</td>
<td>Liao et al. (2020); Stock et al. (2020)</td>
</tr>
<tr>
<td>MPIOM-HAMOCC</td>
<td>1985-2018</td>
<td>A, B, C, D</td>
<td>Ilyina et al. (2013); Paulsen et al. (2017); Mauritsen et al. (2019)</td>
</tr>
<tr>
<td>MRI-ESM2-1</td>
<td>1985-2018</td>
<td>A, B, C, D</td>
<td>Urakawa et al. (2020)</td>
</tr>
<tr>
<td>ORCA025-GEOMAR</td>
<td>1985-2018</td>
<td>A, B, C, D</td>
<td>Madec and the NEMO team (2016); Kriest and Oschlies (2015); Chien et al. (2022)</td>
</tr>
<tr>
<td>(IPSL-NEMO-PISCES)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PlankTOM12</td>
<td>1985-2018</td>
<td>A, B, C, D</td>
<td>Le Quéré et al. (2016); Buitenhuis et al. (2019); Wright et al. (2021)</td>
</tr>
<tr>
<td>Regional Ocean Biogeochemistry Models Simulations</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Data-assimilated models</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>OCIMv2021</td>
<td>1780-2018</td>
<td>A, B, C</td>
<td>DeVries (2022)</td>
</tr>
</tbody>
</table>
Table 2. Overview of data sets used in this paper (continued). Sorted by data class, here: pCO₂-products and atmospheric inversions. The atmospheric inversions were provided only since 1990.

<table>
<thead>
<tr>
<th>Data set</th>
<th>Time period</th>
<th>Specific information</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>pCO₂-products</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AOML_EXTRAT</td>
<td>1998-2018</td>
<td></td>
<td>R. Wanninkhof (2023)</td>
</tr>
<tr>
<td>CMEMS-LSCE-FFNN</td>
<td>1985-2018</td>
<td></td>
<td>Chau et al. (2022)</td>
</tr>
<tr>
<td>CSIR-ML6</td>
<td>1985-2018</td>
<td></td>
<td>Gregor et al. (2019)</td>
</tr>
<tr>
<td>Jena-CarboScope (ML)</td>
<td>1985-2018</td>
<td></td>
<td>Rödenbeck et al. (2013, 2022)</td>
</tr>
<tr>
<td>JMA-MLR</td>
<td>1985-2018</td>
<td></td>
<td>Y. Iida et al. (2021)</td>
</tr>
<tr>
<td>LDEO-HPD</td>
<td>1985-2018</td>
<td></td>
<td>Gloege et al. (2022)</td>
</tr>
<tr>
<td>NIES-ML3</td>
<td>1985-2018</td>
<td></td>
<td>Zeng et al. (2022)</td>
</tr>
<tr>
<td>OceanSODA-ETHZ</td>
<td>1985-2018</td>
<td></td>
<td>Gregor and Gruber (2021)</td>
</tr>
<tr>
<td>Jena-CarboScope (SOCCOM)</td>
<td>2015-2018</td>
<td></td>
<td>Bushinsky et al. (2019) updated</td>
</tr>
<tr>
<td>MPI-SOM-FFN (SOCCOM)</td>
<td>2015-2018</td>
<td></td>
<td></td>
</tr>
<tr>
<td>LDEO_climatology (climatology)</td>
<td>1988-2018</td>
<td></td>
<td>Takahashi et al. (2009)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Atmospheric inversions</th>
<th></th>
<th>Ocean prior</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>(1990-2020)</td>
<td></td>
<td>pCO₂-product</td>
<td></td>
</tr>
<tr>
<td>CAMS</td>
<td>1979-2020</td>
<td>CMEMS-LSCE-FFNN</td>
<td>Chevallier et al. (2005)</td>
</tr>
<tr>
<td>(1990-2020)</td>
<td></td>
<td>pCO₂-product</td>
<td></td>
</tr>
<tr>
<td>UoE</td>
<td>2001-2020</td>
<td>pCO₂-product</td>
<td></td>
</tr>
<tr>
<td>CMS-Flux</td>
<td>2010-2020</td>
<td>MOM6 GOBM</td>
<td>Liu et al. (2021)</td>
</tr>
</tbody>
</table>

-8-
Figure 1. Study region. The Southern Ocean covers three biomes: The subtropical seasonally stratified (STSS), the subpolar seasonally stratified (SPSS), and the ice (ICE) biome. The biomes are defined following Fay and McKinley (2014). We further consider the Atlantic, Pacific, and Indian Ocean sectors separately in parts of the analysis. The dashed lines show the RECCAP2 Southern Ocean northernmost extent (35°S), the RECCAP1 Southern Ocean northernmost extent (44°S), and RECCAP1’s boundary for the circumpolar region (58°S).

physical atmospheric forcing is used, and the atmospheric CO₂ levels are held constant at pre-industrial levels. In simulation C, the atmospheric CO₂ varies interannually and only the physical atmospheric forcing is climatological. In simulation D, the atmospheric CO₂ levels are held constant at pre-industrial levels, whereas the physical atmospheric forcing varies interannually. These simulations allow for the separation of the effects of the increase in atmospheric CO₂ and climate change and variability on air-sea CO₂ fluxes: the steady-state and non-steady state components of both natural and anthropogenic carbon. Here anthropogenic refers to the direct effect of increasing atmospheric CO₂ and non-steady state encompasses the effects of climate change and variability. For a detailed explanation, please see DeVries et al. (2023) and further explanation in Le Quéré et al. (2010); McNeil and Matear (2013); Hauck et al. (2020); Crisp et al. (2022); Gruber et al. (2023). Simulation A includes all components of the carbon fluxes. In the control simulation B, only the steady-state component of natural carbon is considered. In simulation C, only the steady-state components of both natural and anthropogenic carbon are accounted for. Lastly, in simulation D, only the steady state and non-steady state components of natural carbon are represented.

The majority of models do not account for the river-induced outgassing of carbon (DeVries et al., 2023; Terhaar et al., 2023), hence the air-sea CO₂ flux in simulation A corresponds to the S_{OCEAN} definition used in the Global Carbon Budget (Friedlingstein et al., 2022), which differs from pCO₂-product estimates by the river-induced term. Note that the river-induced term will be discussed in greater detail in section 4.1. In addition, simulation A may include a model bias (mean offset) and drift (temporally changing offset). We assess the model drift of the air-sea CO₂ flux by calculating the linear trend of the integrated CO₂ flux time series for the period 1985-2018 in simulation B for each model and each biome. The time series plots and the linear trends reported in Figure
8 are drift corrected by subtracting the trend from simulation B. We note that this drift-correction only marginally impacts the reported trends in the result section, as the trends in simulation B are small compared to the mean fluxes for all models (see supplementary material: Text S1 and Figure S1). In contrast to a global bias (any deviation of the global mean CO$_2$ flux from 0 in simulation B, see Hauck et al., 2020), the regional bias in the simulated flux cannot be assessed by the set of simulations as it cannot be separated from the natural steady-state air-sea CO$_2$ flux (Terhaar et al., 2023), which is non-zero on a regional level.

We use the full suite of models in all analyses, with two exceptions. Firstly, we excluded the MPIOM-HAMOCC model in all seasonal analyses (Fig. 4-7) because its amplitude of the seasonal cycle is a factor 3-6 larger than in the other models in the three main Southern Ocean biomes (Figure S2), and including this outlier would skew the ensemble mean disproportionately. The exaggerated seasonal cycle in the MPIOM-HAMOCC model was found in earlier studies and is attributed to excessive net primary production in the Southern Ocean (Mongwe et al., 2018). Secondly, the decomposition into natural and anthropogenic CO$_2$ fluxes was not possible with GOBMs that only provided simulations A and B (MOM6-Princeton and FESOM-REcoM-HR). See section 2.3.4 for further restrictions on GOBM use and interpretation for the interior ocean anthropogenic carbon accumulation.

2.2.2 Surface pCO$_2$-based data-products

As a second data class, we use surface ocean pCO$_2$ observation-based data-products (pCO$_2$-products) (Table 2, for more details see DeVries et al., 2023). These pCO$_2$-products extrapolate or interpolate sparse ship-based measurements of pCO$_2$ using statistical modeling approaches. All pCO$_2$-based data-products use SOCAT as the target dataset. The majority of pCO$_2$-products use similar gridded prediction datasets to fill the gaps, including sea surface temperature, sea surface salinity, mixed-layer depth, and chlorophyll-a estimates for the open ocean. We use 8 such pCO$_2$-products that all cover the full time-series 1985-2018 for the ensemble mean of pCO$_2$-products. AOML_EXTRAT covers a shorter period, and is thus not included in the ensemble mean 1985-2018, but is included in the ensemble mean 2015-2018. The largest methodological difference between the pCO$_2$-products stems from the algorithm choice. The majority of the methods use regression approaches (a.k.a. machine learning) such as artificial neural networks (e.g., MPI-SOM-FFN) and gradient boosted decision trees (e.g., CSIR-ML6) to capture the relationship between the ship-based measurements and the predictor variables. The Jena-CarboScope product includes a mechanistic understanding of mixing, entrainment, and fluxes of CO$_2$ into and out of the mixed layer (Rödenbeck et al., 2014). The HPD-LDEO method adjusts global ocean biogeochemistry model estimates of pCO$_2$ to be closer to observed ship-based measurements and is thus an observation-based posterior correction to the GOBM estimates (Gloege et al., 2022).

Further, two additional variants of MPI-SOM-FFN and Jena-CarboScope by Bushinsky et al. (2019, ship+float estimates are used here) include additional BGC-float-derived pCO$_2$ for the Southern Ocean (referred to as BGC-float pCO$_2$-products, 2015-2018). We also use the Watson2020 product, which is a neural network approach (based on MPI-SOM-FFN) but applies an adjustment to SOCAT pCO$_2$ that accounts for the difference between ship intake temperature and satellite sea surface temperature (Watson et al., 2020). The BGC-float pCO$_2$-products (2015-2018) and Watson2020 (1988-2018) are not included in the pCO$_2$-product ensemble averages, as they are based on fundamentally different pCO$_2$ values. We also use a monthly climatology product (LDEO-clim) that is centered on the year 2010 (Takahashi et al., 2009). The LDEO-clim product fills the gaps using a combination of inverse distance weighted interpolation and a diffusive-advective interpolation scheme (Takahashi et al., 2009). Note that this product is only used in representations of the seasonal cycle, and not for trend analyses. All these pCO$_2$-products...
estimate the bulk air-sea CO$_2$ flux with:

$$F_{CO_2} = K_0 \cdot k_w \cdot (p_{CO_2}^{sea} - p_{CO_2}^{atm}) \cdot (1 - \text{ice})$$ (1)

where K_0 is the solubility of CO$_2$ in seawater, k_w is the gas transfer velocity, $p_{CO_2}^{sea}$ is the oceanic estimate of p_{CO_2} from the p_{CO_2}-product, $p_{CO_2}^{atm}$ is the atmospheric p_{CO_2}, and ice is the sea-ice fraction, with the majority of the open ocean having a fraction of 0. Other than $p_{CO_2}^{sea}$, k_w is the largest source of uncertainty in the calculation of bulk air-sea CO$_2$ fluxes R. H. Wanninkhof (2014); Fay et al. (2021). However, most of the p_{CO_2}-products use a quadratic formulation of k_w as described by R. Wanninkhof et al. (1993) meaning that the product spread is reduced due to similar choices – details are shown in Global chapter’s Table S2 (DeVries et al., 2023). An exception is the Watson2020 product (Watson et al., 2020) that calculates air sea CO$_2$ fluxes using the formulation described in Woolf et al. (2016) where a cool and salty skin adjustment is applied.

2.2.3 Data-assimilated models

We use three data-assimilating models (Table 1). The Biogeochemical Southern Ocean State Estimate (B-SOSE Verdy & Mazloff, 2017) is an eddy-permitting 1/6-degree resolution data-assimilating model, which assimilates the data from Southern Ocean Carbon and Climate Observations and Modelling (SOCCOM) BGC-Argo floats as well as shipborne and other autonomous observations (i.e., GLODAP and SOCAT) over the period 2013-2018. In situ and satellite observations of the physical state are also assimilated. B-SOSE is based on the MIT general circulation model (MITgcm Campin et al., 2011) and uses software developed by the consortium for Estimating the Circulation and Climate of the Ocean (ECCO Stammer et al., 2002; Wunsch & Heimbach, 2013) to build on the SOSE physical model framework by adding the Nitrogen version of the Biogiochemistry with Light, Iron, Nutrients, and Gases (N-BLING; evolved from Galbraith et al., 2010) biogeochemical model. Consistency with the data is achieved by systematically adjusting the model initial conditions and the atmospheric state through the 4D-Var assimilation methodology. This B-SOSE assimilation methodology does not break the model biogeochemical or physical budgets. The budgets are closed, which allows one to understand signal attribution, though limits the control we have over the solution. For this reason B-SOSE is only consistent with the data on the timescales longer than approximately 90 days; the mesoscale eddies are reproduced statistically and not deterministically. Even with this assimilation methodology some seasonal biases still exist, and B-SOSE is still a work in progress.

The ECCO-Darwin data-assimilation model (Carroll et al., 2020) is based on a global ocean and sea ice configuration (about 1/3 degree) of the MIT general circulation model and is available from January 1992 to December 2017. Besides being global and covering a longer duration than B-SOSE, this product also uses a different biogeochemical model and assimilation technique. The ECCO circulation estimates used in this version are coupled online with the Darwin ecosystem model (Dutkiewicz et al., 2009), which represents the planktonic ecosystem dynamics coupled with biogeochemical cycles in the ocean. The R. Wanninkhof (1992) parameterization of gas transfer velocity is used and $p_{CO_2}^{atm}$ is the National Oceanic and Atmospheric Administration Marine Boundary Layer Reference product (Dlugokencky et al., 2021). The biogeochemical observations used to evaluate and adjust ECCO-Darwin include (1) surface ocean fugacity (f_{CO_2}) from the monthly gridded Surface Ocean CO$_2$ Atlas (SOCATv5 Bakker et al., 2016), (2) GLODAPv2 ship-based profiles of NO$_3$, PO$_4$, SiO$_2$, O$_2$, dissolved inorganic carbon (DIC), and alkalinity (Olsen et al., 2016), and (3) BGC-Argo float profiles of NO$_3$ and O$_2$ (Drucker & Riser, 2016; Riser et al., 2018). To adjust the model’s fit to the global biogeochemical observations, the Green’s function approach is used to adjust biogeochemical initial conditions and model parameters.
OCIMv2021 is an inverse model that assimilates observations of temperature, salinity, CFCs and radiocarbon to achieve an estimate of the climatological mean ocean circulation (DeVries, 2022). This steady-state circulation model is used together with an abiotic carbon cycle model and atmospheric CO$_2$ forcing to simulate anthropogenic carbon uptake and its redistribution within the ocean. It uses a monthly time-step and simulates the period 1780 to 2018. No assimilation takes place during this period.

2.2.4 Atmospheric inversions

Six atmospheric inversions are available for our analysis (Table 2). Atmospheric inversions make use of the worldwide network of atmospheric CO$_2$ observations. They ingest a dataset of fossil fuel emissions, which are assumed to be well known, into an atmospheric transport model and then solve for the spatio-temporal distribution of land and ocean CO$_2$ fluxes while minimizing the mismatch with atmospheric CO$_2$ observations (Friedlingstein et al., 2022). Thus, the resulting land and ocean carbon fluxes are bound to the atmospheric CO$_2$ growth rate, but the estimated regional fluxes depend on the number of stations in the observational network. The inversions also start from prior estimates of land and ocean fluxes. For four inversion data sets that we use here, the ocean prior is taken from pCO$_2$-products that are used in this analysis as well (Table 2). One inversion (UoE) uses the Takahashi climatology as a prior and one (CMS-Flux) an ocean biogeochemical model. The atmospheric inversions are thus not independent from the other data classes (Friedlingstein et al., 2022, their Table A4). The atmospheric inversion data were submitted for RECCAP in the same version as in the Global Carbon Budget 2021 (Friedlingstein et al., 2022), but only since 1990. The three inversions starting later (2001 or 2010) are only included in averages reported for 2015-2018 (Figures 4 and 5), and as individual lines in the time-series figure (Figure 8).

2.3 Processing

Throughout this study, we report the air-sea CO$_2$ exchange as the net flux (FCO$_2$), which is the sum of natural, anthropogenic and river-induced air-sea CO$_2$ flux (see e.g., DeVries et al., 2023; Hauck et al., 2020; Crisp et al., 2022). As the GOBMs vary widely in their choices on river carbon and nutrient input into the ocean and burial at the seafloor (see DeVries et al., 2023; Terhaar et al., 2023), an adjustment is applied to make all data classes comparable.

2.3.1 River flux adjustment

Globally, the majority of GOBMs produce a small imbalance of riverine carbon inventory and burial globally (<0.14 PgC yr$^{-1}$), which is smaller than the current best estimate of river-induced CO$_2$ ocean outgassing of 0.65 PgC yr$^{-1}$ (Regnier et al., 2022). The imbalances are due to manifold choices and illustrate the lack of a closed land-ocean carbon loop in the GOBMs. As the GOBMs do not adequately account for the river discharge and its fate within the ocean, and thus for river-derived ocean CO$_2$ outgassing (Terhaar et al., 2023), we account for this outgassing by using the spatial patterns of river-induced air-sea CO$_2$ fluxes from Lacroix et al. (2020) that are scaled to the global value of 0.65 PgC yr$^{-1}$ (Regnier et al., 2022). Southern Ocean outgassing from rivers amounts to 0.04 PgC yr$^{-1}$, i.e., around 6% of the global river flux. It is distributed over the Southern Ocean biomes as follows (positive outgassing): 0.00036 PgC yr$^{-1}$ in the ICE biome, 0.053 PgC yr$^{-1}$ (SPSS biome), -0.014 (STSS biome). The estimated riverine CO$_2$ fluxes were added to biome-integrated fluxes in simulation A for all GOBMs, so that these are comparable to the pCO$_2$-products. They are not added to spatial maps of CO$_2$ fluxes due to large uncertainties in the regional attribution by Lacroix et al. (2020). The riverine fluxes are one (ICE) to multiple (SPSS, STSS) orders of magnitude smaller than the
mean fluxes quantified in this study. The uncertainty associated with the river flux adjustment is discussed in section 4.1.

2.3.2 Treatment of different area coverage

Air-sea CO$_2$ fluxes in all data classes were integrated over the area available for each GOBM, pCO$_2$-product etc., i.e., fluxes were not scaled to the same ocean area here. Relative to the ocean area in the RECCAP mask, the covered ocean areas in the GOBMs and data-assimilating models corresponds to 96.2-100% (minimum for CCSM-WHOI) and to 95.6-100% in the pCO$_2$-products (minimum for JMA-MLR). These differences mainly stem from the ICE biome. We assume that the discrepancy arising from differences in covered area are smaller than the uncertainty arising from any extrapolation to the same area.

2.3.3 pCO$_2$ decomposition

To separate temperature driven changes in pCO$_2$ from biological processes and mixing-driven entrainment, pCO$_2$ is decomposed into thermal and non-thermal components (Takahashi et al., 1993). The thermal component (pCO^T_2) is calculated as

\[pCO^T_2 = pCO_2 \cdot e^{(0.0423 \cdot \Delta T)} \]

(2)

where pCO_2 is the annual mean of pCO$_2$ and ΔT difference of the monthly mean temperature from the annual mean temperature. The non-thermal contribution (pCO^{nonT}_2) is estimated as the difference of the thermal contribution (pCO^T_2) from the monthly-averaged pCO$_2$. The first derivatives of these two components are subtracted from each other to create the pCO$_2$ seasonal driver metric, denoted as λpCO_2:

\[\lambda pCO_2 = \left| \frac{pCO^T_2}{\delta t} \right| - \left| \frac{pCO^{nonT}_2}{\delta t} \right| \]

(3)

Here, positive values indicate periods when the thermal component is a larger contributor to pCO$_2$, and negative values show where the DIC processes (non-thermal) play a dominant role in surface pCO$_2$ changes. We also denote the first derivatives as pCO^T_2' and pCO^{nonT}_2' for brevity.

2.3.4 Anthropogenic carbon inventories

Anthropogenic CO$_2$ (C_{ant}) is defined as the change in ocean dissolved inorganic carbon (DIC) since preindustrial times due to the direct effect of increasing CO$_2$ concentration in the atmosphere. It is computed as the DIC difference between experiments A and D. The accumulation of C_{ant} can be separated into a steady-state component (C_{ss}^{ant}, DIC difference between experiments C and B), that is influenced only by the increased atmospheric CO$_2$, and a non-steady-state component (C_{ns}^{ant}), which considers the effect of climate variability and change on C_{ant} (and which is maximally 10-20% of C_{ant}, Text S2 and Figures S3-S4). Here we focus mainly on the change in C_{ant} that has occurred over the period 1994-2007 (hereafter ΔC_{ant}), to correspond to the years covered by the eMLR(C*) observation-based estimate (Gruber, Clement, et al., 2019). The eMLR(C*) method (Clement & Gruber, 2018) uses ocean measurements of DIC from GLODAP2 (Olsen et al., 2016) over more than 30 years as the foundation to determine ΔC_{ant} between nominal years 1994 and 2007. The method has been shown to be accurate at global and basin scales, but is more uncertain at sub-basin scales and should not be used below 3000 m depth. The (2 sigma) uncertainty of the eMLR(C*) product is estimated to be around 19% for the Southern Hemisphere (Gruber, Clement, et al., 2019). The eMLR(C*) method differs fundamentally from past indirect or model-based methods used to estimate C_{ant} accumulated since pre-industrial times (Gruber et al., 1996; Sabine et al., 2004; Waugh et al., 2006; DeVries, 2014). Of these, we used the 1800-1994 cumulative C_{ant}
3 Results

3.1 Mean air-sea CO$_2$ fluxes 1985-2018

We start with a comparison of the average air-sea CO$_2$ flux in the two data classes (GOBMs, pCO$_2$-products) that cover the full period 1985-2018. We exclude data classes with fewer products for the sake of robustness, and show the comparison between all data classes in sections 3.2 and 3.3. The mean net Southern Ocean air-sea CO$_2$ flux 1985-2018 by the GOBM ensemble is -0.75 ± 0.28 PgC yr$^{-1}$ and -0.73 ± 0.07 PgC yr$^{-1}$ (flux into the ocean) for the pCO$_2$-product ensemble mean (Figure 2a). While both ensemble means result in an almost identical ocean uptake of CO$_2$, the GOBM ensemble spread is four times larger.

All Southern Ocean regions are sinks of CO$_2$ based on the ensemble averages of the GOBMs and pCO$_2$-products (Figure 2). The subtropical seasonally stratified biome (STSS), which is a subduction area with deep winter mixed layer depth and intermediate chlorophyll concentration (Fay & McKinley, 2014), is the largest sink according to all data sets (GOBMs: -0.53 ± 0.17 PgC yr$^{-1}$, pCO$_2$-based products: -0.62 ± 0.06 PgC yr$^{-1}$, Figure 2a). Second is the subpolar seasonally stratified biome (SPSS) (GOBMs: -0.13 ± 0.14 PgC yr$^{-1}$, pCO$_2$-products: -0.07 ± 0.02 PgC yr$^{-1}$), which is characterized by upwelling of old water, rich in natural carbon but with low anthropogenic carbon content. The upwelled water is also rich in nutrients, and thus a region with important biological activity. Note that three GOBMs simulate the SPSS to be a source of CO$_2$ to the atmosphere. The marginal sea ice (ICE) biome is the weakest CO$_2$ sink (GOBMs: -0.09 ± 0.13 PgC yr$^{-1}$; pCO$_2$-products: -0.05 ± 0.02 PgC yr$^{-1}$) due to sea ice acting as a lid that prevents carbon outgassing in winter, and is the smallest of all three biomes covering an area of about 60% the size of STSS or SPSS (Fay & McKinley, 2014). Four individual models suggest that the ICE biome is a weak outgassing region, but no other data set supports this.

In a zonal mean view (Figure 2b), the smallest uptake occurs between 62 and 55°S and the largest uptake around 40°S. However, the amplitude differs between data classes, with the pCO$_2$-products having a larger difference between minima and maxima (1.96 mol C m$^{-2}$ yr$^{-1}$), than the GOBM ensemble mean (1.19 mol C m$^{-2}$ yr$^{-1}$). Some of the individual GOBMs deviate from this pattern (see supplementary figure S5a for zonal means of individual models).
Figure 2. Temporal average of the Southern Ocean CO$_2$ net flux (FCO$_2$). A positive flux denotes outgassing from ocean to atmosphere. The temporal average is calculated over the period 1985 to 2018 for the global ocean biogeochemistry models (GOBMs) and pCO$_2$-products (Table 1). (a) The green and blue bar plots show the ensemble mean of the GOBMs and pCO$_2$-based data-products, and open circles indicate the individual GOBMs and pCO$_2$-products. The ensemble standard deviation (1σ) is shown by the error bars. The river flux adjustment added to the GOBMs is small (0.04 PgC yr$^{-1}$), its distribution over the biomes is described in section 2.3.1. (b) zonal mean flux density of the different data sets. Thick green and blue lines show the ensemble means, and thin green and blue lines show the individual GOBMs and pCO$_2$-products. Approximate boundaries for biomes are marked with black points on the x-axis. (c-d) maps of spatial distribution of net CO$_2$ flux for ensemble means of GOBMs, and pCO$_2$-products.
Figure 3. Decomposition of the modeled net air-sea CO$_2$ flux 1985-2018 into natural and anthropogenic CO$_2$ fluxes; as well as into CO$_2$ and climate effects. See method section 2.2.1 for explanation on this decomposition. The separation into natural and anthropogenic CO$_2$ fluxes is not possible for FESOM-REcoM-HR and MOM6-Princeton models as only simulations A and B are available. These models are only shown as crosses for net FCO$_2$ but not used for averaging. Hence, separation within this figure is coherent, but the net FCO$_2$ is slightly different from the net FCO$_2$ in Figure 2.

Regionally, significant differences emerge between the Atlantic, Indian and Pacific sectors of the Southern Ocean (Figure 2c-d). Within the STSS, large CO$_2$ fluxes into the ocean occur in the Atlantic and Indian sector across all data classes (Figure 2b-c, mean flux density: -1.93 mol C m$^{-2}$ yr$^{-1}$ and -2.05 mol C m$^{-2}$ yr$^{-1}$ for GOBMs and pCO$_2$-products, respectively, in the Atlantic sector, -1.44 mol C m$^{-2}$ yr$^{-1}$ and -1.89 mol C m$^{-2}$ yr$^{-1}$ in the Indian sector, and -1.22 mol C m$^{-2}$ yr$^{-1}$ and -1.54 mol C m$^{-2}$ yr$^{-1}$ in the Pacific sector). CO$_2$ outgassing locations differ across the data classes. In the GOBM ensemble mean, the outgassing is mainly confined to the Indian sector of the SPSS, whereas it is more widely spread in the pCO$_2$-product ensemble mean covering the Pacific and Indian Ocean sectors of the SPSS and the Indian sector in the ICE biome. The smooth appearance of the outgassing signal in the GOBM and pCO$_2$-product ensemble means may be partly attributable to averaging over multiple data sets and months and years.

3.1.1 Decomposition into anthropogenic and natural carbon fluxes and climate versus atmospheric CO$_2$ effects on the mean CO$_2$ flux

With the aid of the additional model simulations, we can decompose the net Southern Ocean air-sea CO$_2$ flux into natural and anthropogenic components, and separate the indirect effects of physical climate change and the direct geochemical effect of increasing atmospheric CO$_2$ mixing ratios. The GOBM ensemble mean indicates that the natural Southern Ocean carbon cycle without anthropogenic perturbation would be a small CO$_2$ source to the atmosphere of 0.05PgC yr$^{-1}$, although with a large model spread as indicated by the standard deviation of 0.25PgC yr$^{-1}$ (Figure 3). In fact, six GOBMs simulate negative natural CO$_2$ fluxes, i.e., into the ocean, and six GOBMs simulate positive natural fluxes, i.e., out of the ocean. This also illustrates that the GOBM spread of net fluxes (standard deviation: 0.28 PgC yr$^{-1}$) is, to the first order, dominated by the model differences of natural fluxes (standard deviation: 0.25 PgC yr$^{-1}$), which may contain artifacts from model biases and drift (Terhaar et al., 2023). The spread of anthropo-
anthropogenic fluxes is smaller (0.13 PgC yr\(^{-1}\)). The small *natural* outgassing signal in the ensemble mean is a balance of natural CO\(_2\) uptake in the STSS (-0.26±0.14 PgC yr\(^{-1}\)) and outgassing in the SPSS (0.21±0.11 PgC yr\(^{-1}\)) and ICE (0.10±0.12 PgC yr\(^{-1}\)) biomes. This is in qualitative agreement with the patterns of natural CO\(_2\) fluxes by Mikaloff Fletcher et al. (2007).

The *anthropogenic* perturbation (-0.79±0.13 PgC yr\(^{-1}\)) has turned the SPSS and ICE biomes, and possibly the entire Southern Ocean, from source to sink. The large anthropogenic flux contribution in the SPSS (-0.38±0.08 PgC yr\(^{-1}\)) suppresses the natural CO\(_2\) outgassing flux. The STSS is a sink for both natural and anthropogenic flux components. The *direct effect of increasing atmospheric CO\(_2\)* enhances the Southern Ocean sink by -0.74±0.11 PgC yr\(^{-1}\) and is the largest signal in the anthropogenic perturbation. A smaller component stems from the climate change effect on this steady state CO\(_2\)-induced flux (Figure S6). The direct CO\(_2\) effect is largest in the SPSS (-0.34±0.06 PgC yr\(^{-1}\)) where old water masses reach the surface that are undersaturated in anthropogenic carbon, followed by the STSS and ICE biomes (-0.23±0.03 PgC yr\(^{-1}\) and -0.17±0.03 PgC yr\(^{-1}\)). In the upwelling regions, the primary effect of rising atmospheric CO\(_2\) is thus to suppress the outgassing of natural carbon.

The *effect of physical climate change and variability*, i.e., warming and changes in wind speed patterns and strength that provoke changes in circulation (Le Quéré et al., 2007; Lovenduski et al., 2007; Hauck et al., 2013), reduces the CO\(_2\) flux into the ocean (+0.04±0.07 PgC yr\(^{-1}\)), but is overall small in comparison to the direct CO\(_2\) effect. This climate change induced outgassing stems nearly entirely from the SPSS (+0.04±0.04 PgC yr\(^{-1}\)) with the largest contribution from the Indian sector followed by the Pacific (Figure S7). Thus, the climate change effect amplifies the natural CO\(_2\) outgassing, which is also the largest in the Indian and Pacific sectors of the SPSS. The climate effect is a combination of climate effects on natural and anthropogenic CO\(_2\) fluxes, which partly oppose each other (Figure S6).

3.2 The seasonal cycle of air-sea CO\(_2\) fluxes in the Southern Ocean

We now shift our focus to seasonal fluxes by separating fluxes into separate winter (Figure 4) and summer (Figure 5) mean CO\(_2\) fluxes. For this, we examine the period 2015-2018, for which all data sets are available (see Figure S8 for an annual mean figure for 2015-2018).

3.2.1 Winter

In winter, all but two data sets (one GOBM and BGC-float pCO\(_2\)-products) agree that the Southern Ocean is a sink of CO\(_2\) (GOBMs: -0.83±0.40 PgC yr\(^{-1}\), pCO\(_2\) products: -0.48±0.08 PgC yr\(^{-1}\); Figure 4a). The general pattern of strong uptake towards the north and a reduction towards the south is common to all data classes, though exceptions for individual GOBMs do exist (Figure 4a,b). Expounding on this, the strong uptake in the STSS is shown by all data sets, but further south the coherence disintegrates. Within the SPSS, there is considerable variation in position and magnitude of maximum outgassing with some GOBMs being a sink along the entire zonal mean (Figure 4a,b). Towards the southern reaches of the ICE biome, fluxes are more coherent as they are constrained by sea-ice cover in winter (Figure 4b). For the zonal means of individual GOBMs, see Figure S5.

The divergence between data class average flux estimates for the Southern Ocean are explained nearly entirely by differences in the SPSS (GOBMs: -0.15±0.32 PgC yr\(^{-1}\) and pCO\(_2\) products: 0.15±0.09 PgC yr\(^{-1}\), in Figure 4a). Note also that the spread of the individual GOBMs is the largest in the SPSS (0.32 PgC yr\(^{-1}\)), although it is also substantial in the other biomes (STSS: 0.29 PgC yr\(^{-1}\), ICE: 0.13 PgC yr\(^{-1}\)) (Figure 5a).
Figure 4. Average winter (June-August) air-sea CO$_2$ fluxes (FCO$_2$) in the period 2015-2018, (a) averaged over biomes, (b) zonal mean flux density, (c-f) maps of flux density. Same as Figure 2, but including also data sets with shorter coverage, and a map of the CO$_2$ flux from the BGC-float pCO$_2$-products (panel e), and B-SOSE (f), and hence focussing on the period 2015-2018 for all data sets for comparability. Note that the MPI model is excluded here. The zonal mean of individual models are presented in Figure S5c.
The SPSS is also where we see the largest impact of the inclusion of floats in the BGC-float pCO$_2$-products (Figure 4d,e), with the mean outgassing flux more than doubling that of the regular pCO$_2$-product ensemble.

The zonal differences and features of fluxes between data classes are also most distinct in the SPSS (Figures 4c-f). In short, the Atlantic sector of the SPSS has the lowest flux (weak source or even sink), while the Indian and Pacific sectors dominate the outgassing. The data-assimilated model B-SOSE has stronger localized outgassing compared with the other data classes but bear in mind that B-SOSE is only one data set (Figure 4f), while the other data classes (Figures 4c-e) represent up to 13, thus potentially averaging out local signals. The outgassing hotspot at the boundary between the Atlantic and Indian sectors of the SPSS can also be recognized in the pCO$_2$-products (Figure 4d). The second hotspot in the western Pacific SPSS is not distinguishable in the other data sets.

3.2.2 Summer

In summer, GOBMs, pCO$_2$-products and inversions largely show CO$_2$ uptake within the three Southern Ocean biomes, and outgassing north of the STSS (Figure 5a-b). In contrast to winter, the GOBM ensemble mean for summer 2015-2018 (-1.04±0.77 PgC yr$^{-1}$) underestimates the CO$_2$ uptake relative to the pCO$_2$-product ensemble mean (-1.46±0.18 PgC yr$^{-1}$, Figure 5a). This also holds true for the data-assimilated models, where B-SOSE even simulates outgassing in the SPSS (Figure 5a,b,f). Otherwise, the data-assimilated models, B-SOSE and ECCO-Darwin, deviate substantially from the other data classes. The differences between pCO$_2$-products with and without BGC-float data are hardly apparent in summer (Figure 5a, compared to 4a). This could be due to a smaller discrepancy between float and ship-data in summer, and/or a dominance of SOCAT data in summer for the ship+float estimate. For context, for the period 2015 through 2018, BGC-float data account for up to 70% of winter pCO$_2$ monthly by 1°×1° measurements in the Southern Ocean (SOCAT + floats), while in summer the floats represent only 20% (Bakker et al., 2016; Bushinsky et al., 2019).

While the STSS was a region of coherence between data classes in winter (Figure 4), it is the main source of the discrepancy between the GOBM and pCO$_2$-product ensemble means in summer (GOBMs: -0.40±0.28 PgC yr$^{-1}$, pCO$_2$-products: -0.73±0.08 PgC yr$^{-1}$). The discrepancy is comparatively smaller in the SPSS (GOBMs: -0.33±0.34 PgC yr$^{-1}$, pCO$_2$-products: -0.42±0.06 PgC yr$^{-1}$). We note that CO$_2$ fluxes for both GOBMs and pCO$_2$-products show less variation from ICE to STSS in summer compared to winter (Figure 4b vs 5b, respectively). There is, nevertheless, an offset with lower GOBM CO$_2$ uptake than in pCO$_2$-products north of 55°S, and vice versa to the south. Also, the GOBM spread in the represented magnitude of the fluxes is large. In absolute terms, the GOBM ensemble spread of fluxes in summer (from -2.03 to +0.28 PgC yr$^{-1}$) is larger than in winter (from -1.36 to +0.12 PgC yr$^{-1}$) or than the spread in the annual mean (from -1.30 to -0.38 PgC yr$^{-1}$; see Figure S5b for zonal means of individual GOBMs). This mirrors the difficulty in representing the balance between physical and biological processes in summer, which is further assessed in the next two sections 3.2.3 and 3.2.4.

3.2.3 The full seasonal cycle

We diagnose distinctly different seasonal cycles in the three biomes. The ICE biome has a rather clear maximum uptake in summer in the GOBM and pCO$_2$-product ensemble means, as well as most individual data sets (Figure 6a). In the STSS, the pCO$_2$-products suggest a weak seasonal cycle with a maximum uptake in autumn (Figure 6c), while the majority of GOBMs simulate a maximum CO$_2$ uptake in winter and a substantially smaller flux in summer. The largest disagreement occurs in the SPSS, where the seasonal cycle transitions from winter outgassing in the ICE biome to summer outgassing in the STSS.
Figure 5. Average summer (December-February) air-sea CO$_2$ fluxes (FCO$_2$) in the period 2015-2018. Same as Figure 4, but for summer. The zonal mean of individual models are presented in Figure S5b.
Figure 6. The seasonal cycle of air-sea CO$_2$ flux in the Southern Ocean separated by biomes for all data sets as indicated in the legend, a) subtropical seasonally stratified (STSS) biome, b) subpolar seasonally stratified (SPSS) biome, c) ice (ICE) biome. Thin green and blue lines depict individual GOBMs and pCO$_2$-products, and thick lines indicate their ensemble means. Note that the MPI model is excluded here. The ensemble standard deviation (1σ) is shown by the bars for each month. Panels (d-u) present the season of maximum CO$_2$ uptake per grid cell in the individual GOBMs, data-assimilated models and the ensemble mean of the pCO$_2$-products over the period indicated in the panels (varies by data set). See Figure S9 for the individual pCO$_2$-products (panel d-u equivalents) and Figure S10 for the seasonal cycle in all nine subregions (equivalent to panels a-c but further split into Atlantic, Pacific and Indian Ocean sectors).
biomes. Here, atmospheric inversions and pCO$_2$-products (including the BGC-float pCO$_2$
products), suggest the maximum CO$_2$ uptake to be in summer. In winter, the BGC-float
pCO$_2$-products more than double the estimates of outgassing relative to the other pCO$_2$
products (Figure 6b). The GOBM ensemble average roughly agrees with this seasonal
pattern, but simulates a reduced seasonal cycle amplitude (Figure 6b). The GOBM spread
is large, not only in terms of magnitude but also phasing of the seasonal cycle in the SPSS
(8 out of 13 GOBMs simulate the maximum uptake between November and January;
Figure 6d-r). This illustrates how the transition between the different seasonal cycle regimes
affects particularly the representation of the seasonality in the SPSS. In summary, most
GOBMs and pCO$_2$-products agree on a summer peak in the ICE biome (but exceptions
exist, Figure 6d-r), and a winter peak to the north of the Southern Ocean biomes. The
largest discrepancy between data sets is where and how swift this transition occurs. While
the use of static biomes adds to the discrepancies seen in the averaged seasonal cycles
(Figure 6a-c), the disagreement between the phasing of individual GOBMs is likely a much
larger contributor to these discrepancies (Figure 6d-p). We now turn to an investigation
of the thermal and non-thermal effects on the seasonal cycle, which may help explain these
discrepancies.

3.2.4 Thermal versus non-thermal effects on the seasonal cycle

The seasonal cycle of CO$_2$ fluxes in the Southern Ocean is a balancing act between
competing thermal and non-thermal drivers (Mongwe et al., 2016, 2018; Prend et al., 2022).
DIC drawdown by biological production leads to a summer maximum in CO$_2$ uptake,
whereas upwelling and entrainment of DIC-rich water into the mixed layer in autumn
and winter leads to a minimum in CO$_2$ uptake or even outgassing (Metzl et al., 2006;
Mongwe et al., 2018). Seasonal variations in mixed layer temperature further affect the
solubility of CO$_2$, with lower (higher) temperatures increasing (decreasing) solubility and
thus promoting CO$_2$ uptake (outgassing) (Takahashi et al., 2002).

The thermal and non-thermal components of pCO$_2$ can be decomposed to deter-
mine the dominant driver on monthly timescales (Figure 7; Mongwe et al., 2018). Here,
we do this by estimating the absolute difference of the rate of change of the thermal and
non-thermal components (Figure 7; Eq. 3). The contribution of salinity and total alka-
linity to seasonal pCO$_2$ changes are small in the Southern Ocean and compensate for each
other on a seasonal scale (e.g., Sarmiento & Gruber, 2006; Lauderdale et al., 2016), thus
we here consider the non-thermal component to be predominantly DIC-driven.

In general, the seasonal cycle phasing of the thermal component of the GOBMs agrees
well with those of the pCO$_2$-products (Figure 7a-c). This should not come as a surprise,
as GOBMs are forced by atmospheric reanalyses which assimilate observed SST (Doney
et al., 2007). As a result, the thermal component of the pCO$_2$ seasonal cycle in the GOBMs
(forced by reanalyses) compare much better to the thermal component derived from the
pCO$_2$-products than fully coupled Earth System Models (Mongwe et al., 2016, 2018).
The non-thermal contribution is thus the primary reason for the spread between GOBMs,
and for the differences between GOBMs and pCO$_2$-products (Fig. 7a-c). Thus, we group
GOBMs based on whether they are predominantly DIC or thermally driven across all
three biomes (Fig. 7d-f, Table S2), which we term DIC-dominant or DIC-weak respec-
tively.

In DIC-weak GOBMs, the strong underestimation of the non-thermal component
causes these models to be too strongly temperature driven across the year (Figure 7).
This then tends to shift the timing of uptake towards the colder months (when CO$_2$ sol-
ubility is largest), while the role of biologically driven uptake in spring and summer is
suppressed in favor of warming driven outgassing. This effect is largely confined to the
SPSS and to a lesser extent also the STSS, and can account for the mismatch in the sea-
sonal cycle seen in some GOBMs. For example, in the SPSS, nearly all GOBMs and specif-
Figure 7. (a-c): Seasonal cycle of the rate of change of the thermal (pCO_{2}^T, dashed lines) and non-thermal (pCO_{2}^nonT, solid lines) components of ocean surface pCO_2 on monthly time scales given in μatm month$^{-1}$ (Eq. 2). The bars on the bottom show standard deviations of the non-thermal component. Models have been grouped into DIC dominant/weak, where the DIC weak models have a thermal contribution >0 for the mean of the STSS and SPSS (shown in d-f; see Figure S11 for individual global and regional ocean biogeochemistry models, and Table S2 for the DIC dominant/weak model groups). (d-f): λpCO_2, the difference of the thermal and non-thermal (DIC) components of ocean surface pCO_2 as in Mongwe et al. (2018). When $\lambda pCO_2 > 0$ (red) indicates temperature dominance, and $\lambda pCO_2 < 0$ (blue) indicates that the non-thermal component (i.e., DIC) is dominant. The MPI model is excluded in this analysis.
ically all DIC-weak GOBMs have a shifted season of maximum uptake from summer to spring/winter, i.e., towards the colder months. (Fig. 6 and Table S2). In terms of the underlying mechanisms driving the too weak non-thermal component, we hypothesize that a lack of deep vertical mixing in winter leads to too little entrainment of DIC-rich deep waters, while simultaneously allowing for too early primary production (which may then shift the growing season earlier and reduce biologically driven summer uptake). Notably, the bias in pCO$_2$ is largest in summer (DJF), followed by autumn (MAM), and is about twice as large in the DIC-weak GOBMs than in the DIC-dominant GOBMs (Figure S13). This further supports the lesser importance of thermal processes in the STSS and SPSS regions evident in the pCO$_2$-products.

In the ICE biome GOBMs and pCO$_2$-products tend to agree much more closely in terms of their representation of the seasonal cycle (Fig. 6a). This is likely related to the strong role the seasonal advance and retreat of sea ice plays in air-sea CO$_2$ fluxes, both through its effect as a physical barrier, as well as through its effect on vertical mixing and light availability (thus impacting both physical and biological pathways of DIC into and out of the mixed layer, (Bakker et al., 2008; Shadwick et al., 2021; M. Yang et al., 2021)).

3.3 Temporal variability and trends in Southern Ocean air-sea CO$_2$ flux

We next inspect the temporal evolution of the air-sea CO$_2$ fluxes from 1985-2018 (Figure 8). In this annually-resolved perspective, we also discuss the mean fluxes for data sets that are not available for the full time-period. While the STSS was a net-sink region throughout the period, the SPSS and ICE have turned from neutral (around 0 PgC yr$^{-1}$) to net sink regions since 1985, based on GOBM and pCO$_2$-product ensemble mean estimates. This also holds for most individual GOBMs as only two of them simulate either the ICE or the SPSS biome to still be regions of outgassing at the end of the time series (CCSM-WHOI and EC-Earth3).

Acknowledging some agreement between GOBMs and pCO$_2$-based product ensemble means despite large spread across GOBMs (Figure 8 bars), substantial deviations among individual data sets appear. B-SOSE (2015-2018) suggests a 0.25 PgC yr$^{-1}$ smaller uptake than the GOBM and pCO$_2$-product ensemble means for the entire Southern Ocean (Figure 8a). ECCO-Darwin has the largest flux estimate into the ocean in the SPSS and the entire Southern Ocean (1.30 PgC yr$^{-1}$, 1985-2018). Notably, the two data-assimilated models B-SOSE and ECCO-Darwin differ by a factor of 2 for the Southern Ocean wide estimate. In agreement with previous reports (Bushinsky et al., 2019), BGC-float pCO$_2$-products suggest Southern Ocean uptake to be 40% (0.4 PgC yr$^{-1}$) smaller than the pCO$_2$-products without BGC-float data (2015-2018). This discrepancy originates largely in the SPSS, where the BGC-float pCO$_2$-products estimate outgassing of 0.14 PgC yr$^{-1}$, and the ensemble mean of the SOCAT-only-based pCO$_2$-products estimate a CO$_2$ uptake of -0.13 PgC yr$^{-1}$. Smaller contributions to the deviation stem from the STSS and ICE biomes where BGC-float pCO$_2$-products report a smaller uptake by 0.14 PgC yr$^{-1}$ when compared with the regular pCO$_2$-products. The Watson2020-product is generally close to the other pCO$_2$-products, with the exception of the SPSS where it suggests a flux of -0.18 PgC yr$^{-1}$ (1985-2018), which is larger than any other pCO$_2$-product. The origin of the large SPSS difference in Watson2020 could, in part, be attributed to subtle differences in method choices in addition to different flux parameterisations (Watson et al., 2020). The atmospheric inversions produce a somewhat lower sink (-0.64 PgC yr$^{-1}$, average over three inversions 1985-2018), but are generally close to the pCO$_2$-products, as they mostly use surface pCO$_2$-products as a prior (Table 2 and Friedlingstein et al., 2022). There is also slightly higher interannual variability in the atmospheric inversion ensemble mean, but this is likely due to the small ensemble size.
Figure 8. Temporal evolution of the Southern Ocean air-sea CO\textsubscript{2} flux for a) the entire Southern Ocean, and the b) subtropical seasonally stratified, c) subpolar seasonally stratified, and d) ice biomes. The ensemble standard deviation (1σ) averaged over the whole time series, is shown by the bars. Panels (e-h) are the same as panels (a-d) for the GOBM ensemble average and pCO\textsubscript{2}-product ensemble average only, with linear trends between 1985-2000 and 2001-2018 as the dashed and dotted lines, respectively. The uncertainty range of the trend is calculated as one standard deviation of the trends across all GOBMs and pCO\textsubscript{2}-products, respectively. Note the different y-axis scales. The separation into Atlantic, Pacific and Indian Ocean sectors is shown in Figure S12.
The temporal variability is quantified as the amplitude of ‘interannual variability’ (IAV). This is calculated as the standard deviation of the detrended time-series, as defined in Rödenbeck et al. (2015); Friedlingstein et al. (2022) which, in reality, captures both interannual and decadal variability components. Following this definition, the pCO$_2$-product ensemble means in the SPSS and ICE biomes, but lead to the divergence of the model spread of all three sectors (as in the STSS). In the ICE biome, GOBMs and pCO$_2$-products agree on a trend towards more CO$_2$ uptake, which is significantly different from zero in all biomes except for pCO–2-products in the ICE biome (see numbers in Figure 8h). However, they differ substantially in magnitude between GOBM and pCO$_2$-product ensemble means, particularly in the STSS (Figure 8f). The discrepancies in the magnitude of the trend act to decrease the gap between GOBM and pCO$_2$-product ensemble means in the SPSS and ICE biomes, but lead to the divergence in the flux estimate in the STSS.

On a sub-biome level (i.e., Atlantic, Indian, and Pacific sectors), all three sectors in the STSS were CO$_2$ sinks throughout the period and had weaker trends (less negative) before 2000 compared to the period after 2000 (Figure S12). In the SPSS, the Indian and Pacific sectors are characterized by intermittent outgassing and uptake patterns, in line with observations from BGC-floats (Prend et al., 2022). In the SPSS, the Atlantic sector has a net uptake throughout the period, and the Indian Ocean sector shows the largest model spread of all three sectors (as in the STSS). In the ICE biome, a consistent quasi-linear evolution is apparent in all sectors. We further analyze divergence and drivers of trends in section 3.3.2.

3.3.1 Comparison with in-situ pCO$_2$

Here, we evaluate the accuracy of pCO$_2$ across data classes since pCO$_2$ is the dominant driver of air-sea CO$_2$ flux variability at a monthly scale (Landschützer et al., 2016). All data sets are compared with observations (monthly gridded SOCAT v2022 data set Sabine et al., 2013; Bakker et al., 2016, 2022). The RECCAP2 data sets are subsampled to match the SOCAT observations in time and space, meaning that we do not assess sampling biases, but rather the mismatch between the observed and estimated pCO$_2$.

The comparison of the RECCAP2 GOBMs and pCO$_2$-products with gridded in-situ pCO$_2$ from SOCAT v2022 shows relatively good agreement (Figure 9a). The SOCAT pCO$_2$ data shows large interannual variability due to spatially and temporally vary-
Figure 9. Comparison of surface mean pCO$_2$ for the whole Southern Ocean between global ocean biogeochemistry models (GOBMs) and pCO$_2$-products with in situ observations (gridded SOCAT v2022 data set Sabine et al., 2013). (a) Time-series of annually-averaged pCO$_2$ from GOBMs (green), data-assimilated models (grays), and pCO$_2$-products (blue). The darker shaded lines show the annual mean as calculated from the data sets subsampled to match the historic SOCAT sampling. The lighter shades show the annual mean calculated for the full coverage. The dark red line depicts the annual mean pCO$_2$ from SOCAT observations without interpolation. The assimilation products (ECCO-Darwin and B-SOSE) are kept separate as they have different time series lengths (shown by dashed and solid gray lines respectively). The light red area plot (right y-axis) shows the number of monthly by 1°×1° gridded SOCAT observations per year. (b) The bias of pCO$_2$ for all data classes (subsampled to match SOCAT observations, dark lines in a) relative to SOCAT pCO$_2$ observations (solid dark red line in a). (c) The root mean squared difference (RMSD) between SOCAT observations and estimates for all data classes. Bias and RMSD were calculated on a monthly by 1°×1° resolution, and the bias and RMSD were averaged to annual means afterwards. A plot of RMSE and bias for SPSS and STSS biomes and different seasons is presented in supplementary Figure S13.
ing sampling efforts from year to year, particularly prior to 2000 when samples are fewer and thus carry more weight (Figure 9a). For example, in 1997, SOCAT pCO$_2$ is anomalously low due to high sampling density in the Ross Sea during summer when primary production drives intense CO$_2$ drawdown (Arrigo & van Dijken, 2007). The pCO$_2$ products have a lower bias and a narrower spread than the GOBMs prior to 2000 (1.7±4.3µatm and 10.7±8.0µatm respectively), with the bias and the spread decreasing after 2000 for both classes (-0.3±2.6µatm and -0.9±3.9µatm, Figure 9b). This comparison of simulated to observed pCO$_2$ at observation sites demonstrates that GOBMs are capable of reproducing SOCAT pCO$_2$ and its temporal evolution on large spatial and annual time-scales. Thus, for the period after 2000, the differences in CO$_2$ flux trend for the entire Southern Ocean between GOBMs and pCO$_2$-products (Figure 8) cannot be attributed to differences in pCO$_2$ in the regions where observations were taken. Instead, the differences arise primarily from areas where no pCO$_2$ observations exist, as also concluded in Hauck et al. (2020). The pCO$_2$ time-series calculated from the full coverage results in a lower pCO$_2$ value in the pCO$_2$-products than in the GOBMs (Figure 9a), which could explain the stronger CO$_2$ flux trend in the pCO$_2$-products (Figure 8). This discrepancy between pCO$_2$-products and GOBMs is larger in the last ten years (2009-2019: 5.8 µatm) than the previous decade (1999-2008: 2.8 µatm, Figure 9a). Nevertheless, the RMSD calculated from monthly mean data is higher in GOBMs than in pCO$_2$-products (Figure 9c). This is expected as the pCO$_2$-products are trained to fit the observations and further illustrates the GOBMs’ deficiencies in simulating seasonal and spatial variability of the CO$_2$ uptake.

The assimilation model, ECCO-Darwin, has a negative bias after 2000 (-13.5±3.0 µatm; Figure 4b), but this negative bias is not strongly reflected in the mean of the non-subsampled data, with the mean pCO$_2$ still being larger than that of the pCO$_2$-products, which do not underestimate the pCO$_2$ relative to SOCAT. This further emphasizes that sampling distribution may play an important role in the magnitude of the biases calculated in any model. The pCO$_2$ summer sampling bias in the Southern Ocean has long been recognised as a potential source of biases in pCO$_2$ estimates, particularly for the pCO$_2$-products that rely heavily on the in-situ data (Metzl et al., 2006; Gregor et al., 2017; Ritter et al., 2017; Djeutchouang et al., 2022). The SOCCOM project increased the number of winter samples with pH-enabled profiling floats (from 2014), suggesting stronger outgassing during winter than previously shown (Gray et al., 2018). In RECCAP2, the B-SOSE assimilation model and the BGC-float pCO$_2$-products both make use of this data (Verdy & Mazloff, 2017; Bushinsky et al., 2019). Both of these estimates overestimate pCO$_2$ relative to SOCAT pCO$_2$ highlighting the challenge in consolidating ship-based SOCAT and BGC-float data.

3.3.2 Climate versus CO$_2$ effects on trends in CO$_2$ flux

Our analysis so far has indicated that the GOBMs reproduce seasonal temperature effects on CO$_2$ flux reasonably well (Figure 7), and a larger uncertainty is associated with imprints of circulation and biological activity. Next, we inspect the zonal mean and spatial patterns of the CO$_2$ flux trend 1985-2018 (Figure 10). The pCO$_2$-products place the largest trend towards more CO$_2$ uptake in the entire ICE biome; however, data in this region is sparse and there is larger variability between pCO$_2$ products here (see also Figure 8). The pCO$_2$-products show a secondary peak in the STSS between about 40 to 45°S. The GOBMs in contrast have a large meridional gradient in the ICE biome with a peak in the trend between 60 and 65°S that is reduced in magnitude towards Antarctica. The secondary peak in the STSS is hardly apparent and also displaced southwards compared to the pCO$_2$-products. In addition, the pCO$_2$-products exhibit trends towards less CO$_2$ uptake in the Pacific and eastern Indian sector of the SPSS (Figure 10a-b). Although the difference in flux density between GOBMs and pCO$_2$-products is larger in the ICE biome, the discrepancy in the STSS contributes more to the total flux trend discrepancy due to the larger area of the STSS biome (Figure 8). The trend over 1985-2018
Figure 10. CO₂ flux trend between 1985 and 2018. (a-b) Spatial maps of the net CO₂ flux trend, for (a) the global ocean biogeochemistry models and (b) the pCO₂-products. (c) Zonal mean CO₂ flux trend 1985-2018 for the net CO₂ flux (blue: pCO₂-products, green: GOBMs) and the GOBM flux of $F_{\text{nat,ss}}$ and $F_{\text{ant,ss}}$, i.e., the flux as expected from increasing atmospheric CO₂ alone (green, dashed). (d) The sea surface temperature (SST) trend 1985-2018 in the GOBMs (green) and in the observational data set (black, NOAA Extended Reconstructed Sea Surface Temperature, ERSST, Version 5 (Huang et al., 2017)). Supplementary figures split this analysis in the periods 1985-2000 (Figure S14) and 2001-2018 (Figure S15). Individual GOBM trends for F_{net}, as well as $F_{\text{nat,ss}}$ plus $F_{\text{ant,ss}}$ and SST are shown in Figure S16.
includes some compensation between the trends over 1985-2000 and 2001-2018 (see Figures S14-S15). While the GOBMs show similar weak trends towards more uptake before and after 2000, the pCO$_2$-products show a trend towards less uptake in the earlier period 1985-2000 throughout the Southern Ocean except in the Weddell and Ross Seas. In the later period 2001-2018, the pCO$_2$ products estimate a much stronger trend towards more CO$_2$ uptake everywhere, as also shown in Figure 8. The CO$_2$ flux trends in the GOBMs are largely driven by increasing atmospheric CO$_2$ levels (simulation C in Figure 10c). However, the trend is reduced by climate change and variability throughout the SPSS and strengthened in the northern part of the ICE biome (compare simulations A that represents net FCO$_2$ and C that represents only steady state natural and anthropogenic fluxes, in Figure 10c). The effect of climate change and variability is substantially smaller than the uncertainty in the pCO$_2$-products. In line with GOBMs capturing the thermally-driven component of the pCO$_2$ seasonal cycle (Figure 8), we can also demonstrate that the GOBMs simulate sea surface temperature trends 1985-2018 rather well (Figure 10d). This is related to the choice of forcing the GOBMs with reanalysis data that itself depends on sea surface temperature observations (Doney et al., 2007).

In contrast to fully coupled Earth System models in CMIP6 (Beadling et al., 2020), the suite of models used here capture the decadal trend pattern of warming along the northern flank of the Antarctic Circumpolar Current (ACC), and cooling in the south (Figure 10, Armour et al., 2016; F. Haumann et al., 2020). The lack of warming south of 50$^\circ$S was previously related to the wind-driven upwelling of deep water that had not yet been exposed to anthropogenic warming and by northward heat transport (Armour et al., 2016). More recently, the cooling was suggested to be caused by increased freshwater export from the ice region, which increases stratification and thus reduces the upward heat flux from below by warm water masses (F. Haumann et al., 2020). While the GOBM ensemble mean captures the latitudinal structure of the SST trend well, it underestimates the magnitude of peak cooling at around 60$^\circ$S as well as peak warming north of 40$^\circ$S. Overall, however, the GOBM ensemble mean captures the latitudinal structure of the SST trend well.

We can therefore not relate the discrepancies in the trend of the CO$_2$ flux to temperature biases. This leaves data sparsity as a reason for potential biases in the trend in the pCO$_2$-products, and biases in ocean circulation, sea ice and biology as possible reasons for biases in GOBMs.

3.4 Interior ocean storage of anthropogenic carbon

The focus of this section is the anthropogenic perturbation of dissolved inorganic carbon (DIC) in a subset of the GOBMs (see section 2.2.1), and in particular its accumulation rate over the period 1994 to 2007 (ΔC_{ant}), in comparison with the eMLR(C*) observational estimate (Gruber, Clement, et al., 2019) and the ocean inverse model OCIMv2021 (DeVries, 2022). The eMLR(C*) product uses a multiple linear regression approach to estimate ΔC_{ant} and captures both the influence of CO$_2$-driven and climate-driven change in sea-air CO$_2$ fluxes and transports, whereas OCIMv2021 captures only the CO$_2$-driven changes.

All data classes agree in having the largest ΔC_{ant} inventories within and to the north of the STSS biome (Figure 11), whose southern boundary approximately corresponds to the northern edge of the ACC. This pattern is related to the mechanisms by which C_{ant} is taken up at the surface and exported to depth (Mikaloff Fletcher et al., 2006; Morrison et al., 2022; Bopp et al., 2015). Subpolar upwelling exposes old C_{ant}-poor waters to elevated atmospheric CO$_2$ concentrations and this, combined with strong winds, drives a large influx of C_{ant} in the SPSS biome (Figure 12a-c). A small fraction of the C_{ant} moves southward and is exported within Antarctic Bottom Waters, while the largest fraction is transported northward within the upper cell of the meridional overturning circulation. C_{ant} air-sea fluxes remain elevated throughout the northward path, and are reinforced by the deep mixed layers in the regions where mode and intermediate waters are formed.
Figure 11. ΔC_{ant} yearly accumulation rate over the period 1994-2007 integrated until 3000 m depth in the observationally-constrained estimates a) eMLR(C*) (Gruber et al., 2019) and b) OCIM-v2021, in c) “GOBMs high” and in d) “GOBMs low” (individual GOBMs shown in Fig. S4). The robustness of the patterns has been tested as explained in Text S4 of the Supplement. Contours show the boundaries of the ICE, SPSS and STSS biomes. Values below 3000 m are not shown because of the low signal-to-uncertainty ratio in eMLR(C*).
Figure 12. Zonal integrals of ΔC_{ant} yearly accumulation rate from 1994 to 2007 and of air-sea C_{ant} fluxes (positive downwards) averaged between 1994 and 2007 for a,d) eMLR(C*), b,e) OCIM-v2021 and c,f) GOBMs. a-c) (black line) ΔC_{ant} column inventory (0-3000 m) and (grey line) air-sea C_{ant} fluxes; for the GOBMs, the distinction is made between “GOBMs high” (full lines) and “GOBMs low” (dashed lines). g-i) Anomalies of ΔC_{ant} accumulation rates in g) OCIM-v2021 with respect to eMLR(C*), h) GOBMs with respect to eMLR(C*) and i) GOBMs with respect to OCIM-v2021. In all sections, contours show mean potential density (with a 0.03 kg m$^{-3}$ spacing) referenced to the surface in World Ocean Atlas 2018 (Boyer et al., 2018), where thick lines indicate the 1026.9 kg m$^{-3}$ and 1027.5 kg m$^{-3}$ isopycnals. Anomalies of individual GOBMs shown in Fig. S18 (with respect to eMLR(C*)) and Fig. S19 (with respect to OCIMv2021).
Figure 13. Scatter plots showing relationships between ΔC_{ant} accumulation rates between 1994 and 2007 (integrated to 3000 m) and different quantities namely a) the cumulative C_{ant} in 1994 integrated over the Southern Ocean, b) air-sea C_{ant} fluxes averaged between 1994 and 2007 and integrated over the Southern Ocean, c) sea surface salinity (SSS) horizontally averaged over the SPSS and STSS biomes (which show consistent SSS anomaly patterns, Fig. S17). Shown are a subset of the GOBMs (see 2.3), the OCIM-v2021 data-assimilated model, the observation-based cumulative C_{ant} until 1994 (C* method, Sabine et al., 2004) and the 1994-2007 ΔC_{ant} from (eMLR(C*) method, Gruber, Clement, et al., 2019), and SSS from EN4.2.1 (Good et al., 2013). Thin black lines show the linear fit of the data for the GOBMs only, with the explained variance (R^2) and the p-value indicated for each regression. The grey shading in a) indicates the 19% uncertainty levels around the mean of eMLR(C*) (Southern Hemisphere uncertainty estimate, based on Table 1, Gruber, Clement, et al., 2019) and the green shading the 20% uncertainty levels around the C*-based estimate of cumulative C_{ant} until 1994 (global uncertainty estimate Sabine et al., 2004; Matsumoto & Gruber, 2005). Models that have a ΔC_{ant} storage higher than the average of the two observationally-constrained data sets (“GOBMs high”) are shown in red, whereas the models in which it is lower (“GOBMs low”) are shown in blue. Because of its different spin-up procedure, ROMS-SouthernOcean-ETHZ is shown in the plots but has been excluded from the regression analysis. For OCIM-v2021, CNRM-ESM2-1 and MPIOM-HAMOCC the ΔC_{ant} is shown, whereas in others the sum of steady state and non steady state is shown. As discussed in Text S2, ΔC_{ant} accumulation rates are about 10-20% of the total ΔC_{ant}.
which results in a secondary peak at around 40oS in some GOBMs, diluted by the ensemble mean (Fig. 12c).

The effective transport of C_{ant} into the ocean interior relies on a number of physical processes, the dominant of which is the northward transport by the overturning circulation of the C_{ant} ventilated in the ocean interior by deep winter mixing (Frölicher et al., 2015; Morrison et al., 2022). The absorbed C_{ant} spreads northward along density surfaces within mode and intermediate waters (Figure 12d-f) and is circulated within and out of the Southern Ocean by the subtropical gyres (Frölicher et al., 2015; D. C. Jones et al., 2016; Waugh et al., 2019). As a result, the largest C_{ant} inventories are displaced to the north with respect to the maximum air-sea C_{ant} influx (Figure 12b,c). Another pathway by which the C_{ant} inventory can build up without a corresponding surface influx is by southward advection and subsequent subduction of high-C_{ant} Subtropical Wa-
ters (Iudicone et al., 2016; Morrison et al., 2022).

The observation-based product eMLR(C*) and the ocean inverse model OCIM-v2021 have similar ΔC_{ant} accumulation rates when integrated over the Southern Ocean for the period 1994 through 2007 (0.52 PgC yr$^{-1}$ and 0.47 PgC yr$^{-1}$, respectively, Figure 13), but differ in their horizontal (Figure 11) and vertical (Figure 12) patterns. The eMLR(C*) exhibits particularly low ΔC_{ant} values at subpolar and high latitudes (Figure 12g), especially in the Pacific sector (Figure 11). The GOBMs multi-model-mean of ΔC_{ant} accumulation rates over the same 1994 through 2007 period and integrated within the Southern Ocean (Figure 13) is 0.46±0.11 PgC yr$^{-1}$, i.e., 7% lower than the mean of the two observational estimates considered here. 6 out of the 12 GOBMs fall within the 19% range of the observational eMLR(C*) uncertainty. Two thirds of all GOBMs (hereafter “GOBMs low”) have lower than observed ΔC_{ant} accumulation rates (0.39±0.11 PgC yr$^{-1}$, about 20% lower than the observational estimates). The remaining GOBMs (hereafter “GOBMs high”) have higher than observed ΔC_{ant} accumulation rates (0.58±0.07 PgC yr$^{-1}$, about 17% higher than the observational estimates). “GOBMs high” have a higher ΔC_{ant} storage than “GOBMs low” throughout the Southern Ocean (Figures 11c,d and 12c), higher C_{ant} air-sea fluxes (Figure 12c), higher sea surface salinity (SSS) in the SPSS and STSS biomes and mixed layer depths especially in the SPSS biome (Text S3, S4 and Figure S17). Along the zonal mean section, all GOBMs show a southward shift in ΔC_{ant} with respect to eMLR(C*) shown by a north-south dipole in the upper 1 km (Figure 12h), as similarly found in the comparison between OCIM-v2021 and eMLR(C*) (Figure 12g). With respect to OCIM-v2021, GOBMs show higher ΔC_{ant} above 1000 m depth and lower ΔC_{ant} beneath (Figure 12i). This could point to insufficient ventilation of C_{ant} in “GOBMs low” models (Figure S19), which represent the majority of the GOBMs. The amount of spread and the overall underestimate of ΔC_{ant} in the GOBMs is consistent with Earth System Models analyzed by Frölicher et al. (2015) and Terhaar et al. (2021), supporting the argument that biased ocean model dynamics and water mass properties rather than biases in the atmospheric forcing cause the C_{ant} underestimate (Terhaar et al., 2021; Bourgeois et al., 2022).

Integrated over the Southern Ocean, we find that the model spread in ΔC_{ant} accumulation rates from 1994 to 2007 can be largely explained (81% variance explained) by the spread in accumulated C_{ant} until 1994 (Figure 13), suggesting a coherent scaling between long-term and recent C_{ant} accumulation rates. The model spread in ΔC_{ant} accumulation rates is also related with the spread in C_{ant} air-sea fluxes averaged over 1994-2007 (78% variance explained). These results show that past long-term ΔC_{ant} accumulation rates are a better predictor for present ΔC_{ant} accumulation rate than present C_{ant} air-sea fluxes. The reason for this is that C_{ant} air-sea fluxes are linked to changes in C_{ant} storage through ocean transport, which may differ substantially between models (Frölicher et al., 2015; Terhaar et al., 2021; Bourgeois et al., 2022). This becomes obvious when considering the myriad of processes involved, including the strength of the overturning circulation, the strength of the subtropical gyres, the isopycwal stirring by
Table 3. Comparison of the Southern Ocean carbon sink estimate with the estimate presented in RECCAP1 (Lenton et al., 2013), which used a different definition of the Southern Ocean region (44-75°S) and covered a different period (1990-2009). GOBMs: Global Ocean Biogeochemistry Models. Reported numbers are means ± one standard deviation. Note for RECCAP1 the median of all models is reported.

<table>
<thead>
<tr>
<th>Estimate</th>
<th>GOBMs</th>
<th>Observation-based</th>
</tr>
</thead>
<tbody>
<tr>
<td>RECCAP2 1985-2018</td>
<td>-0.75 ± 0.28 PgC yr⁻¹</td>
<td>-0.73 ± 0.07 PgC yr⁻¹</td>
</tr>
<tr>
<td>RECCAP2 1985-2018 (44°-75°S)</td>
<td>-0.39 ± 0.24 PgC yr⁻¹</td>
<td>-0.30 ± 0.04 PgC yr⁻¹</td>
</tr>
<tr>
<td>RECCAP2 1990-2009 (44°-75°S)</td>
<td>-0.22 ± 0.25 PgC yr⁻¹</td>
<td>-0.14 ± 0.09 PgC yr⁻¹</td>
</tr>
<tr>
<td>RECCAP1 1990-2009 (44°-75°S)</td>
<td>-0.43 ± 0.38 PgC yr⁻¹</td>
<td>-0.27 ± 0.13 PgC yr⁻¹</td>
</tr>
</tbody>
</table>

mesoscale eddies, and localized subduction dynamics (Sallée et al., 2012; Morrison et al., 2022). The different way in which the GOBMs simulate these transport processes is possibly linked to the large model spread in ΔC_{ant} accumulation rates among GOBMs. Past studies have found that SSS affects the surface ocean density in the formation regions of mode and intermediate waters and could be used as a constraint of the C_{ant} air-sea fluxes, and thus of the C_{ant} storage within the recently-ventilated water masses (Terhaar et al., 2021). In this study and in Terhaar et al. (2023), we find that SSS explains a lower variance in the ΔC_{ant} accumulation rates (R^2=61%; Figure 13) and in the C_{ant} air-sea fluxes (R^2=57% Terhaar et al., 2023) with respect to the ESMs (R^2=0.74) analyzed by Terhaar et al. (2021). The relationship may be weaker due to the different suite of models used in the ESM and GOBM ensembles and remaining biases associated with incomplete spin-up (Terhaar et al., 2023).

4 Discussion

4.1 Summary and progress since RECCAP1

We provide an updated estimate of the Southern Ocean carbon sink (see Figure 1 for regional extent). The numbers we present (Table 3) are not directly comparable with the RECCAP1 estimate (Lenton et al., 2013) due to different region definitions (Figure 1) and periods (1990-2009 vs. 1985-2018). The RECCAP1 regional definition of the Southern Ocean (44-75°S) cut across and missed a large part of the strong CO₂ uptake north of the Subantarctic Front. Recalculating the RECCAP2 numbers for the RECCAP1 region would reduce the Southern Ocean CO₂ sink to 52% (GOBMs) or 41% (pCO₂-products) of its original value (Table 3). Adjusting RECCAP2 numbers for the 1990-2009 period would further reduce fluxes by about another 50%. Compared on equal footing (44°-75°S and 1990-2009), we find the Southern Ocean to be a weaker carbon sink in RECCAP2 compared to RECCAP1.

The observational and modeling communities have made substantial progress on quantifying and characterizing the Southern Ocean carbon sink since RECCAP1 (Lenton et al., 2013). The creation of the Surface Ocean CO₂ Atlas and its annual updates have marked a step-change by facilitating the development of statistical models (a.k.a. pCO₂-products). The large and diverse ensemble of pCO₂-products help to identify the robust features of the Southern Ocean carbon sink. The pCO₂-products have a relatively small spread compared to the global ocean biogeochemistry models in terms of mean and seasonal cycle, indicating that the uncertainty from differences in mapping methods is small. However, the spread in the trend estimates is in fact larger in the products than in the GOBMs (Figure 10). Further, the narrow spread in mean and seasonal cycle does not
include the uncertainties due to sparse pCO₂ observations in the Southern Ocean, particularly in winter and before the 2000’s (Ritter et al., 2017). In addition, pCO₂-products share the uncertainties associated with the bulk formulation of air-sea CO₂ exchange (R. H. Wanninkhof et al., 2009; Fay et al., 2021). While they do have their shortcomings, the pCO₂ products are an advance for constraining the Southern Ocean carbon sink compared to the atmospheric inversions that were used in RECCAP1 (Lenton et al., 2013). This is because the surface ocean pCO₂ observations provide a more direct constraint on the air-sea CO₂ flux than the relatively small atmospheric CO₂ signals over the ocean that form the basis of the atmospheric inversions.

The larger GOBM ensemble provides a more representative process-based estimate and the spread in GOBMs has been reduced since RECCAP1 (see Table 3 Lenton et al., 2013). The remaining spread is nevertheless large and points towards critical need for model development, where the largest sources of uncertainty stem from biological process description and circulation, which vary in importance depending on flux component (natural, anthropogenic, etc.), and spatio-temporal scale of interest. In terms of the anthropogenic component, the 12 GOBMs analyzed here have a 24% spread (standard deviation around the mean) in the C_ant accumulation rates, which is marginally larger than the ∼ 20% uncertainty associated with the observational estimates of ΔC_ant and C_ant (even though caution is warranted when directly comparing the uncertainty estimates, which are computed formally different across data classes; Gruber, Clement, et al., 2019; Sabine et al., 2004). Overall, the GOBM ensemble mean underestimates the observation-based estimates of the C_ant accumulation up to 1994 by 19% and the change between 1994-2007 by 7%. Admittedly, the GOBM ensemble analyzed here is relatively small, and the underestimation of C_ant and ΔC_ant is in the range of the uncertainty ranges of the observational estimates. We can nonetheless speculate that the detected underestimation is likely related to a combination of physical, chemical and methodological factors. First, our results point to too little or too shallow ventilation of mode and intermediate waters (Figure 12i), the causes of which can be related to insufficient vertical mixing or too sluggish northward export of the subducted waters (Morrison et al., 2022). However, while sea-surface salinity (SSS) was singled out as a strong predictor of C_ant air-sea fluxes in an ESM ensemble analyzed by (Terhaar et al., 2021), in our study and in (Terhaar et al., 2023), SSS was not found to be a clear constraint of the anthropogenic CO₂ uptake and its interior storage in the GOBMs. Rather, Terhaar et al. (2023) find that biases in the normalized surface Revelle factor could explain the underestimation of C_ant uptake. Finally, the relatively high pre-industrial CO₂ mixing ratios related to late starting dates in several GOBMs are likely causing an underestimation of the cumulative C_ant storage, which is especially large in the Southern Ocean (Terhaar et al., 2023). For the natural carbon fluxes, the difficulty in capturing the delicate balance between physical and biological processes is clearly manifested by the large model spread (Figure 3). In addition, the different spin-up procedures could play a role. Terhaar et al. (2023) indicate that the natural CO₂ flux component may be biased towards uptake that is too strong, possibly related to GOBMs not being in steady-state (Terhaar et al., 2023), which is particularly relevant in the Southern Ocean where old water masses resurface. While long preindustrial spin-ups would bring the GOBMs closer to steady-state and thus reduce drift, they may come at the cost of less realistic surface conditions and their response to climate change and variability (Séférian et al., 2016). Interestingly, the two data-assimilated GOBMs differ to a large extent, illustrating that dynamical processes in these models may still override information gained from assimilated observations.

The averages of the GOBM and pCO₂-product ensembles agree for many key estimates, showing progress over the past 10 years: the mean and spatial distribution of the sink is in good agreement (Figure 2), although discrepancies of the magnitude and, particularly, the trends still persist (Figures 8 and 10; see also Canadell et al., 2021). The fact that these ensemble means agree so well in many respects provides some confidence
in the Southern Ocean CO₂ flux estimates because they are nearly independent. However, the agreement of GOBMs and pCO₂-products on the mean CO₂ flux is partly a result of compensation of regional and seasonal discrepancies (Figures 4, 5, 8). The agreement is also highly susceptible to the choice of river flux adjustment that either locates most outgassing of river-derived carbon in the Southern Ocean (Aumont et al., 2001) or in the tropical Atlantic (Lacroix et al., 2020). Reasons for the discrepancy between Aumont et al. (2001) and Lacroix et al. (2020) may be because of specific choices in nutrient and carbon input, lability of organic matter, resulting ocean model transport (see also the discussion in Terhaar et al., 2023). We here chose to use the river flux adjustment of Lacroix et al. (2020), scaled up to a global value of 0.65 PgC yr⁻¹, resulting in a small adjustment for the Southern Ocean of 0.04 PgC yr⁻¹. In contrast, the Southern Ocean (south of 20°S) adjustment based on Aumont et al. (2001) that is so far used in the Global Carbon Budget is higher by one order of magnitude (0.32 PgC yr⁻¹) and can explain the large mismatch in the mean flux (but not its trend) between GOBMs and pCO₂ products in the Southern Ocean in the Global Carbon Budget (Friedlingstein et al., 2022). The discrepancies in the trend cannot be explained by GOBM biases in warming trends as these are well reproduced (Figure 10). Similarly, the GOBM ensemble is not systematically biased towards formation of mode and intermediate waters that is too weak, in contrast to the ESMs, and an effect on the trend of the ocean carbon sink could not be evidenced (Terhaar et al., 2023). Further potential candidates for GOBM biases, which were not explored here, are stratification (Bourgeois et al., 2022), mixing, and mixed layer dynamics, which could also lead to excess carbon accumulation in the surface layer and thus may be the driver for the overestimation of the surface Revelle factor. In the pCO₂-products, the trend might be biased by data sparsity (Gloege et al., 2021; Hauck et al., 2023).

4.2 Seasonal cycle and thermal versus non-thermal drivers

As a community, we have a good understanding of the mechanisms that drive pCO₂ seasonality in the Southern Ocean (Lenton et al., 2013), but we do not fully understand their magnitudes, opposing or synergistic, in different seasons and regions (Mongwe et al., 2018). Part of this lack of understanding is due to a lack of observations throughout all seasons, though particularly acute during winter (Gray et al., 2018; Bushinsky et al., 2019; Sutton et al., 2021). Further, complex biological processes affecting pCO₂ in summer are more difficult to accurately describe in GOBMs (Mongwe et al., 2018).

While pCO₂ products require little to no understanding to reconstruct the seasonal cycle, they may still suffer from a lack of data (Ritter et al., 2017). This may be shown by the narrow ensemble spread of the pCO₂-products during winter (Figure 7d-f), which may result from poor sampling distribution. That being said, an observation system simulation experiment (OSSE) showed that the seasonal cycle in most of the Southern Ocean is in fact well captured by one pCO₂ product (Gloege et al., 2021). The narrower GOBM spread of the non-thermal pCO₂ component during winter may also suggest that winter-time processes (circulation) are less complex than summer (circulation and biology, Figure 7d-f).

The introduction of biogeochemical Argo floats since the mid 2010’s has increased the number of winter observations (relative to the available ship-based observations), albeit inferred from pH and estimated total alkalinity and thus associated with a higher uncertainty (Williams et al., 2017). The machine learning approaches that include float-based observations result in stronger winter outgassing (Figure 4, Bushinsky et al., 2019). Direct pCO₂ measurements showed that the years used to train the machine learning model (2015-2018) have had anomalously high pCO₂ (Sutton et al., 2021). However, if this is in fact the case, and not related to sampling locations, this may indicate much larger interannual variability in the Southern Ocean than the majority of the pCO₂-products currently estimate (Figure 8). Incorporating these data is thus potentially an
important goal for pCO$_2$-products, but it has proven difficult to incorporate the float-based pCO$_2$ estimates further back in time than 2015, the start of the BGC-float record and account for their higher uncertainty (Bushinsky et al., 2019; Williams et al., 2017).

GOBMs also have a lower pCO$_2$ ensemble spread during winter compared with summer and agree on the spatial location of the winter flux minimum (Figure 4). Nevertheless, the range in magnitude is still more than twice as large as those of the pCO$_2$-products (Figure 7d-f). Since the thermal component is well captured in GOBMs (Figure 7d-e), the non-thermal physical drivers (i.e., circulation) determines the uncertainty observed in winter. In summer, GOBMs have difficulty capturing the delicate balance between biological and physical processes that leads to a large spread in model pCO$_2$ and fluxes (Mongwe et al., 2018). GOBMs may thus benefit from more process-based studies that further our understanding of pCO$_2$ drivers during summer, i.e., biological productivity, respiration, remineralization and sinking of organic carbon as part of the biological carbon pump.

4.3 Temporal variability of CO$_2$ fluxes

Our analysis reduces the previously reported discrepancy in variability of Southern Ocean air-sea CO$_2$ fluxes between data classes (GOBMs and pCO$_2$-product ensemble means, Gruber, Landschützer, & Lovenduski, 2019). We relate the growing agreement to the larger ensemble of pCO$_2$-products in our study, with the newer additions having a substantially lower variability than the two pCO$_2$-products (Jena-CarboScope and SOM-FFN) used by Gruber, Landschützer, and Lovenduski (2019). A recent study using the same RECCAP data base also concluded that there is agreement on the magnitude of interannual variability between GOBMs and pCO$_2$-products (Mayot et al., 2023).

The interannual to decadal variability of Southern Ocean air-sea CO$_2$ fluxes was discussed extensively in the literature, and was often related to variations in the Southern Annual Mode (SAM) (Le Quéré et al., 2007; Lovenduski et al., 2007; Lenton & Matear, 2007; Hauck et al., 2013; Nicholson et al., 2022; Mayot et al., 2023). Also, regional wind variability linked to the zonal wavenumber 3 was suggested as a driver of interannual CO$_2$ flux variability driving both the weakening in the 1990’s and the strengthening in the 2000’s (Landschützer et al., 2015; Keppler & Landschützer, 2019). The arguments of SAM or wave number 3 as dominant drivers of CO$_2$ flux interannual variability might not be fully independent from each other, as previously a wave number 3 like pattern was reported to describe MLD anomalies during positive SAM events (Sallée et al., 2010).

The fact that the maximum IAV of GOBMs is found in the SPSS Indo-Pacific sector (section 3.3, Figure S12) supports the argument of the above mentioned references that upwelling of carbon-rich deep water and related outgassing of natural carbon in response to a positive SAM and strengthening of westerly winds may be the dominant driver of interannual variability (DeVries et al., 2017). This is further supported by studies of atmospheric potential oxygen (APO), which can be used as a tracer of ocean-only processes from measurements of CO$_2$ and O$_2$ at atmospheric stations (Stephens et al., 1998). Nevison et al. (2020) showed that the interannual variations of APO seasonal minimum from stations in the Southern Hemisphere were strongly correlated with the SAM during years of positive phase. Further, they showed that GOBMs (as analyzed in this study) can capture the variability of CO$_2$ and APO fluxes driven by the SAM variations during the austral winter months. However, the study of Nevison et al. (2020) also illustrated that the SAM index variability cannot fully explain the changes in APO seasonal winter minima suggesting that other factors or modes of variability such as ENSO could impact the CO$_2$ and O$_2$ air-sea fluxes of the Southern Ocean as also previously suggested in an ocean modeling study (Verdy et al., 2007).

On top of the interannual variability, on which pCO$_2$ products and GOBMs seem to reach reasonable agreement, discrepancies in the CO$_2$ flux trend since 2000 have emerged
(Figure 8, Friedlingstein et al., 2022). These discrepancies highlight a major knowledge gap and urgently need to be resolved by critical analysis of potential biases in pCO$_2$-products as well as GOBMs (see section 4.1). While there is no evidence so far that adjustments of CO$_2$ fluxes based on model evaluation of interfrontal salinity and Revelle factor affect the trend (Terhaar et al., 2023), data sparsity tends to lead to an overestimation of decadal variability and trend in at least two of the pCO$_2$-products (Gloege et al., 2021; Hauck et al., 2023). Hence, both data classes need to be inspected for deficiencies.

4.4 Zonal asymmetry of the fluxes

While the primary spatial mode of variability in the Southern Ocean is from north to south, zonal variability in the dynamics, biogeochemistry, and carbon fluxes have been reported in the literature (Landschützer et al., 2015; Tamsitt et al., 2016; Rintoul, 2018; Prend et al., 2022). Similarly, we find substantial zonal asymmetry in both the mean states, and seasonal and interannual variability of the Southern Ocean CO$_2$ fluxes (Figures S10, S12); yet many of our results have been presented in a zonally-averaged perspective for the sake of brevity.

In this work, we find that the largest zonal asymmetries in the Southern Ocean mean air-sea CO$_2$ flux occur in the SPSS biome (Figure 4b-e, S12). Here, the Pacific and Indian sectors are larger sources (or weaker sinks) of CO$_2$ to the atmosphere than the Atlantic sector. This is consistent with the pCO$_2$-based products (Figure S12d-f). The float-based pCO$_2$-products amplify this winter outgassing dramatically. However, the GOBMs and the assimilative model ensemble averages do not show a coherent and convincing increase in outgassing in the Indian and Pacific relative to the Atlantic. The zonal asymmetry reported in the observation-based products is consistent with a recent BGC-float-based study that reported stronger outgassing in the Indian and Pacific sectors of the Southern Ocean (Prend et al., 2022). The authors attributed this dominance to stronger winter-time entrainment of deep waters to the surface in these regions. The zonal asymmetry is also apparent in the air-sea CO$_2$ fluxes decomposed into natural and anthropogenic contributions (Figure S7). Here, too, the SPSS is the region with the greatest asymmetry. In the Indian sector, the large natural outgassing fluxes of the ensemble mean are nearly perfectly opposed by the anthropogenic uptake.

4.5 Link large-scale synthesis to observational programs

The analysis presented here provides a synthesis of large-scale datasets with a focus on budgets, spatial and temporal patterns of fluxes and carbon accumulation, and a first-order assessment of large-scale processes (e.g., thermal versus non-thermal, anthropogenic vs natural carbon fluxes). In particular, it highlights spatio-temporal windows for which discrepancies between data classes are largest (e.g., magnitude of winter outgassing, delicate balance of physical versus biological processes in summer, magnitude of decadal trend of the Southern Ocean carbon sink). Importantly, this synthesis builds on contributions from many individual groups contributing repeat observations of surface and interior ocean biogeochemical properties from research vessels and ships of opportunity (e.g., Talley et al., 2016; Hoppema et al., 1998; van Heuven et al., 2014; Metzl et al., 1999; Pardo et al., 2017). The ship-based observations form the cornerstone for many of the data classes in this study: observation-based ocean interior estimates of CO$_2$ storage assess changes in deep ocean measurements of CO$_2$, the surface pCO$_2$ estimates use observations from ships of opportunity, and the GOBMs are evaluated against ocean interior observations. And while sampling biases and gaps in the ship-based measurements may be filled by autonomous platforms with lower accuracy (e.g., BGC-floats), they will always require crossover validation measurements from the high-accuracy shipboard measurements. This emphasizes that the ship-based observations need to continue into the future to characterize the evolution of the Southern Ocean carbon cycle. This will only become more important, once stabilization of atmospheric CO$_2$ will lead to a
larger weight on ocean processes for control of air-sea fluxes relative to the current quasi-
exponential growth rate of atmospheric CO$_2$.

Further, detailed regional process studies employing a wide range of methodologies across disciplines are also important to further our holistic understanding of the Southern Ocean carbon cycle and to improve the description of biogeochemistry and ecosystem dynamics in GOBMs, particularly in summer. One example for such an interdisciplinary program is along the continental shelf west of the Antarctic Peninsula where shipboard observations indicate a strong, near-shore summer undersaturation of surface pCO$_2$ (Eveleth et al., 2017) and seasonal reduction in surface dissolved inorganic carbon (Hauri et al., 2015). The seasonal trends in the ocean CO$_2$ system on the shelf reflect a combination of biological net community production (Ducklow et al., 2018) and meltwater input diluting surface dissolved inorganic carbon and alkalinity (Hauri et al., 2015). Regional ocean biogeochemical models simulate similar onshore-offshore gradients in surface chlorophyll, biological productivity, dissolved inorganic carbon, and pCO$_2$ as well as the observed large interannual biophysical variability associated with year-to-year variations in seasonal sea-ice advance and retreat phenology (Schultz et al., 2021). Observed decadal trends for the region from the early 1990s to late 2010s indicate that reduced sea-ice extent associated with climate change drives an increase in upper ocean stability, phytoplankton biomass and biological dissolved inorganic carbon drawdown, resulting in a growing net downward air-sea CO$_2$ flux during summer (Brown et al., 2019). Recent year-round, autonomous mooring observations of pCO$_2$ and pH suggest a gradual increase in surface ocean pCO$_2$ and dissolved inorganic carbon over the fall and winter, with CO$_2$ outgassing during winter when pCO$_2$ is supersaturated largely blocked by sea-ice cover (Shadwick et al., 2021; M. Yang et al., 2021). Similar large-scale programs are needed in other parts of the Southern Ocean given its size and importance in the global carbon cycle. On-going research activities, also as part of the Southern Ocean Observing System (SOOS), e.g., in the Ross (Smith et al., 2021) and Weddell Seas (Arndt et al., 2022) have the potential of being extended.

5 Conclusions

Here, we present a schematic overview that summarizes the main characteristics of the Southern Ocean carbon cycle 1985-2018, as derived in this analysis and its supplementary material (Figure 14). In general, the sink strength for atmospheric CO$_2$ (net CO$_2$ flux, FCO$_2$) increases from South to North, but with important zonal asymmetry. The Atlantic and Indian Ocean sectors of the Subtropical Seasonally Stratified biome (STSS) are the regions that act as strongest sinks. In the Subpolar Seasonally Stratified biome (SPSS), the Atlantic sector stands out as the only sector acting as an annual mean CO$_2$ sink. Also the seasonal cycle shows a distinct north-south gradient. In the ice-covered biome (ICE) the peak uptake occurs in summer and is driven by the seasonal cycle of dissolved inorganic carbon (DIC), i.e. by physical DIC transport and biological processes. In contrast, the dominant driver of the seasonal cycle of CO$_2$ uptake in the STSS is temperature, and thus the season of peak uptake occurs in winter. Trends in net CO$_2$ uptake derived from Global Ocean Biogeochemistry Models (GOBMs) and surface ocean pCO$_2$ observation based products (pCO$_2$-products) disagree in all biomes, but the discrepancy is strongest in the Pacific sector of the STSS. In terms of anthropogenic CO$_2$ (C_{ant}), the strongest uptake occurs in the SPSS. This is not visible in the map of net CO$_2$ flux, because the anthropogenic uptake manifests itself as a suppression of natural CO$_2$ outgassing. The largest anthropogenic carbon storage occurs in the STSS and northward.

Our analysis confirms the important role of the Southern Ocean in the global carbon cycle. We have highlighted key knowledge gaps that need to be closed through extended observation systems and augmented process descriptions in the dynamic models in order to further reduce uncertainties.
Figure 14. Main characteristics of the Southern Ocean carbon cycle 1985-2018. The surface ocean color shading depicts the net air-sea CO$_2$ flux (FCO$_2$) as the average of the ensemble means from pCO$_2$-products and Global Ocean Biogeochemistry Models (GOBMs). Blue color denotes a CO$_2$ flux into the ocean, and red color a flux out of the ocean. The zonal mean section shows the anthropogenic carbon (C$_{ant}$) accumulation in the ocean interior from GOBMs. ICE: ice-covered biome, SPSS: Subpolar Seasonally Stratified Biome, STSS: Subtopical Seasonally Stratified Biome.
Open Research Section

All RECCAP2 data is hosted on https://zenodo.org/. Link will be updated during the review process.

Acknowledgments
Acknowledgments will be added during the review.

References

Subsurface Warming and Surface Cooling in a Warming Climate. *AGU Advances*, 1(2). doi: 10.1029/2019av000132

Lauderdale, J. M., Dutkiewicz, S., Williams, R. G., & Follows, M. J. (2016). Quantifying the drivers of ocean-atmosphere CO$_2$ fluxes. Global Biogeochemical Cy-

Mauritsen, T., Bader, J., Becker, T., Behrens, J., Bittner, M., Brokopf, R., ... Roeckner, E. (2019). Developments in the MPI-M Earth System Model version 1.2 (MPI-ESM1.2) and Its Response to Increasing CO2. *Journal of Advances—49—
doi: 10.1098/rsta.2022.0055

Wanninkhof, R. H. (2014). Revised estimates of ocean-atmosphere CO2 flux are consistent with ocean carbon inventory. *Nature Communications,* –54–
The Southern Ocean carbon cycle 1985-2018: Mean, seasonal cycle, trends and storage

Judith Hauck1, Luke Gregor2, Cara Nissen1,3, Lavinia Patara1, Mark Hague2, N. Precious Mongwe5, Seth Bushinsky6, Scott C. Doney7, Nicolas Gruber2, Corinne Le Quéré8, Manfredi Manizza9, Matthew Mazloff9, Pedro M. S. Monteiro4,10, Jens Terhaar11,12,13

1Alfred-Wegener-Institut, Helmholtz-Zentrum f"ur Polar- und Meeresforschung, Bremerhaven, Germany
2Environmental Physics, Institute of Biogeochemistry and Pollutant Dynamics, ETH Zurich, Zürich, Switzerland
3Department of Atmospheric and Oceanic Sciences and Institute of Arctic and Alpine Research, University of Colorado, Boulder, Colorado, USA
4GEOMAR Helmholtz Centre for Ocean Research Kiel, Kiel, Germany
5Southern Ocean Carbon-Climate Observatory, CSIR, South Africa
6University of Hawai’i Mānoa
7Dept. of Environmental Sciences, University of Virginia, Charlottesville, VA, USA
8School of Environmental Sciences, University of East Anglia
9Scripps Institution of Oceanography, University of California - San Diego, La Jolla, CA
10School for Climate Studies, Stellenbosch University, South Africa
11Climate and Environmental Physics, Physics Institute, University of Bern, Switzerland
12Oeschger Centre for Climate Change Research, University of Bern, Switzerland
13Department of Marine Chemistry and Geochemistry, Woods Hole Oceanographic Institution, 360 Woods Hole Road, Woods Hole, 02543, Massachusetts, USA

Key Points:

• Ocean models and machine learning estimates agree on the mean Southern Ocean CO₂ sink, but the trend since 2000 differs by a factor of two.
• Compared with RECCAP1, the updated estimate for the Southern Ocean CO₂ uptake is 50% smaller.
• Large model spread in summer and winter indicates that sustained efforts are required to understand driving processes in all seasons.

Corresponding author: Judith Hauck, judith.hauck@awi.de
Abstract

We assess the Southern Ocean CO$_2$ uptake (1985-2018) using data sets gathered in the REgional Carbon Cycle Assessment and Processes Project phase 2 (RECCAP2). The Southern Ocean acted as a sink for CO$_2$ with close agreement between simulation results from global ocean biogeochemistry models (GOBMs, 0.75 ± 0.28 PgC yr$^{-1}$) and pCO$_2$-observation-based products (0.73 ± 0.07 PgC yr$^{-1}$). This sink is only half that reported by RECCAP1. The present-day net uptake is to first order a response to rising atmospheric CO$_2$, driving large amounts of anthropogenic CO$_2$ (C_{ant}) into the ocean, thereby overcompensating the loss of natural CO$_2$ to the atmosphere. An apparent knowledge gap is the increase of the sink since 2000, with pCO$_2$-products suggesting a growth that is more than twice as strong and uncertain as that of GOBMs (0.26 ± 0.06 and 0.11 ± 0.03 Pg C yr$^{-1}$ decade$^{-1}$ respectively). This is despite nearly identical pCO$_2$ trends in GOBMs and pCO$_2$-products when both products are compared only at the locations where pCO$_2$ was measured. Seasonal analyses revealed agreement in driving processes in winter with uncertainty in the magnitude of outgassing, whereas discrepancies are more fundamental in summer, when GOBMs exhibit difficulties in simulating the effects of the non-thermal processes of biology and mixing/circulation. Ocean interior accumulation of C_{ant} points to an underestimate of C_{ant} uptake and storage in GOBMs. Future work needs to link surface fluxes and interior ocean transport, build long overdue systematic observation networks and push towards better process understanding of drivers of the carbon cycle.

Plain Language Summary

The ocean takes up CO$_2$ from the atmosphere and thus slows climate change. The Southern Ocean has been long known to be an important region for ocean CO$_2$ uptake. Here, we bring together all available data sets that estimate the Southern Ocean CO$_2$ uptake, from models that simulate ocean circulation and physical and biological processes that affect the ocean carbon cycle, from surface ocean observation-based estimates, from atmospheric transport models that ingest atmospheric CO$_2$ observations, and from interior ocean biogeochemical observations. With these data sets, we find good agreement on the mean Southern Ocean CO$_2$ uptake 1985-2018, which is 50% smaller than previous estimates when recalculated for the time period and spatial extent used in the previous estimate. However, the estimates of the temporal change of the Southern Ocean CO$_2$ uptake differ by a factor of two and thus are not in agreement. We further highlight that knowledge gaps exist not only in winter when observations are typically rare, but equally in summer when biology plays a larger role, which is typically represented in a too simplistic fashion in the dynamic models.

1 Introduction

The Southern Ocean (Figure 1) is the primary conduit between the surface and the deep ocean (Talley, 2013; Morrison et al., 2022) making it a key region for the global carbon cycle and the climate system across time-scales from paleo to present day and into the future (Canadell et al., 2021). Firstly, water mass formation of Antarctic surface water occurs during large-scale upwelling of deep, old and carbon-rich water masses due to strong westerly winds (Russell et al., 2006; Marshall & Speer, 2012). Part of this water moves northwards by Ekman transport and contributes to the formation of Southern mode and intermediate waters (Ito et al., 2010; Sallée et al., 2012; Morrison et al., 2022) together with subtropical water masses (Iudicone et al., 2016). Another part moves southward and circulates in the large gyres of the Weddell and Ross Seas (Khatt et al., 2005). A fraction of these Antarctic surface waters densify on the Antarctic shelves through cooling and brine rejection during sea-ice formation on the Antarctic shelves to then flow...
down the Antarctic slope and form Antarctic Bottom Water (Orsi et al., 1999; Jacobs, 2004).

Historically, in pre-industrial times, the Southern Ocean was a net source of CO₂ to the atmosphere due to upwelling of carbon-rich deep waters (Mikaloff Fletcher et al., 2007). Importantly, the large-scale upwelling that drove the natural outgassing fluxes in the polar and subpolar Southern Ocean still occurs today. However, since industrialisation, increasing atmospheric levels of CO₂ have shifted the thermodynamic equilibrium of CO₂ partial pressure between the ocean and the atmosphere in the favor of the latter, thus overcompensating the natural outgassing (e.g., Hoppema, 2004). The contemporary net flux in the Southern Ocean can thus be understood as the sum of the outgassing of natural CO₂ and uptake of anthropogenic CO₂ (Gruber et al., 2009; Gruber, Landschützer, & Lovenduski, 2019). Importantly, the Southern Ocean has acted as the primary region of uptake for anthropogenic CO₂ in the industrialized era (Sarmiento et al., 1992; Orr et al., 2001; Caldeira & Duffy, 2000; Khatiwala et al., 2009; Frölicher et al., 2015; Mikaloff Fletcher et al., 2006), which is attributed to upwelling of old water masses (with low anthropogenic carbon) in a region of high wind speeds, as well as subsequent transport of excess carbon from the surface into the ocean interior through the formation of Subantarctic Mode and Antarctic Intermediate Water (Waugh et al., 2006; Mikaloff Fletcher et al., 2006; Bopp et al., 2015; Langlais et al., 2017; Sallée et al., 2012). In the absence of evidence of substantial changes in the biological carbon pump over the past decades, the role of biology for anthropogenic carbon uptake is thought to be small (Murnane et al., 1999; Holzer & DeVries, 2022). However, the biological carbon pump can have a strong imprint on the net fluxes during the summer when primary production draws down natural CO₂ at the surface (e.g., E. Jones et al., 2012, 2015).

While the general importance of the Southern Ocean for the ocean carbon sink is recognised, it is also the region with the largest uncertainty in the mean and trend of the sink (Hauk et al., 2020; Friedlingstein et al., 2022). This is partly because the observation-based estimates and model-based estimates measure different components of the ocean carbon sink, and assumptions on fluxes associated with river discharge need to made, which carry high uncertainty themselves (Aumont et al., 2001; Lacroix et al., 2020). Further, the decadal variability of the Southern Ocean and the underlying mechanisms thereof are a key contributor to the uncertainty and are a topic of continued discussion (Le Quéré et al., 2007; Landschützer et al., 2015; Gruber, Landschützer, & Lovenduski, 2019; Hauck et al., 2020; McKinley et al., 2020; Canadell et al., 2021). A stagnation in the growth of the Southern Ocean carbon sink in the 1990s is commonly attributed to a strengthening of the westerly winds and associated intensified upwelling of carbon- and nutrient-rich deep water (Le Quéré et al., 2007; Lovenduski et al., 2007; Hauck et al., 2013). Indeed, evidence for this stronger upwelling is indirectly observed by enhanced surface nutrient concentrations in all Southern Ocean basins (Hoppema et al., 2015; Panassa et al., 2018; T. Iida et al., 2013; Ayers & Strutton, 2013; Pardo et al., 2017). The early 2000’s marked the start of the so-called reinvigoration of the Southern Ocean carbon sink (Landschützer et al., 2015). The strength of the reinvigoration is uncertain due to the observation-based products potentially overestimating the trends owing to data sparsity (Landschützer et al., 2015; Gloege et al., 2021; Hauck et al., 2023), while further analysis on the trends in the models is needed. Furthermore, the drivers of the reinvigoration are less well understood than for the stagnation, but it may be linked to changes in the atmospheric forcing (Gruber, Landschützer, & Lovenduski, 2019) and/or changes in the overturning circulation (DeVries et al., 2017). There is also evidence that both the stagnation and the reinvigoration are part of a global response to variations in atmospheric CO₂ growth rate, ocean temperature and circulation induced by the 1992 eruption of Mount Pinatubo (McKinley et al., 2020; Eddebbar et al., 2019).

The Southern Ocean carbon sink is projected to continue to play an important role in the future carbon cycle as shown by Earth System Model simulations (Hauck et al.,...
there are indications that system changes may occur, such as a shift to a larger proportion of the CO$_2$ uptake occurring in the polar Southern Ocean (Hauck et al., 2015), and a strong sensitivity of Southern Ocean carbon storage to physical ventilation and warming (Katavouta & Williams, 2021; Terhaar et al., 2021; Bourgeois et al., 2022).

In this study, we aim to synthesize and assess information on the Southern Ocean carbon sink over the period 1985 to 2018 in the framework of the REgional Carbon Cycle Assessment and Processes project, phase 2 (RECCAP2). This work builds on a previous assessment, RECCAP phase 1 (referred to as RECCAP1 for clarity), for the period 1990 to 2009 (Lenton et al., 2013). In RECCAP1, the Southern Ocean was defined as the ocean south of 44°S (building on earlier classification in the atmospheric inversion community), which, however, cut through the major anthropogenic CO$_2$ uptake region at the northern edge of the Southern Ocean. The assessment was based on five global ocean biogeochemical models, eleven atmospheric inversions, ten ocean inversions and a single pCO$_2$ observation-based data set, the climatology of Takahashi et al. (2009). RECCAP1 resulted in a best estimate of the net Southern Ocean CO$_2$ uptake (1990-2009) of 0.42±0.07 PgC yr$^{-1}$ based on all models (including inversions), with a surface pCO$_2$-based climatology (Takahashi et al., 2009) suggesting a lower number of 0.27±0.13 PgC yr$^{-1}$ Lenton et al. (2013). The interannual variability was estimated to be ±25% around this mean value. The largest proportion of the mean flux occurred in the region 44–58°S which spans large parts of the Subantarctic Zone and of the Polar Frontal Zone with similar contributions from the Atlantic, Pacific and Indian Ocean sectors. In the Antarctic Zone (south of 58°S), individual estimates did not agree on the sign of the net CO$_2$ flux.

A major advance since RECCAP1 is the release and continued updating of the Surface Ocean CO$_2$ Atlas (SOCAT Bakker et al., 2016), which currently provides 33.7 million quality-controlled and curated surface ocean pCO$_2$ measurements with an accuracy of <5 µatm in the 2022 release (Bakker et al., 2022). The release of SOCAT allowed for the development of the surface ocean pCO$_2$ observation-based products (pCO$_2$-products) that interpolate and extrapolate sparse ship-based observations from SOCAT to global coverage. Based on these maps of surface pCO$_2$, the air-sea CO$_2$ flux is then calculated using gas-exchange parameterizations and input data fields such as sea surface temperature and wind fields (R. H. Wanninkhof, 2014). Since RECCAP1, a diverse set of statistical and machine-learning approaches have been developed (e.g., Landschützer et al., 2014; Rödenbeck et al., 2014; Gregor et al., 2019; Chau et al., 2022). The pCO$_2$-products allowed for observation-based investigation of interannual and decadal variability. They confirmed the reported stagnation of the Southern Ocean carbon sink in the 1990s (Le Quéré et al., 2007), and identified the aforementioned reinvigoration in the 2000s (Landschützer et al., 2015; Ritter et al., 2017). However, these pCO$_2$-products have made the Southern Ocean’s long-standing issue of sparse observations even more evident. Observation system simulation experiments (OSSEs) have shown that these methods are prone to regional and temporal biases (Denvil-Sommer et al., 2021) and some pCO$_2$-products may overestimate the decadal variability by 30% (Gloege et al., 2021). In fact, a recent study showed that the SOM-FFN pCO$_2$-product used in the reinvigoration study of Landschützer et al. (2015) overestimates the model-based decadal trend 2000-2018 by 130% in an ocean model subsampling experiment (Hauck et al., 2023). However, these OSSEs have also shown that augmenting ship-based observations with well-placed, high accuracy pCO$_2$ observations from autonomous platforms can reduce these biases (Denvil-Sommer et al., 2021; Djouutchouang et al., 2022; Hauck et al., 2023).

The gap in ship-based pCO$_2$ observations is slowly being addressed by a second major advance, that is autonomous measurement devices. Among these are pH-equipped biogeochemical Argo floats (BGC-floats) (Williams et al., 2016; Johnson et al., 2017). With this approach, float pH measurements are combined with multi-linear regression-derived alkalinity (Williams et al., 2016; Carter et al., 2016, 2018, 2021), to calculate es-
estimates of pCO$_2$. Although uncertainties of the BGC-float based estimates of pCO$_2$ are, to date, higher (theoretical uncertainty of 11 µatm, Williams et al., 2017) than for direct pCO$_2$ measurements (2 µatm, Bakker et al., 2016), some of these indirect pCO$_2$ estimates fill critical gaps in the sparsely sampled winter months. These novel data, either on their own (Gray et al., 2018) or as additional input for pCO$_2$-products (Bushinsky et al., 2019), reported a strong winter outgassing of CO$_2$ in the subpolar Southern Ocean for the years 2015 through 2017 that also led to a substantially smaller estimate of the annual Southern Ocean CO$_2$ uptake for these years. However, these larger-than-expected winter outgassing estimates were challenged by airborne flux estimates and direct pCO$_2$ measurements from a circumpolar navigation by an uncrewed sailing drone (Long et al., 2021; Sutton et al., 2021). The sailing drone observations were in agreement with ship-based pCO$_2$-product estimates throughout all seasons (Sutton et al., 2021). The authors attributed the discrepancy between BGC-floats and other estimates to either a bias of the float measurement devices or interannual variability. In support of the latter argument, the BGC-Argo-based air-sea CO$_2$ flux in the years 2017-2019 also did not reveal the strong winter outgassing signal of the years 2015 and 2016 (Sutton et al., 2021).

Another advance since RECCAP1 is that more global ocean biogeochemical models (GOBMs) have become available with improvements in resolution and physical and biogeochemical process representation (R. H. Wanninkhof et al., 2013; Friedlingstein et al., 2022). While the ability of the GOBMs to capture interannual variability of air-sea CO$_2$ fluxes (FCO$_2$) was questioned by the larger variability of pCO$_2$-product estimates (Le Quéré et al., 2018), the lower interannual variability of GOBMs now falls within the range of the larger ensemble of pCO$_2$-products (McKinley et al., 2020; Hauck et al., 2020). For the decadal variability of FCO$_2$, there is a moderate agreement between GOBMs and pCO$_2$-products on a stagnation of the sink in the 1990s and an increase of the sink in 2002-2011 but with a larger amplitude of the multi-year/decadal variability in the pCO$_2$-products (McKinley et al., 2020; Hauck et al., 2020; Gruber et al., 2023). Although the GOBMs compare reasonably well to global and Southern Ocean observations of surface ocean pCO$_2$ (Hauck et al., 2020), their estimates of the global ocean carbon sink remain below those of interior ocean anthropogenic carbon accumulation estimates from 1994 to 2007 (Gruber, Clement, et al., 2019), atmospheric inversions, observed O$_2$/N$_2$ ratios (Friedlingstein et al., 2022; Tohjima et al., 2019), and a similar underestimation was found in Earth System Models (Terhaar et al., 2022).

The final major advance in the last decade are regional and global data-assimilating global ocean biogeochemistry models (Verdy & Mazloff, 2017; Carroll et al., 2020). These models bring together the process-based knowledge from GOBMs, but use data assimilation schemes to minimize mismatches between simulated fields, and physical and biogeochemical observations.

Despite these recent advances in observations and models, the Southern Ocean is still the region with the largest discrepancy in mean CO$_2$ flux (although within the uncertainty of the fluxes associated with river discharge which are implicitly included in the observation-based estimates, but not in the models, see sections 2.2.1 and 2.3.1) and variability, as well as largest model spread (Friedlingstein et al., 2022; Canadell et al., 2021). In this study, we aim to quantify the Southern Ocean (following the RECCAP2 biome shown in Figure 1) surface CO$_2$ fluxes and interior storage of anthropogenic carbon over the period 1985-2018 from different classes of models and observations, and to identify knowledge gaps and ways forward.

This study is organized in the following way. In our methods, we describe the region (section 2.1), the datasets that we use throughout this synthesis (section 2.2), and how the data were processed (section 2.3). Our results contain first the estimates of the mean fluxes 1985-2018 and their decomposition into anthropogenic and natural fluxes, and atmospheric CO$_2$ versus climate effects (section 3.1). This is followed by an analysis of summer and winter fluxes and the full seasonal cycle, where we also decompose
pCO$_2$ into seasonal thermal and non-thermal contributions (section 3.2). We then analyze the regionally averaged temporal trends of CO$_2$ flux and also of pCO$_2$ in comparison with in situ pCO$_2$ observations, as well as atmospheric CO$_2$ and climate effects as drivers of the trends (section 3.3). In the final part of the results, the study then evaluates the GOBM simulation results with observation-based estimates of ocean interior storage of anthropogenic carbon in the Southern Ocean (section 3.4). The discussion first summarizes the results with a comparison of the RECCAP1 and RECCAP2 results (section 4.1). We also discuss the drivers of the seasonal cycle (section 4.2), the interannual and decadal variability (section 4.3), and the zonal asymmetry of the fluxes in the Southern Ocean (section 4.4). Lastly, we discuss how our study links with and can inform observational programs (section 4.5), before presenting a conceptual characterization of the Southern Ocean carbon cycle in the conclusions (section 5).

2 Methods

2.1 Regions

We use the RECCAP2 regions (DeVries, 2022) to define the Southern Ocean and its northern boundary (Figure 1). This definition of the Southern Ocean covers the subtropical seasonally stratified biome (STSS), the subpolar seasonally stratified biome (SPSS), and the ice biome (ICE) and is based on the global open ocean biome classification of Fay and McKinley (2014). This covers a larger area than the definition used in RECCAP1 (44-58°S, 58-75°S Lenton et al., 2013) and has the advantage that it does not cut through the subtropical region with its large CO$_2$ flux into the ocean. The northernmost extent of the Southern Ocean in this definition is 35°S. For parts of our analysis, we further separate the Atlantic, Indian, and Pacific Ocean sectors along longitudes of 20°E, 147°E, and 290°E (Figure 1).

2.2 Data sets

Here, we introduce data sets across four different data classes that are used for the assessment of the Southern Ocean CO$_2$ fluxes and storage, namely: ocean biogeochemistry models (14), surface pCO$_2$-based data-products (11), data assimilated and ocean inverse models (3), and atmospheric inversion models (6).

2.2.1 Ocean biogeochemistry models

We used 13 global ocean biogeochemistry models (GOBMs) and 1 regional ocean biogeochemistry model (Table 1). These models simulate ocean circulation and biogeochemical fluxes caused by physics (advection, mixing, gas-exchange) and by biological processes. They are forced with atmospheric fields from reanalysis products, e.g., by either heat and freshwater fluxes directly or by air temperature, wind speed, precipitation and humidity, which are converted to heat and freshwater fluxes using bulk formulae (see references in Table 1; Large et al., 1994). From these 14 models, eleven models are global ocean models with roughly 1°×1° resolution, and two global models (FESOM, REcoM, HR and ORCA025-GEOMAR) and the regional model (ROMS-SouthernOcean-ETHZ) are available in ca. 0.25°×0.25° resolution. Details of global model set-ups are given in (DeVries et al., 2023). The ROMS-based regional Southern Ocean model has a northern boundary at 24°S.

For the ocean-models listed above, up to four different simulations were provided (see also Table S1 and DeVries et al., 2023). These differ in whether atmospheric CO$_2$ and all other atmospheric forcing variables vary on interannual time scales, are repeated for a single year, or follow a multi-year climatology. In simulation A, the historical run, both atmospheric CO$_2$ and all other physical forcing variables vary on interannual time scales. In simulation B, the preindustrial control run, a repeated year or climatological
Table 1. Overview of data sets used in this paper. Sorted by data class, here: Global Ocean Biogeochemistry Models (GOBMs), Regional Ocean Biogeochemistry Model, and data assimilated models.

<table>
<thead>
<tr>
<th>Data set</th>
<th>Time period</th>
<th>Specific information</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Global Ocean Biogeochemistry Models</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CESM-ETHZ</td>
<td>1985-2018</td>
<td>A, B, C, D</td>
<td>Lindsay et al. (2014); S. Yang and Gruber (2016)</td>
</tr>
<tr>
<td>CNRM-ESM2-1</td>
<td>1985-2018</td>
<td>A, B, C, D</td>
<td>Séférian et al. (2019); Berthet et al. (2019); Séférian et al. (2020)</td>
</tr>
<tr>
<td>EC-Earth3</td>
<td>1985-2018</td>
<td>A, B, C, D</td>
<td>Düscher et al. (2022)</td>
</tr>
<tr>
<td>FESOM_REcoM_HR</td>
<td>1985-2018</td>
<td>A, B</td>
<td>Hauck et al. (2013); Schourup-Kristensen et al. (2014, 2018)</td>
</tr>
<tr>
<td>FESOM_REcoM_LR</td>
<td>1985-2018</td>
<td>A, B, C, D</td>
<td>Hauck et al. (2013); Schourup-Kristensen et al. (2014, 2018)</td>
</tr>
<tr>
<td>MOM6-Princeton</td>
<td>1985-2018</td>
<td>A, B</td>
<td>Liao et al. (2020); Stock et al. (2020)</td>
</tr>
<tr>
<td>MPIOM-HAMOCC</td>
<td>1985-2018</td>
<td>A, B, C, D</td>
<td>Ilyina et al. (2013); Paulsen et al. (2017); Mauritsen et al. (2019)</td>
</tr>
<tr>
<td>MRI-ESM2-1</td>
<td>1985-2018</td>
<td>A, B, C, D</td>
<td>Urakawa et al. (2020)</td>
</tr>
<tr>
<td>ORCA025-GEOMAR</td>
<td>1985-2018</td>
<td>A, B, C, D</td>
<td>Madec and the NEMO team (2016); Kriest and Oschlies (2015); Chien et al. (2022)</td>
</tr>
<tr>
<td>PlankTOM12</td>
<td>1985-2018</td>
<td>A, B, C, D</td>
<td>Le Quéré et al. (2016); Buitenhuis et al. (2019); Wright et al. (2021)</td>
</tr>
<tr>
<td>Regional Ocean Biogeochemistry Models</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Data-assimilated models</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>OCIMv2021</td>
<td>1780-2018</td>
<td>A, B, C</td>
<td>DeVries (2022)</td>
</tr>
</tbody>
</table>

| | | | |
Table 2. Overview of data sets used in this paper (continued). Sorted by data class, here: pCO$_2$-products and atmospheric inversions. The atmospheric inversions were provided only since 1990.

<table>
<thead>
<tr>
<th>Data set</th>
<th>Time period</th>
<th>Specific information</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>pCO$_2$-products</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AOML_EXTRAT</td>
<td>1998-2018</td>
<td></td>
<td>R. Wanninkhof (2023)</td>
</tr>
<tr>
<td>CMEMS-LSCE-FFNN</td>
<td>1985-2018</td>
<td></td>
<td>Chau et al. (2022)</td>
</tr>
<tr>
<td>CSIR-ML6</td>
<td>1985-2018</td>
<td></td>
<td>Gregor et al. (2019)</td>
</tr>
<tr>
<td>Jena-CarboScope (Mixed Layer Scheme)</td>
<td>1985-2018</td>
<td></td>
<td>Rödenbeck et al. (2013, 2022)</td>
</tr>
<tr>
<td>JMA-MLR</td>
<td>1985-2018</td>
<td></td>
<td>Y. Iida et al. (2021)</td>
</tr>
<tr>
<td>LDEO-HPD</td>
<td>1985-2018</td>
<td></td>
<td>Gloege et al. (2022)</td>
</tr>
<tr>
<td>NIES-ML3</td>
<td>1985-2018</td>
<td></td>
<td>Zeng et al. (2022)</td>
</tr>
<tr>
<td>OceanSODA-ETHZ</td>
<td>1985-2018</td>
<td></td>
<td>Gregor and Gruber (2021)</td>
</tr>
<tr>
<td>Jena-CarboScope (SOCCOM)</td>
<td>2015-2018</td>
<td></td>
<td>Bushinsky et al. (2019) updated</td>
</tr>
<tr>
<td>MPI-SOM-FFN (SOCCOM)</td>
<td>2015-2018</td>
<td></td>
<td>Bushinsky et al. (2019) updated</td>
</tr>
<tr>
<td>LDEO_climatology (Takahashi legacy)</td>
<td>1988-2018</td>
<td></td>
<td>Takahashi et al. (2009)</td>
</tr>
<tr>
<td>Atmospheric inversions</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(1990-2020)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CAMS</td>
<td>1979-2020</td>
<td></td>
<td>Chevallier et al. (2005)</td>
</tr>
<tr>
<td>(1990-2020)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NISMON-CO2</td>
<td>1990-2020</td>
<td></td>
<td>Niwa et al. (2017)</td>
</tr>
<tr>
<td>UoE</td>
<td>2001-2020</td>
<td></td>
<td>Feng et al. (2016)</td>
</tr>
<tr>
<td>CMS-Flux</td>
<td>2010-2020</td>
<td></td>
<td>Liu et al. (2021)</td>
</tr>
<tr>
<td>Ocean prior</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CarboScope</td>
<td></td>
<td>pCO$_2$-product</td>
<td>Rödenbeck et al. (2018)</td>
</tr>
<tr>
<td>CMEMS-LSCE-FFNN</td>
<td></td>
<td></td>
<td>Chevallier et al. (2005)</td>
</tr>
<tr>
<td>JMA-MLR</td>
<td></td>
<td></td>
<td>Niwa et al. (2017)</td>
</tr>
<tr>
<td>JMA-MLR</td>
<td></td>
<td>pCO$_2$-product</td>
<td>van der Laan-Luijkhx et al. (2017)</td>
</tr>
<tr>
<td>CarboScope</td>
<td></td>
<td></td>
<td>Feng et al. (2016)</td>
</tr>
<tr>
<td>Takahashi climatology</td>
<td></td>
<td></td>
<td>Liu et al. (2021)</td>
</tr>
<tr>
<td>MOM6 GOBM</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Figure 1. Study region. The Southern Ocean covers three biomes: The subtropical seasonally stratified (STSS), the subpolar seasonally stratified (SPSS), and the ice (ICE) biome. The biomes are defined following Fay and McKinley (2014). We further consider the Atlantic, Pacific, and Indian Ocean sectors separately in parts of the analysis. The dashed lines show the RECCAP2 Southern Ocean northernmost extent (35°S), the RECCAP1 Southern Ocean northernmost extent (44°S), and RECCAP1’s boundary for the circumpolar region (58°S).

physical atmospheric forcing is used, and the atmospheric CO$_2$ levels are held constant at pre-industrial levels. In simulation C, the atmospheric CO$_2$ varies interannually and only the physical atmospheric forcing is climatological. In simulation D, the atmospheric CO$_2$ levels are held constant at pre-industrial levels, whereas the physical atmospheric forcing varies interannually. These simulations allow for the separation of the effects of the increase in atmospheric CO$_2$ and climate change and variability on air-sea CO$_2$ fluxes: the steady-state and non-steady state components of both natural and anthropogenic carbon. Here anthropogenic refers to the direct effect of increasing atmospheric CO$_2$ and non-steady state encompasses the effects of climate change and variability. For a detailed explanation, please see DeVries et al. (2023) and further explanation in Le Quéré et al. (2010); McNeil and Matear (2013); Hauck et al. (2020); Crisp et al. (2022); Gruber et al. (2023). Simulation A includes all components of the carbon fluxes. In the control simulation B, only the steady-state component of natural carbon is considered. In simulation C, only the steady-state components of both natural and anthropogenic carbon are accounted for. Lastly, in simulation D, only the steady state and non-steady state components of natural carbon are represented.

The majority of models do not account for the river-induced outgassing of carbon (DeVries et al., 2023; Terhaar et al., 2023), hence the air-sea CO$_2$ flux in simulation A corresponds to the S_{OCEAN} definition used in the Global Carbon Budget (Friedlingstein et al., 2022), which differs from pCO$_2$-product estimates by the river-induced term. Note that the river-induced term will be discussed in greater detail in section 4.1. In addition, simulation A may include a model bias (mean offset) and drift (temporally changing offset). We assess the model drift of the air-sea CO$_2$ flux by calculating the linear trend of the integrated CO$_2$ flux time series for the period 1985-2018 in simulation B for each model and each biome. The time series plots and the linear trends reported in Figure
8 are drift corrected by subtracting the trend from simulation B. We note that this drift-correction only marginally impacts the reported trends in the result section, as the trends in simulation B are small compared to the mean fluxes for all models (see supplementary material: Text S1 and Figure S1). In contrast to a global bias (any deviation of the global mean CO$_2$ flux from 0 in simulation B, see Hauck et al., 2020), the regional bias in the simulated flux cannot be assessed by the set of simulations as it cannot be separated from the natural steady-state air-sea CO$_2$ flux (Terhaar et al., 2023), which is non zero on a regional level.

We use the full suite of models in all analyses, with two exceptions. Firstly, we excluded the MPIOM-HAMOCC model in all seasonal analyses (Fig. 4-7) because its amplitude of the seasonal cycle is a factor 3-6 larger than in the other models in the three main Southern Ocean biomes (Figure S2), and including this outlier would skew the ensemble mean disproportionately. The exaggerated seasonal cycle in the MPIOM-HAMOCC model was found in earlier studies and is attributed to excessive net primary production in the Southern Ocean (Mongwe et al., 2018). Secondly, the decomposition into natural and anthropogenic CO$_2$ fluxes was not possible with GOBMs that only provided simulations A and B (MOM6-Princeton and FESOM-REcoM-HR). See section 2.3.4 for further restrictions on GOBM use and interpretation for the interior ocean anthropogenic carbon accumulation.

2.2.2 Surface pCO$_2$-based data-products

As a second data class, we use surface ocean pCO$_2$ observation-based data products (pCO$_2$-products) (Table 2, for more details see DeVries et al., 2023). These pCO$_2$-products extrapolate or interpolate sparse ship-based measurements of pCO$_2$ using statistical modeling approaches. All pCO$_2$-based data-products use SOCAT as the target dataset. The majority of pCO$_2$-products use similar gridded prediction datasets to fill the gaps, including sea surface temperature, sea surface salinity, mixed-layer depth, and chlorophyll-a estimates for the open ocean. We use 8 such pCO$_2$-products that all cover the full time-series 1985-2018 for the ensemble mean of pCO$_2$-products. AOML_EXTRAT covers a shorter period, and is thus not included in the ensemble mean 1985-2018, but is included in the ensemble mean 2015-2018. The largest methodological difference between the pCO$_2$-products stems from the algorithm choice. The majority of the methods use regression approaches (a.k.a. machine learning) such as artificial neural networks (e.g. MPI-SOM-FFN) and gradient boosted decision trees (e.g., CSIR-ML6) to capture the relationship between the ship-based measurements and the predictor variables. The Jena-CarboScope product includes a mechanistic understanding of mixing, entrainment, and fluxes of CO$_2$ into and out of the mixed layer (Rödenbeck et al., 2014). The HPD-LDEO method adjusts global ocean biogeochemistry model estimates of pCO$_2$ to be closer to observed ship-based measurements and is thus an observation-based posterior correction to the GOBM estimates (Gloege et al., 2022).

Further, two additional variants of MPI-SOM-FFN and Jena-CarboScope by Bushinsky et al. (2019, ship+float estimates are used here) include additional BGC-float-derived pCO$_2$ for the Southern Ocean (referred to as BGC-float pCO$_2$-products, 2015-2018). We also use the Watson2020 product, which is a neural network approach (based on MPI-SOM-FFN) but applies an adjustment to SOCAT pCO$_2$ that accounts for the difference between ship intake temperature and satellite sea surface temperature (Watson et al., 2020). The BGC-float pCO$_2$-products (2015-2018) and Watson2020 (1988-2018) are not included in the pCO$_2$-product ensemble averages, as they are based on fundamentally different pCO$_2$ values. We also use a monthly climatology product (LDEO-clim) that is centered on the year 2010 (Takahashi et al., 2009). The LDEO-clim product fills the gaps using a combination of inverse distance weighted interpolation and a diffusive-advective interpolation scheme (Takahashi et al., 2009). Note that this product is only used in representations of the seasonal cycle, and not for trend analyses. All these pCO$_2$-products
estimate the bulk air-sea CO₂ flux with:

\[FCO_2 = K_0 \cdot k_w \cdot (pCO_2^{sea} - pCO_2^{atm}) \cdot (1 - ice) \]

(1)

where \(K_0 \) is the solubility of CO₂ in seawater, \(k_w \) is the gas transfer velocity, \(pCO_2^{sea} \) is the oceanic estimate of pCO₂ from the pCO₂-product, \(pCO_2^{atm} \) is the atmospheric pCO₂, and ice is the sea-ice fraction, with the majority of the open ocean having a fraction of 0. Other than \(pCO_2^{sea} \), \(k_w \) is the largest source of uncertainty in the calculation of bulk air-sea CO₂ fluxes R. H. Wanninkhof (2014); Fay et al. (2021). However, most of the pCO₂-products use a quadratic formulation of \(k_w \) as described by R. Wanninkhof et al. (1993) meaning that the product spread is reduced due to similar choices – details are shown in Global chapter’s Table S2 (DeVries et al., 2023). An exception is the Watson2020 product (Watson et al., 2020) that calculates air sea CO₂ fluxes using the formulation described in Woolf et al. (2016) where a cool and salty skin adjustment is applied.

2.2.3 Data-assimilated models

We use three data-assimilating models (Table 1). The Biogeochemical Southern Ocean State Estimate (B-SOSE Verdy & Mazloff, 2017) is an eddy-permitting 1/6-degree resolution data-assimilating model, which assimilates the data from Southern Ocean Carbon and Climate Observations and Modelling (SOCCOM) BGC-Argo floats as well as shipborne and other autonomous observations (i.e., GLODAP and SOCAT) over the period 2013-2018. In situ and satellite observations of the physical state are also assimilated. B-SOSE is based on the MIT general circulation model (MITgcm Campin et al., 2011) and uses software developed by the consortium for Estimating the Circulation and Climate of the Ocean (ECCO Stammer et al., 2002; Wunsch & Heimbach, 2013) to build on the SOSE physical model framework by adding the Nitrogen version of the Biogeochemistry with Light, Iron, Nutrients, and Gases (N-BLING; evolved from Galbraith et al., 2010) biogeochemical model. Consistency with the data is achieved by systematically adjusting the model initial conditions and the atmospheric state through the 4D-Var assimilation methodology. This B-SOSE assimilation methodology does not break the model biogeochemical or physical budgets. The budgets are closed, which allows one to understand signal attribution, though limits the control we have over the solution. For this reason B-SOSE is only consistent with the data on the timescales longer than approximately 90 days; the mesoscale eddies are reproduced statistically and not deterministically. Even with this assimilation methodology some seasonal biases still exist, and B-SOSE is still a work in progress.

The ECCO-Darwin data-assimilation model (Carroll et al., 2020) is based on a global ocean and sea ice configuration (about 1/3 degree) of the MIT general circulation model and is available from January 1992 to December 2017. Besides being global and covering a longer duration than B-SOSE, this product also uses a different biogeochemical model and assimilation technique. The ECCO circulation estimates used in this version are coupled online with the Darwin ecosystem model (Dutkiewicz et al., 2009), which represents the planktonic ecosystem dynamics coupled with biogeochemical cycles in the ocean. The R. Wanninkhof (1992) parameterization of gas transfer velocity is used and \(pCO_2^{atm} \) is the National Oceanic and Atmospheric Administration Marine Boundary Layer Reference product (Dlugokencky et al., 2021). The biogeochemical observations used to evaluate and adjust ECCO-Darwin include (1) surface ocean fugacity (fCO₂) from the monthly gridded Surface Ocean CO₂ Atlas (SOCATv5 Bakker et al., 2016), (2) GLODAPv2 ship-based profiles of NO₃, PO₄, SiO₂, O₂, dissolved inorganic carbon (DIC), and alkalinity (Olsen et al., 2016), and (3) BGC-Argo float profiles of NO₃ and O₂ (Drucker & Riser, 2016; Riser et al., 2018). To adjust the model’s fit to the global biogeochemical observations, the Green’s function approach is used to adjust biogeochemical initial conditions and model parameters.
OCIMv2021 is an inverse model that assimilates observations of temperature, salinity, CFCs and radiocarbon to achieve an estimate of the climatological mean ocean circulation (DeVries, 2022). This steady-state circulation model is used together with an abiotic carbon cycle model and atmospheric CO₂ forcing to simulate anthropogenic carbon uptake and its redistribution within the ocean. It uses a monthly time-step and simulates the period 1780 to 2018. No assimilation takes place during this period.

2.2.4 Atmospheric inversions

Six atmospheric inversions are available for our analysis (Table 2). Atmospheric inversions make use of the worldwide network of atmospheric CO₂ observations. They ingest a dataset of fossil fuel emissions, which are assumed to be well known, into an atmospheric transport model and then solve for the spatio-temporal distribution of land and ocean CO₂ fluxes while minimizing the mismatch with atmospheric CO₂ observations (Friedlingstein et al., 2022). Thus, the resulting land and ocean carbon fluxes are bound to the atmospheric CO₂ growth rate, but the estimated regional fluxes depend on the number of stations in the observational network. The inversions also start from prior estimates of land and ocean fluxes. For four inversion data sets that we use here, the ocean prior is taken from pCO₂-products that are used in this analysis as well (Table 2). One inversion (UoE) uses the Takahashi climatology as a prior and one (CMS-Flux) an ocean biogeochemical model. The atmospheric inversions are thus not independent from the other data classes (Friedlingstein et al., 2022, their Table A4). The atmospheric inversion data were submitted for RECCAP in the same version as in the Global Carbon Budget 2021 (Friedlingstein et al., 2022), but only since 1990. The three inversions starting later (2001 or 2010) are only included in averages reported for 2015-2018 (Figures 4 and 5), and as individual lines in the time-series figure (Figure 8).

2.3 Processing

Throughout this study, we report the air-sea CO₂ exchange as the net flux (FCO_2), which is the sum of natural, anthropogenic and river-induced air-sea CO₂ flux (see e.g., DeVries et al., 2023; Hauck et al., 2020; Crisp et al., 2022). As the GOBMs vary widely in their choices on river carbon and nutrient input into the ocean and burial at the seafloor (see DeVries et al., 2023; Terhaar et al., 2023), an adjustment is applied to make all data classes comparable.

2.3.1 River flux adjustment

Globally, the majority of GOBMs produce a small imbalance of riverine carbon inflow and burial globally ($<0.14 \ \text{PgC yr}^{-1}$), which is smaller than the current best estimate of river-induced CO₂ ocean outgassing of 0.65 PgC yr⁻¹ (Regnier et al., 2022). The imbalances are due to manifold choices and illustrate the lack of a closed land-ocean carbon loop in the GOBMs. As the GOBMs do not adequately account for the river discharge and its fate within the ocean, and thus for river-derived ocean CO₂ outgassing (Terhaar et al., 2023), we account for this outgassing by using the spatial patterns of river-induced air-sea CO₂ fluxes from Lacroix et al. (2020) that are scaled to the global value of 0.65 PgC yr⁻¹ (Regnier et al., 2022). Southern Ocean outgassing from rivers amounts to 0.04 PgC yr⁻¹, i.e., around 6% of the global river flux. It is distributed over the Southern Ocean biomes as follows (positive outgassing): 0.00036 PgC yr⁻¹ in the ICE biome, 0.053 PgC yr⁻¹ (SPSS biome), -0.014 (STSS biome). The estimated riverine CO₂ fluxes were added to biome-integrated fluxes in simulation A for all GOBMs, so that these are comparable to the pCO₂-products. They are not added to spatial maps of CO₂ fluxes due to large uncertainties in the regional attribution by Lacroix et al. (2020). The riverine fluxes are one (ICE) to multiple (SPSS, STSS) orders of magnitude smaller than the
mean fluxes quantified in this study. The uncertainty associated with the river flux ad-
justment is discussed in section 4.1.

2.3.2 Treatment of different area coverage

Air-sea CO$_2$ fluxes in all data classes were integrated over the area available for each
GOBM, pCO$_2$-product etc., i.e., fluxes were not scaled to the same ocean area here. Re-
lative to the ocean area in the RECCAP mask, the covered ocean areas in the GOBMs
and data-assimilating models corresponds to 96.2-100% (minimum for CCSM-WHOI)
and to 95.6-100% in the pCO$_2$-products (minimum for JMA-MLR). These differences
mainly stem from the ICE biome. We assume that the discrepancy arising from differ-
ences in covered area are smaller than the uncertainty arising from any extrapolation to
the same area.

2.3.3 pCO$_2$ decomposition

To separate temperature driven changes in pCO$_2$ from biological processes and mixing-
driven entrainment, pCO$_2$ is decomposed into thermal and non-thermal components (Takahashi
et al., 1993). The thermal component (pCO$_2^T$) is calculated as

\[pCO_2^T = \bar{pCO}_2 \cdot e^{(0.0423 \cdot \Delta T)} \] (2)

where \(\bar{pCO}_2 \) is the annual mean of pCO$_2$ and \(\Delta T \) difference of the monthly mean tem-
perature from the annual mean temperature. The non-thermal contribution (pCO$_2^{\text{nonT}}$)
is estimated as the difference of the thermal contribution (pCO$_2^T$) from the monthly-averaged
pCO$_2$. The first derivatives of these two components are subtracted from each other to
create the pCO$_2$ seasonal driver metric, denoted as \(\lambda pCO_2 \):

\[\lambda pCO_2 = \frac{d}{dt}[pCO_2^T] - \frac{d}{dt}[pCO_2^{\text{nonT}}] \] (3)

Here, positive values indicate periods when the thermal component is a larger contrib-
utor to pCO$_2$, and negative values show where the DIC processes (non-thermal) play a
dominant role in surface pCO$_2$ changes. We also denote the first derivatives as
pCO$_2^T$ and pCO$_2^{\text{nonT}}$ for brevity.

2.3.4 Anthropogenic carbon inventories

Anthropogenic CO$_2$ (C$_{\text{ant}}$) is defined as the change in ocean dissolved inorganic
carbon (DIC) since preindustrial times due to the direct effect of increasing CO$_2$ con-
centration in the atmosphere. It is computed as the DIC difference between experiments
A and D. The accumulation of C$_{\text{ant}}$ can be separated into a steady-state component (C$_{\text{ssant}}$,
DIC difference between experiments C and B), that is influenced only by the increased
atmospheric CO$_2$, and a non-steady-state component (C$_{\text{nstant}}$), which considers the effect
of climate variability and change on C$_{\text{ant}}$ (and which is maximally 10-20% of C$_{\text{ant}}$, Text
S2 and Figures S3-S4). Here we focus mainly on the change in C$_{\text{ant}}$ that has occurred
over the period 1994-2007 (hereafter \(\Delta C_{\text{ant}} \)), to correspond to the years covered by the
eMLR(C*) observation-based estimate (Gruber, Clement, et al., 2019). The eMLR(C*)
method (Clement & Gruber, 2018) uses ocean measurements of DIC from GLODAP2
(Olsen et al., 2016) over more than 30 years as the foundation to determine \(\Delta C_{\text{ant}} \) be-
tween nominal years 1994 and 2007. The method has been shown to be accurate at global
and basin scales, but is more uncertain at sub-basin scales and should not be used be-
low 3000 m depth. The (2 sigma) uncertainty of the eMLR(C*) product is estimated to
be around 19% for the Southern Hemispher (Gruber, Clement, et al., 2019). The eMLR(C*)
method differs fundamentally from past indirect or model-based methods used to esti-
mate C$_{\text{ant}}$ accumulated since pre-industrial times (Gruber et al., 1996; Sabine et al., 2004;
Waugh et al., 2006; DeVries, 2014). Of these, we used the 1800-1994 cumulative C$_{\text{ant}}$
3 Results

3.1 Mean air-sea CO$_2$ fluxes 1985-2018

We start with a comparison of the average air-sea CO$_2$ flux in the two data classes (GOBMs, pCO$_2$-products) that cover the full period 1985-2018. We exclude data classes with fewer products for the sake of robustness, and show the comparison between all data classes in sections 3.2 and 3.3. The mean net Southern Ocean air-sea CO$_2$ flux 1985-2018 by the GOBM ensemble is -0.75 ± 0.28 PgC yr$^{-1}$ and -0.73 ± 0.07 PgC yr$^{-1}$ (flux into the ocean) for the pCO$_2$-product ensemble mean (Figure 2a). While both ensemble means result in an almost identical ocean uptake of CO$_2$, the GOBM ensemble spread is four times larger.

All Southern Ocean regions are sinks of CO$_2$ based on the ensemble averages of the GOBMs and pCO$_2$-products (Figure 2). The subtropical seasonally stratified biome (STSS), which is a subduction area with deep winter mixed layer depth and intermediate chlorophyll concentration (Fay & McKinley, 2014), is the largest sink according to all data sets (GOBMs: -0.53 ± 0.17 PgC yr$^{-1}$, pCO$_2$-based products: -0.62 ± 0.06 PgC yr$^{-1}$, Figure 2a). Second is the subpolar seasonally stratified biome (SPSS) (GOBMs: -0.13 ± 0.14 PgC yr$^{-1}$, pCO$_2$-products: -0.07 ± 0.02 PgC yr$^{-1}$), which is characterized by upwelling of old water, rich in natural carbon but with low anthropogenic carbon content. The upwelled water is also rich in nutrients, and thus a region with important biological activity. Note that three GOBMs simulate the SPSS to be a source of CO$_2$ to the atmosphere. The marginal sea ice (ICE) biome is the weakest CO$_2$ sink (GOBMs: -0.09 ± 0.13 PgC yr$^{-1}$; pCO$_2$-products: -0.05 ± 0.02 PgC yr$^{-1}$) due to sea ice acting as a lid that prevents carbon outgassing in winter, and is the smallest of all three biomes covering an area of about 60% the size of STSS or SPSS (Fay & McKinley, 2014). Four individual models suggest that the ICE biome is a weak outgassing region, but no other data set supports this.

In a zonal mean view (Figure 2b), the smallest uptake occurs between 62 and 55°S and the largest uptake around 40°S. However, the amplitude differs between data classes, with the pCO$_2$-products having a larger difference between minima and maxima (1.96 mol C m$^{-2}$ yr$^{-1}$), than the GOBM ensemble mean (1.19 mol C m$^{-2}$ yr$^{-1}$). Some of the individual GOBMs deviate from this pattern (see supplementary figure S5a for zonal means of individual models).
Figure 2. Temporal average of the Southern Ocean CO₂ net flux (FCO₂). A positive flux denotes outgassing from ocean to atmosphere. The temporal average is calculated over the period 1985 to 2018 for the global ocean biogeochemistry models (GOBMs) and pCO₂-products (Table 1). (a) The green and blue bar plots show the ensemble mean of the GOBMs and pCO₂-based data-products, and open circles indicate the individual GOBMs and pCO₂-products. The ensemble standard deviation (1σ) is shown by the error bars. The river flux adjustment added to the GOBMs is small (0.04 PgC yr⁻¹), its distribution over the biomes is described in section 2.3.1. (b) zonal mean flux density of the different data sets. Thick green and blue lines show the ensemble means, and thin green and blue lines show the individual GOBMs and pCO₂-products. Approximate boundaries for biomes are marked with black points on the x-axis. (c-d) maps of spatial distribution of net CO₂ flux for ensemble means of GOBMs, and pCO₂-products.
Figure 3. Decomposition of the modeled net air-sea CO$_2$ flux 1985-2018 into natural and anthropogenic CO$_2$ fluxes; as well as into CO$_2$ and climate effects. See method section 2.2.1 for explanation on this decomposition. The separation into natural and anthropogenic CO$_2$ fluxes is not possible for FESOM-REcoM-HR and MOM6-Princeton models as only simulations A and B are available. These models are only shown as crosses for net FCO$_2$ but not used for averaging. Hence, separation within this figure is coherent, but the net FCO$_2$ is slightly different from the net FCO$_2$ in Figure 2.

Regionally, significant differences emerge between the Atlantic, Indian and Pacific sectors of the Southern Ocean (Figure 2c-d). Within the STSS, large CO$_2$ fluxes into the ocean occur in the Atlantic and Indian sector across all data classes (Figure 2b-c, mean flux density: -1.93 mol C m$^{-2}$ yr$^{-1}$ and -2.05 mol C m$^{-2}$ yr$^{-1}$ for GOBMs and pCO$_2$-products, respectively, in the Atlantic sector, -1.44 mol C m$^{-2}$ yr$^{-1}$ and -1.89 mol C m$^{-2}$ yr$^{-1}$ in the Indian sector, and -1.22 mol C m$^{-2}$ yr$^{-1}$ and -1.54 mol C m$^{-2}$ yr$^{-1}$ in the Pacific sector). CO$_2$ outgassing locations differ across the data classes. In the GOBM ensemble mean, the outgassing is mainly confined to the Indian sector of the SPSS, whereas it is more widely spread in the pCO$_2$-product ensemble mean covering the Pacific and Indian Ocean sectors of the SPSS and the Indian sector in the ICE biome. The smooth appearance of the outgassing signal in the GOBM and pCO$_2$-product ensemble means may be partly attributable to averaging over multiple data sets and months and years.

3.1.1 Decomposition into anthropogenic and natural carbon fluxes and climate versus atmospheric CO$_2$ effects on the mean CO$_2$ flux

With the aid of the additional model simulations, we can decompose the net Southern Ocean air-sea CO$_2$ flux into natural and anthropogenic components, and separate the indirect effects of physical climate change and the direct geochemical effect of increasing atmospheric CO$_2$ mixing ratios. The GOBM ensemble mean indicates that the natural Southern Ocean carbon cycle without anthropogenic perturbation would be a small CO$_2$ source to the atmosphere of 0.05 PgC yr$^{-1}$, although with a large model spread as indicated by the standard deviation of 0.25 PgC yr$^{-1}$ (Figure 3). In fact, six GOBMs simulate negative natural CO$_2$ fluxes, i.e., into the ocean, and six GOBMs simulate positive natural fluxes, i.e., out of the ocean. This also illustrates that the GOBM spread of net fluxes (standard deviation: 0.28 PgC yr$^{-1}$) is, to the first order, dominated by the model differences of natural fluxes (standard deviation: 0.25 PgC yr$^{-1}$), which may contain artifacts from model biases and drift (Terhaar et al., 2023). The spread of anthro-
pogenic fluxes is smaller (0.13 PgC yr\(^{-1}\)). The small natural outgassing signal in the ensemble mean is a balance of natural CO\(_2\) uptake in the STSS (-0.26±0.14 PgC yr\(^{-1}\)) and outgassing in the SPSS (0.21±0.11 PgC yr\(^{-1}\)) and ICE (0.10±0.12 PgC yr\(^{-1}\)) biomes. This is in qualitative agreement with the patterns of natural CO\(_2\) fluxes by Mikaloff Fletcher et al. (2007).

The anthropogenic perturbation (-0.79±0.13 PgC yr\(^{-1}\)) has turned the SPSS and ICE biomes, and possibly the entire Southern Ocean, from source to sink. The large anthropogenic flux contribution in the SPSS (-0.38±0.08 PgC yr\(^{-1}\)) suppresses the natural CO\(_2\) outgassing flux. The STSS is a sink for both natural and anthropogenic flux components. The direct effect of increasing atmospheric CO\(_2\) enhances the Southern Ocean sink by -0.74±0.11 PgC yr\(^{-1}\) and is the largest signal in the anthropogenic perturbation.

A smaller component stems from the climate change effect on this steady state CO\(_2\)-induced flux (Figure S6). The direct CO\(_2\) effect is largest in the SPSS (-0.34±0.06 PgC yr\(^{-1}\)) where old water masses reach the surface that are undersaturated in anthropogenic carbon, followed by the STSS and ICE biomes (-0.23±0.03 PgC yr\(^{-1}\) and -0.17±0.03 PgC yr\(^{-1}\)). In the upwelling regions, the primary effect of rising atmospheric CO\(_2\) is thus to suppress the outgassing of natural carbon.

The effect of physical climate change and variability, i.e., warming and changes in wind speed patterns and strength that provoke changes in circulation (Le Quéré et al., 2007; Lovenduski et al., 2007; Hauck et al., 2013), reduces the CO\(_2\) flux into the ocean (+0.04±0.07 PgC yr\(^{-1}\)), but is overall small in comparison to the direct CO\(_2\) effect. This climate change induced outgassing stems nearly entirely from the SPSS (+0.04±0.04 PgC yr\(^{-1}\)), with the largest contribution from the Indian sector followed by the Pacific (Figure S7). Thus, the climate change effect amplifies the natural CO\(_2\) outgassing, which is also the largest in the Indian and Pacific sectors of the SPSS. The climate effect is a combination of climate effects on natural and anthropogenic CO\(_2\) fluxes, which partly oppose each other (Figure S6).

3.2 The seasonal cycle of air-sea CO\(_2\) fluxes in the Southern Ocean

We now shift our focus to seasonal fluxes by separating fluxes into separate winter (Figure 4) and summer (Figure 5) mean CO\(_2\) fluxes. For this, we examine the period 2015-2018, for which all data sets are available (see Figure S8 for an annual mean figure for 2015-2018).

3.2.1 Winter

In winter, all but two data sets (one GOBM and BGC-float pCO\(_2\)-products) agree that the Southern Ocean is a sink of CO\(_2\) (GOBMs: -0.83±0.40 PgC yr\(^{-1}\), pCO\(_2\)-products: -0.48±0.08 PgC yr\(^{-1}\); Figure 4a). The general pattern of strong uptake towards the north and a reduction towards the south is common to all data classes, though exceptions for individual GOBMs do exist (Figure 4a,b). Expounding on this, the strong uptake in the STSS is shown by all data sets, but further south the coherence disintegrates. Within the SPSS, there is considerable variation in position and magnitude of maximum outgassing with some GOBMs being a sink along the entire zonal mean (Figure 4a,b). Towards the southern reaches of the ICE biome, fluxes are more coherent as they are constrained by sea-ice cover in winter (Figure 4b). For the zonal means of individual GOBMs, see Figure S5.

The divergence between data class average flux estimates for the Southern Ocean are explained nearly entirely by differences in the SPSS (GOBMs: -0.15±0.32 PgC yr\(^{-1}\) and pCO\(_2\) products: 0.15±0.09 PgC yr\(^{-1}\), in Figure 4a). Note also that the spread of the individual GOBMs is the largest in the SPSS (0.32 PgC yr\(^{-1}\)), although it is also substantial in the other biomes (STSS: 0.29 PgC yr\(^{-1}\), ICE: 0.13 PgC yr\(^{-1}\)) (Figure 5a).
Figure 4. Average winter (June-August) air-sea CO$_2$ fluxes (FCO$_2$) in the period 2015-2018, (a) averaged over biomes, (b) zonal mean flux density, (c-f) maps of flux density. Same as Figure 2, but including also data sets with shorter coverage, and a map of the CO$_2$ flux from the BGC-float pCO$_2$-products (panel e), and B-SOSE (f), and hence focussing on the period 2015-2018 for all data sets for comparability. Note that the MPI model is excluded here. The zonal mean of individual models are presented in Figure S5c.
The SPSS is also where we see the largest impact of the inclusion of floats in the BGC-float pCO$_2$-products (Figure 4d,e), with the mean outgassing flux more than doubling that of the regular pCO$_2$-product ensemble.

The zonal differences and features of fluxes between data classes are also most distinct in the SPSS (Figures 4c-f). In short, the Atlantic sector of the SPSS has the lowest flux (weak source or even sink), while the Indian and Pacific sectors dominate the outgassing. The data-assimilated model B-BOSE has stronger localized outgassing compared with the other data classes, but bear in mind that B-BOSE is only one data set (Figure 4f), while the other data classes (Figures 4c-e) represent up to 13, thus potentially averaging out local signals. The outgassing hotspot at the boundary between the Atlantic and Indian sectors of the SPSS can also be recognized in the pCO$_2$-products (Figure 4d). The second hotspot in the western Pacific SPSS is not distinguishable in the other data sets.

3.2.2 Summer

In summer, GOBMs, pCO$_2$-products and inversions largely show CO$_2$ uptake within the three Southern Ocean biomes, and outgassing north of the STSS (Figure 5a-b). In contrast to winter, the GOBM ensemble mean for summer 2015-2018 (-1.04±0.77 PgC yr$^{-1}$) underestimates the CO$_2$ uptake relative to the pCO$_2$-product ensemble mean (-1.46±0.18 PgC yr$^{-1}$, Figure 5a). This also holds true for the data-assimilated models, where B-BOSE even simulates outgassing in the SPSS (Figure 5a,b,f). Otherwise, the data-assimilated models, B-BOSE and ECCO-Darwin, deviate substantially from the other data classes. The differences between pCO$_2$-products with and without BGC-float data are hardly apparent in summer (Figure 5a, compared to 4a). This could be due to a smaller discrepancy between float and ship-data in summer, and/or a dominance of SOCAT data in summer for the ship+float estimate. For context, for the period 2015 through 2018, BGC-float data account for up to 70% of winter pCO$_2$ monthly by 1$°$×1$°$ measurements in the Southern Ocean (SOCAT + floats), while in summer the floats represent only 20% (Bakker et al., 2016; Bushinsky et al., 2019).

While the STSS was a region of coherence between data classes in winter (Figure 4), it is the main source of the discrepancy between the GOBM and pCO$_2$-product ensemble means in summer (GOBMs: -0.40±0.28 PgC yr$^{-1}$, pCO$_2$-products: -0.73±0.08 PgC yr$^{-1}$). The discrepancy is comparatively smaller in the SPSS (GOBMs: -0.33±0.34 PgC yr$^{-1}$, pCO$_2$-products: -0.42±0.06 PgC yr$^{-1}$). We note that CO$_2$ fluxes for both GOBMs and pCO$_2$-products show less variation from ICE to STSS in summer compared to winter (Figure 4b vs 5b, respectively). There is, nevertheless, an offset with lower GOBM CO$_2$ uptake than in pCO$_2$-products north of 55$°$S, and vice versa to the south. Also, the GOBM spread in the represented magnitude of the fluxes is large. In absolute terms, the GOBM ensemble spread of fluxes in summer (from -2.03 to +0.28 PgC yr$^{-1}$) is larger than in winter (from -1.36 to 0.12 PgC yr$^{-1}$) or than the spread in the annual mean (from -1.30 to -0.38 PgC yr$^{-1}$; see Figure S5b for zonal means of individual GOBMs). This mirrors the difficulty in representing the balance between physical and biological processes in summer, which is further assessed in the next two sections 3.2.3 and 3.2.4.

3.2.3 The full seasonal cycle

We diagnose distinctly different seasonal cycles in the three biomes. The ICE biome has a rather clear maximum uptake in summer in the GOBM and pCO$_2$-product ensemble means, as well as most individual data sets (Figure 6a). In the STSS, the pCO$_2$-products suggest a weak seasonal cycle with a maximum uptake in autumn (Figure 6c), while the majority of GOBMs simulate a maximum CO$_2$ uptake in winter and a substantially smaller flux in summer. The largest disagreement occurs in the SPSS, where the seasonal cycle transitions from winter outgassing in the ICE biome to summer outgassing in the STSS.
Figure 5. Average summer (December-February) air-sea CO$_2$ fluxes (FCO$_2$) in the period 2015-2018. Same as Figure 4, but for summer. The zonal mean of individual models are presented in Figure S5b.
Figure 6. The seasonal cycle of air-sea CO$_2$ flux in the Southern Ocean separated by biomes for all data sets as indicated in the legend, a) subtropical seasonally stratified (STSS) biome, b) subpolar seasonally stratified (SPSS) biome, c) ice (ICE) biome. Thin green and blue lines depict individual GOBMs and pCO$_2$-products, and thick lines indicate their ensemble means. Note that the MPI model is excluded here. The ensemble standard deviation (1σ) is shown by the bars for each month. Panels (d-u) present the season of maximum CO$_2$ uptake per grid cell in the individual GOBMs, data-assimilated models and the ensemble mean of the pCO$_2$-products over the period indicated in the panels (varies by data set). See Figure S9 for the individual pCO$_2$-products (panel d-u equivalents) and Figure S10 for the seasonal cycle in all nine subregions (equivalent to panels a-c but further split into Atlantic, Pacific and Indian Ocean sectors).
biomes. Here, atmospheric inversions and pCO$_2$-products (including the BGC-float pCO$_2$ products), suggest the maximum CO$_2$ uptake to be in summer. In winter, the BGC-float pCO$_2$-products more than double the estimates of outgassing relative to the other pCO$_2$ products (Figure 6b). The GOBM ensemble average roughly agrees with this seasonal pattern, but simulates a reduced seasonal cycle amplitude (Figure 6b). The GOBM spread is large, not only in terms of magnitude but also phasing of the seasonal cycle in the SPSS (8 out of 13 GOBMs simulate the maximum uptake between November and January; Figure 6d-r). This illustrates how the transition between the different seasonal cycle regimes affects particularly the representation of the seasonality in the SPSS. In summary, most GOBMs and pCO$_2$-products agree on a summer peak in the ICE biome (but exceptions exist, Figure 6d-r), and a winter peak to the north of the Southern Ocean biomes. The largest discrepancy between data sets is where and how swift this transition occurs. While the use of static biomes adds to the discrepancies seen in the averaged seasonal cycles (Figure 6a-c), the disagreement between the phasing of individual GOBMs is likely a much larger contributor to these discrepancies (Figure 6d-p). We now turn to an investigation of the thermal and non-thermal effects on the seasonal cycle, which may help explain these discrepancies.

3.2.4 Thermal versus non-thermal effects on the seasonal cycle

The seasonal cycle of CO$_2$ fluxes in the Southern Ocean is a balancing act between competing thermal and non-thermal drivers (Mongwe et al., 2016, 2018; Prend et al., 2022). DIC drawdown by biological production leads to a summer maximum in CO$_2$ uptake, whereas upwelling and entrainment of DIC-rich water into the mixed layer in autumn and winter leads to a minimum in CO$_2$ uptake or even outgassing (Metzl et al., 2006; Mongwe et al., 2018). Seasonal variations in mixed layer temperature further affect the solubility of CO$_2$, with lower (higher) temperatures increasing (decreasing) solubility and thus promoting CO$_2$ uptake (outgassing) (Takahashi et al., 2002).

The thermal and non-thermal components of pCO$_2$ can be decomposed to determine the dominant driver on monthly timescales (Figure 7; Mongwe et al., 2018). Here, we do this by estimating the absolute difference of the rate of change of the thermal and non-thermal components (Figure 7; Eq. 3). The contribution of salinity and total alkalinity to seasonal pCO$_2$ changes are small in the Southern Ocean and compensate for each other on a seasonal scale (e.g., Sarmiento & Gruber, 2006; Lauderdale et al., 2016), thus we here consider the non-thermal component to be predominantly DIC-driven.

In general, the seasonal cycle phasing of the thermal component of the GOBMs agrees well with those of the pCO$_2$-products (Figure 7a-c). This should not come as a surprise, as GOBMs are forced by atmospheric reanalyses which assimilate observed SST (Doney et al., 2007). As a result, the thermal component of the pCO$_2$ seasonal cycle in the GOBMs (forced by reanalyses) compare much better to the thermal component derived from the pCO$_2$-products than fully coupled Earth System Models (Mongwe et al., 2016, 2018). The non-thermal contribution is thus the primary reason for the spread between GOBMs, and for the differences between GOBMs and pCO$_2$-products (Fig. 7a-c). Thus, we group GOBMs based on whether they are predominantly DIC or thermally driven across all three biomes (Fig. 7d-f, Table S2), which we term DIC-dominant or DIC-weak respectively.

In DIC-weak GOBMs, the strong underestimation of the non-thermal component causes these models to be too strongly temperature driven across the year (Figure 7). This then tends to shift the timing of uptake towards the colder months (when CO$_2$ solubility is largest), while the role of biologically driven uptake in spring and summer is suppressed in favor of warming driven outgassing. This effect is largely confined to the SPSS and to a lesser extent also the STSS, and can account for the mismatch in the seasonal cycle seen in some GOBMs. For example, in the SPSS, nearly all GOBMs and specif-
Figure 7. (a-c): Seasonal cycle of the rate of change of the thermal \((pCO_2')\), dashed lines) and non-thermal \((pCO_2^{\text{nonT}}')\), solid lines) components of ocean surface pCO\(_2\) on monthly time scales given in µatm month\(^{-1}\) (Eq. 2). The bars on the bottom show standard deviations of the non-thermal component. Models have been grouped into DIC dominant/weak, where the DIC weak models have a thermal contribution >0 for the mean of the STSS and SPSS (shown in d-f; see Figure S11 for individual global and regional ocean biogeochemistry models, and Table S2 for the DIC dominant/weak model groups). (d-f): \(\lambda pCO_2\), the difference of the thermal and nonthermal (DIC) components of ocean surface pCO\(_2\) as in Mongwe et al. (2018). When \(\lambda pCO_2 > 0\) (red) indicates temperature dominance, and \(\lambda pCO_2 < 0\) (blue) indicates that the non-thermal component (i.e., DIC) is dominant. The MPI model is excluded in this analysis.
ically all DIC-weak GOBMs have a shifted season of maximum uptake from summer to spring/winter, i.e., towards the colder months. (Fig. 6 and Table S2). In terms of the underlying mechanisms driving the too weak non-thermal component, we hypothesize that a lack of deep vertical mixing in winter leads to too little entrainment of DIC-rich deep waters, while simultaneously allowing for too early primary production (which may then shift the growing season earlier and reduce biologically driven summer uptake). Notably, the bias in pCO$_2$ is largest in summer (DJF), followed by autumn (MAM), and is about twice as large in the DIC-weak GOBMs than in the DIC-dominant GOBMs (Figure S13). This further supports the lesser importance of thermal processes in the STSS and SPSS regions evident in the pCO$_2$-products.

In the ICE biome GOBMs and pCO$_2$-products tend to agree much more closely in terms of their representation of the seasonal cycle (Fig. 6a). This is likely related to the strong role the seasonal advance and retreat of sea ice plays in air-sea CO$_2$ fluxes, both through its effect as a physical barrier, as well as through its effect on vertical mixing and light availability (thus impacting both physical and biological pathways of DIC into and out of the mixed layer, (Bakker et al., 2008; Shadwick et al., 2021; M. Yang et al., 2021)).

3.3 Temporal variability and trends in Southern Ocean air-sea CO$_2$ flux

We next inspect the temporal evolution of the air-sea CO$_2$ fluxes from 1985-2018 (Figure 8). In this annually-resolved perspective, we also discuss the mean fluxes for data sets that are not available for the full time-period. While the STSS was a net-sink region throughout the period, the SPSS and ICE have turned from neutral (around 0 PgC yr$^{-1}$) to net sink regions since 1985, based on GOBM and pCO$_2$-product ensemble mean estimates. This also holds for most individual GOBMs as only two of them simulate either the ICE or the SPSS biome to still be regions of outgassing at the end of the time series (CCSM-WHOI and EC-Earth3).

Acknowledging some agreement between GOBMs and pCO$_2$-based product ensemble means despite large spread across GOBMs (Figure 8 bars), substantial deviations among individual data sets appear. B-SOSE (2015-2018) suggests a 0.25 PgC yr$^{-1}$ smaller uptake than the GOBM and pCO$_2$-product ensemble means for the entire Southern Ocean (Figure 8a). ECCO-Darwin has the largest flux estimate into the ocean in the SPSS and the entire Southern Ocean (1.30 PgC yr$^{-1}$, 1985-2018). Notably, the two data-assimilated models B-SOSE and ECCO-Darwin differ by a factor of 2 for the Southern Ocean wide estimate. In agreement with previous reports (Bushinsky et al., 2019), BGC-float pCO$_2$-products suggest Southern Ocean uptake to be 40% (0.4 PgC yr$^{-1}$) smaller than the pCO$_2$-products without BGC-float data (2015-2018). This discrepancy originates largely in the SPSS, where the BGC-float pCO$_2$-products estimate outgassing of 0.14 PgC yr$^{-1}$, and the ensemble mean of the SOCAT-only-based pCO$_2$-products estimate a CO$_2$ uptake of -0.13 PgC yr$^{-1}$. Smaller contributions to the deviation stem from the STSS and ICE biomes where BGC-float pCO$_2$-products report a smaller uptake by 0.14 PgC yr$^{-1}$ when compared with the regular pCO$_2$-products. The Watson2020-product is generally close to the other pCO$_2$-products, with the exception of the SPSS where it suggests a flux of -0.18 PgC yr$^{-1}$ (1985-2018), which is larger than any other pCO$_2$-product. The origin of the large SPSS difference in Watson2020 could, in part, be attributed to subtle differences in method choices in addition to different flux parameterisations (Watson et al., 2020). The atmospheric inversions produce a somewhat lower sink (-0.64 PgC yr$^{-1}$, average over three inversions 1985-2018), but are generally close to the pCO$_2$-products, as they mostly use surface pCO$_2$-products as a prior (Table 2 and Friedlingstein et al., 2022). There is also slightly higher interannual variability in the atmospheric inversion ensemble mean, but this is likely due to the small ensemble size.
Figure 8. Temporal evolution of the Southern Ocean air-sea CO$_2$ flux for a) the entire Southern Ocean, and the b) subtropical seasonally stratified, c) subpolar seasonally stratified, and d) ice biomes. The ensemble standard deviation (1σ) averaged over the whole time series, is shown by the bars. Panels (e-h) are the same as panels (a-d) for the GOBM ensemble average and pCO$_2$-product ensemble average only, with linear trends between 1985-2000 and 2001-2018 as the dashed and dotted lines, respectively. The uncertainty range of the trend is calculated as one standard deviation of the trends across all GOBMs and pCO$_2$-products, respectively. Note the different y-axis scales. The separation into Atlantic, Pacific and Indian Ocean sectors is shown in Figure S12.
The temporal variability is quantified as the amplitude of ‘interannual variability’ (IAV). This is calculated as the standard deviation of the detrended time-series, as defined in Rödenbeck et al. (2015); Friedlingstein et al. (2022) which, in reality, captures both interannual and decadal variability components. Following this definition, the pCO₂ products have a larger interannual variability for the Southern Ocean wide integrated flux (0.09 PgC yr⁻¹, range 0.04 to 0.16 PgC yr⁻¹) compared to the GOBMs (0.06 PgC yr⁻¹, range 0.03 to 0.10 PgC yr⁻¹). Notably, the MPI-SOM-FFN pCO₂-product, which formed the basis of previous reports on Southern Ocean decadal variability (Landschützer et al., 2015), has the largest IAV of 0.16 PgC yr⁻¹, about 60% larger than the next largest pCO₂-product IAV. This is in line with previous studies that found that the MPI-SOM-FFN approach may overestimate Southern Ocean variability by 30% (Gloege et al., 2021) and the decadal trend 2000-2018 by 130% (Hauck et al., 2023). Within the Southern Ocean, the strongest IAV is found in the SPSS region (0.04 PgC yr⁻¹ GOBMs, 0.05 PgC yr⁻¹ pCO₂-products), followed by the STSS (0.02 PgC yr⁻¹ GOBMs, 0.03 PgC yr⁻¹ pCO₂-products) and ICE biome (0.02 PgC yr⁻¹ for both data classes). Within the subpolar biome, the Indo-Pacific sector has a higher IAV (0.02 PgC yr⁻¹) than the Atlantic sector (0.01 PgC yr⁻¹). The large contribution to interannual variability in the SPSS may well be linked to the largest amplitude of the seasonal cycle of CO₂ flux (see section 3.2.3).

To assess the decadal-scale trends, we fit linear trends to the periods 1985-2000 and 2001-2018 (Figure 8e-h) with the year 2000 marking roughly the mid of the considered time period and the inflection point in global ocean CO₂ uptake (Gruber et al., 2023; Landschützer et al., 2016). The pCO₂-products suggest a stagnation of the flux in the STSS, and even a flux decrease in the SPSS prior to 2000. In contrast, GOBMs suggest a continued increase in the sink in the STSS and SPSS in the same period. In the ICE biome, GOBMs and pCO₂-products result in an increasing trend (Figure 8h). After 2000, pCO₂-products and GOBMs agree on a trend towards more CO₂ uptake, which is significantly different from zero in all biomes except for pCO₂-products in the ICE biome (see numbers in Figure 8e-h). However, they differ substantially in magnitude between GOBM and pCO₂-product ensemble means, particularly in the STSS (Figure 8f). The discrepancies in the magnitude of the trend act to decrease the gap between GOBM and pCO₂-product ensemble means in the SPSS and ICE biomes, but lead to the divergence in the flux estimate in the STSS.

On a sub-biome level (i.e., Atlantic, Indian, and Pacific sectors), all three sectors in the STSS were CO₂ sinks throughout the period and had weaker trends (less negative) before 2000 compared to the period after 2000 (Figure S12). In the SPSS, the Indian and Pacific sectors are characterized by intermittent outgassing and uptake patterns, in line with observations from BGC-floats (Prend et al., 2022). In the SPSS, only the Atlantic sector has a net uptake throughout the period, and the Indian Ocean sector shows the largest model spread of all three sectors (as in the STSS). In the ICE biome, a consistent quasi-linear evolution is apparent in all sectors. We further analyze divergence and drivers of trends in section 3.3.2.

3.3.1 Comparison with in-situ pCO₂

Here, we evaluate the accuracy of pCO₂ across data classes since pCO₂ is the dominant driver of air-sea CO₂ flux variability at a monthly scale (Landschützer et al., 2016). All data sets are compared with observations (monthly gridded SOCAT v2022 data set Sabine et al., 2013; Bakker et al., 2016, 2022). The RECCAP2 data sets are subsampled to match the SOCAT observations in time and space, meaning that we do not assess sampling biases, but rather the mismatch between the observed and estimated pCO₂.

The comparison of the RECCAP2 GOBMs and pCO₂-products with gridded in-situ pCO₂ from SOCAT v2022 shows relatively good agreement (Figure 9a). The SOCAT pCO₂ data shows large interannual variability due to spatially and temporally vary-
Figure 9. Comparison of surface mean pCO$_2$ for the whole Southern Ocean between global ocean biogeochemistry models (GOBMs) and pCO$_2$-products with in situ observations (gridded SOCAT v2022 data set Sabine et al., 2013). (a) Time-series of annually-averaged pCO$_2$ from GOBMs (green), data-assimilated models (grays), and pCO$_2$-products (blue). The darker shaded lines show the annual mean as calculated from the data sets subsampled to match the historic SOCAT sampling. The lighter shades show the annual mean calculated for the full coverage. The dark red line depicts the annual mean pCO$_2$ from SOCAT observations without interpolation. The assimilation products (ECCO-Darwin and B-SOSE) are kept separate as they have different time series lengths (shown by dashed and solid gray lines respectively). The light red area plot (right y-axis) shows the number of monthly by 1$^\circ$×1$^\circ$ gridded SOCAT observations per year. (b) The bias of pCO$_2$ for all data classes (subsampled to match SOCAT observations, dark lines in a) relative to SOCAT pCO$_2$ observations (solid dark red line in a). (c) The root mean squared difference (RMSD) between SOCAT observations and estimates for all data classes. Bias and RMSD were calculated on a monthly by 1$^\circ$×1$^\circ$ resolution, and the bias and RMSD were averaged to annual means afterwards. A plot of RMSE and bias for SPSS and STSS biomes and different seasons is presented in supplementary Figure S13.
ing sampling efforts from year to year, particularly prior to 2000 when samples are fewer and thus carry more weight (Figure 9a). For example, in 1997, SOCAT pCO$_2$ is anomalously low due to high sampling density in the Ross Sea during summer when primary production drives intense CO$_2$ drawdown (Arrigo & van Dijken, 2007). The pCO$_2$ products have a lower bias and a narrower spread than the GOBMs prior to 2000 (1.7±4.3µatm and 10.7±8.9µatm respectively), with the bias and the spread decreasing after 2000 for both classes (-0.3±2.6µatm and -0.9±3.9µatm, Figure 9b). This comparison of simulated to observed pCO$_2$ at observation sites demonstrates that GOBMs are capable of reproducing SOCAT pCO$_2$ and its temporal evolution on large spatial and annual time-scales. Thus, for the period after 2000, the differences in CO$_2$ flux trend for the entire Southern Ocean between GOBMs and pCO$_2$-products (Figure 8) cannot be attributed to differences in pCO$_2$ in the regions where observations were taken. Instead, the differences arise primarily from areas where no pCO$_2$ observations exist, as also concluded in Hauck et al. (2020). The pCO$_2$ time-series calculated from the full coverage results in a lower pCO$_2$ value in the pCO$_2$-products than in the GOBMs (Figure 9a), which could explain the stronger CO$_2$ flux trend in the pCO$_2$-products (Figure 8). This discrepancy between pCO$_2$-products and GOBMs is larger in the last ten years (2009-2019: 5.8 µatm) than the previous decade (1999-2008: 2.8 µatm, Figure 9a). Nevertheless, the RMSD calculated from monthly mean data is higher in GOBMs than in pCO$_2$-products (Figure 9c). This is expected as the pCO$_2$-products are trained to fit the observations and further illustrates the GOBMs’ deficiencies in simulating seasonal and spatial variability of the CO$_2$ uptake.

The assimilation model, ECCO-Darwin, has a negative bias after 2000 (-13.5±3.0 µatm; Figure 4b), but this negative bias is not strongly reflected in the mean of the non-subsampled data, with the mean pCO$_2$ still being larger than that of the pCO$_2$-products, which do not underestimates the pCO$_2$ relative to SOCAT. This further emphasizes that sampling distribution may play an important role in the magnitude of the biases calculated in any model. The pCO$_2$ summer sampling bias in the Southern Ocean has long been recognised as a potential source of biases in pCO$_2$ estimates, particularly for the pCO$_2$-products that rely heavily on the in-situ data (Metzl et al., 2006; Gregor et al., 2017; Ritter et al., 2017; Djutechouang et al., 2022). The SOCCOM project increased the number of winter samples with pH-enabled profiling floats (from 2014), suggesting stronger outgassing during winter than previously shown (Gray et al., 2018). In RECCAP2, the B-SOSE assimilation model and the BGC-float pCO$_2$-products both make use of this data (Verdy & Mazloff, 2017; Bushinsky et al., 2019). Both of these estimates overestimate pCO$_2$ relative to SOCAT pCO$_2$ highlighting the challenge in consolidating ship-based SOCAT and BGC-float data.

3.3.2 Climate versus CO$_2$ effects on trends in CO$_2$ flux

Our analysis so far has indicated that the GOBMs reproduce seasonal temperature effects on CO$_2$ flux reasonably well (Figure 7), and a larger uncertainty is associated with imprints of circulation and biological activity. Next, we inspect the zonal mean and spatial patterns of the CO$_2$ flux trend 1985-2018 (Figure 10). The pCO$_2$-products place the largest trend towards more CO$_2$ uptake in the entire ICE biome; however, data in this region is sparse and there is larger variability between pCO$_2$ products here (see also Figure 8). The pCO$_2$-products show a secondary peak in the STSS between about 40 to 45°S. The GOBMs in contrast have a large meridional gradient in the ICE biome with a peak in the trend between 60 and 65°S that is reduced in magnitude towards Antarctica. The secondary peak in the STSS is hardly apparent and also displaced southwards compared to the pCO$_2$-products. In addition, the pCO$_2$-products exhibit trends towards less CO$_2$ uptake in the Pacific and eastern Indian sector of the SPSS (Figure 10a-b). Although the difference in flux density between GOBMs and pCO$_2$-products is larger in the ICE biome, the discrepancy in the STSS contributes more to the total flux trend discrepancy due to the larger area of the STSS biome (Figure 8). The trend over 1985-2018
Figure 10. CO₂ flux trend between 1985 and 2018. (a-b) Spatial maps of the net CO₂ flux trend, for (a) the global ocean biogeochemistry models and (b) the pCO₂-products. (c) Zonal mean CO₂ flux trend 1985-2018 for the net CO₂ flux (blue: pCO₂-products, green: GOBMs) and the GOBM flux of F_{nat,ss} and F_{ant,ss}, i.e., the flux as expected from increasing atmospheric CO₂ alone (green, dashed). (d) The sea surface temperature (SST) trend 1985-2018 in the GOBMs (green) and in the observational data set (black, NOAA Extended Reconstructed Sea Surface Temperature, ERSST, Version 5 (Huang et al., 2017)). Supplementary figures split this analysis in the periods 1985-2000 (Figure S14) and 2001-2018 (Figure S15). Individual GOBM trends for F_{net}, as well as F_{nat,ss} plus F_{ant,ss} and SST are shown in Figure S16.
includes some compensation between the trends over 1985-2000 and 2001-2018 (see Figures S14-S15). While the GOBMs show similar weak trends towards more uptake before and after 2000, the pCO$_2$-products show a trend towards less uptake throughout the Southern Ocean except in the Weddell and Ross Seas. In the later period 2001-2018, the pCO$_2$ products estimate a much stronger trend towards more CO$_2$ uptake everywhere, as also shown in Figure 8. The CO$_2$ flux trends in the GOBMs are largely driven by increasing atmospheric CO$_2$ levels (simulation C in Figure 10c). However, the trend is reduced by climate change and variability throughout the SPSS and strengthened in the northern part of the ICE biome (compare simulations A that represents net FCO$_2$ and C that represents only steady state natural and anthropogenic fluxes, in Figure 10c). The effect of climate change and variability is substantially smaller than the uncertainty in the pCO$_2$-products. In line with GOBMs capturing the thermally-driven component of the pCO$_2$ seasonal cycle (Figure 8), we can also demonstrate that the GOBMs simulate sea surface temperature trends 1985-2018 rather well (Figure 10d). This is related to the choice of forcing the GOBMs with reanalysis data that itself depends on sea surface temperature observations (Doney et al., 2007). In contrast to fully coupled Earth System models in CMIP6 (Beadling et al., 2020), the suite of models used here capture the decadal trend pattern of warming along the northern flank of the Antarctic Circumpolar Current (ACC), and cooling in the south (Figure 10, Armour et al., 2016; F. Haumann et al., 2020). The lack of warming south of 50$^\circ$S was previously related to the wind-driven upwelling of deep water that had not yet been exposed to anthropogenic warming and by northward heat transport (Armour et al., 2016). More recently, the cooling was suggested to be caused by increased freshwater export from the ice region, which increases stratification and thus reduces the upward heat flux from below by warm water masses (F. Haumann et al., 2020). While the GOBM ensemble mean captures the latitudinal structure of the SST trend well, it underestimates the magnitude of peak cooling at around 60$^\circ$S as well as peak warming north of 40$^\circ$S. Overall, however, the GOBM ensemble mean captures the latitudinal structure of the SST trend well. We can therefore not relate the discrepancies in the trend of the CO$_2$ flux to temperature biases. This leaves data sparsity as a reason for potential biases in the trend in the pCO$_2$-products, and biases in ocean circulation, sea ice and biology as possible reasons for biases in GOBMs.

3.4 Interior ocean storage of anthropogenic carbon

The focus of this section is the anthropogenic perturbation of dissolved inorganic carbon (DIC) in a subset of the GOBMs (see section 2.2.1), and in particular its accumulation rate over the period 1994 to 2007 (ΔC_{ant}), in comparison with the eMLR(C*) observational estimate (Gruber, Clement, et al., 2019) and the ocean inverse model OCIMv2021 (DeVries, 2022). The eMLR(C*) product uses a multiple linear regression approach to estimate ΔC_{ant} and captures both the influence of CO$_2$-driven and climate-driven change in sea-air CO$_2$ fluxes and transports, whereas OCIMv2021 captures only the CO$_2$-driven changes.

All data classes agree in having the largest ΔC_{ant} inventories within and to the north of the STSS biome (Figure 11), whose southern boundary approximately corresponds to the northern edge of the ACC. This pattern is related to the mechanisms by which C_{ant} is taken up at the surface and exported to depth (Mikaloff Fletcher et al., 2006; Morrison et al., 2022; Bopp et al., 2015). Subpolar upwelling exposes old C_{ant}-poor waters to elevated atmospheric CO$_2$ concentrations and this, combined with strong winds, drives a large influx of C_{ant} in the SPSS biome (Figure 12a-c). A small fraction of the C_{ant} moves southward and is exported within Antarctic Bottom Waters, while the largest fraction is transported northward within the upper cell of the meridional overturning circulation. C_{ant} air-sea fluxes remain elevated throughout the northward path, and are reinforced by the deep mixed layers in the regions where mode and intermediate waters are formed,
Figure 11. ΔC_{ant} yearly accumulation rate over the period 1994-2007 integrated until 3000 m depth in the observationally-constrained estimates a) eMLR(C^*) (Gruber et al., 2019) and b) OCIM-v2021, in c) “GOBMs high” and in d) “GOBMs low” (individual GOBMs shown in Fig. S4). The robustness of the patterns has been tested as explained in Text S4 of the Supplement. Contours show the boundaries of the ICE, SPSS and STSS biomes. Values below 3000 m are not shown because of the low signal-to-uncertainty ratio in eMLR(C^*).
Figure 12. Zonal integrals of ΔC_{ant} yearly accumulation rate from 1994 to 2007 and of air-sea C_{ant} fluxes (positive downwards) averaged between 1994 and 2007 for a,d) eMLR(C^*), b,e) OCIM-v2021 and c,f) GOBMs. a-c) (black line) ΔC_{ant} column inventory (0-3000 m) and (grey line) air-sea C_{ant} fluxes; for the GOBMs, the distinction is made between “GOBMs high” (full lines) and “GOBMs low” (dashed lines). g-i) Anomalies of ΔC_{ant} accumulation rates in g) OCIM-v2021 with respect to eMLR(C^*), h) GOBMs with respect to eMLR(C^*) and i) GOBMs with respect to OCIM-v2021. In all sections, contours show mean potential density (with a 0.03 kg m$^{-3}$ spacing) referenced to the surface in World Ocean Atlas 2018 (Boyer et al., 2018), where thick lines indicate the 1026.9 kg m$^{-3}$ and 1027.5 kg m$^{-3}$ isopycnals. Anomalies of individual GOBMs shown in Fig. S18 (with respect to eMLR(C^*) and Fig. S19 (with respect to OCIMv2021).
Figure 13. Scatter plots showing relationships between ΔC_{ant} accumulation rates between 1994 and 2007 (integrated to 3000 m) and different quantities namely a) the cumulative C_{ant} in 1994 integrated over the Southern Ocean, b) air-sea C_{ant} fluxes averaged between 1994 and 2007 and integrated over the Southern Ocean, c) sea surface salinity (SSS) horizontally averaged over the SPSS and STSS biomes (which show consistent SSS anomaly patterns, Fig. S17). Shown are a subset of the GOBMs (see 2.3), the OCIM-v2021 data-assimilated model, the observation-based cumulative C_{ant} until 1994 (C* method, Sabine et al., 2004) and the 1994-2007 ΔC_{ant} from (eMLR(C*) method, Gruber, Clement, et al., 2019), and SSS from EN4.2.1 (Good et al., 2013). Thin black lines show the linear fit of the data for the GOBMs only, with the explained variance (R^2) and the p-value indicated for each regression. The grey shading in a) indicates the 19% uncertainty levels around the mean of eMLR(C*) (Southern Hemisphere uncertainty estimate, based on Table 1, Gruber, Clement, et al., 2019) and the green shading the 20% uncertainty levels around the C*-based estimate of cumulative C_{ant} until 1994 (global uncertainty estimate Sabine et al., 2004; Matsumoto & Gruber, 2005). Models that have a ΔC_{ant} storage higher than the average of the two observationally-constrained data sets (“GOBMs high”) are shown in red, whereas the models in which it is lower (“GOBMs low”) are shown in blue. Because of its different spin-up procedure, ROMS-SouthernOcean-ETHZ is shown in the plots but has been excluded from the regression analysis. For OCIM-v2021, CNRM-ESM2-1 and MPIOM-HAMOCC the ΔC_{ant}^{ss} is shown, whereas in others the sum of steady state and non steady state is shown. As discussed in Text S2, ΔC_{ant}^{ss} accumulation rates are about 10-20% of the total ΔC_{ant}.
which results in a secondary peak at around 40°S in some GOBMs, diluted by the ensemble mean (Fig. 12c).

The effective transport of C_{ant} into the ocean interior relies on a number of physical processes, the dominant of which is the northward transport by the overturning circulation of the C_{ant} ventilated in the ocean interior by deep winter mixing (Frölicher et al., 2015; Morrison et al., 2022). The absorbed C_{ant} spreads northward along density surfaces within mode and intermediate waters (Figure 12d-f) and is circulated within and out of the Southern Ocean by the subtropical gyres (Frölicher et al., 2015; D. C. Jones et al., 2016; Waugh et al., 2019). As a result, the largest C_{ant} inventories are displaced to the north with respect to the maximum air-sea C_{ant} influx (Figure 12b,c). Another pathway by which the C_{ant} inventory can build up without a corresponding surface influx is by southward advection and subsequent subduction of high-C_{ant} Subtropical Waters (Iudicone et al., 2016; Morrison et al., 2022).

The observation-based product eMLR(C^*) and the ocean inverse model OCIM-v2021 have similar ΔC_{ant} accumulation rates when integrated over the Southern Ocean for the period 1994 through 2007 (0.52 PgC yr$^{-1}$ and 0.47 PgC yr$^{-1}$, respectively, Figure 13), but differ in their horizontal (Figure 11) and vertical (Figure 12) patterns. The eMLR(C^*) exhibits particularly low ΔC_{ant} values at subpolar and high latitudes (Figure 12g), especially in the Pacific sector (Figure 11). The GOBMs multi-model-mean of ΔC_{ant} accumulation rates over the same 1994 through 2007 period and integrated within the Southern Ocean (Figure 13) is 0.46±0.11 PgC yr$^{-1}$, i.e., 7% lower than the mean of the two observational estimates considered here. 6 out of the 12 GOBMs fall within the 19% range of the observational eMLR(C^*) uncertainty. Two thirds of all GOBMs (hereafter “GOBMs low”) have lower than observed ΔC_{ant} accumulation rates (0.39±0.11 PgC yr$^{-1}$, about 20% lower than the observational estimates). The remaining GOBMs (hereafter “GOBMs high”) have higher than observed ΔC_{ant} accumulation rates (0.58±0.07 PgC yr$^{-1}$, about 17% higher than the observational estimates). “GOBMs high” have a higher ΔC_{ant} storage than “GOBMs low” throughout the Southern Ocean (Figures 11c,d and 12c), higher C_{ant} air-sea fluxes (Figure 12c), higher sea surface salinity (SSS) in the SPSS and STSS biomes and mixed layer depths especially in the SPSS biome (Text S3, S4 and Figure S17). Along the zonal mean section, all GOBMs show a southward shift in ΔC_{ant} with respect to eMLR(C^*) shown by a north-south dipole in the upper 1 km (Figure 12h), as similarly found in the comparison between OCIM-v2021 and eMLR(C^*) (Figure 12g). With respect to OCIM-v2021, GOBMs show higher ΔC_{ant} above 1000 m depth and lower ΔC_{ant} beneath (Figure 12i). This could point to insufficient ventilation of C_{ant} in “GOBMs low” models (Figure S19), which represent the majority of the GOBMs. The amount of spread and the overall underestimate of ΔC_{ant} in the GOBMs is consistent with Earth System Models analyzed by Frölicher et al. (2015) and Terhaar et al. (2021), supporting the argument that biased ocean model dynamics and water mass properties rather than biases in the atmospheric forcing cause the C_{ant} underestimate (Terhaar et al., 2021; Bourgeois et al., 2022).

Integrated over the Southern Ocean, we find that the model spread in ΔC_{ant} accumulation rates from 1994 to 2007 can be largely explained (81% variance explained) by the spread in accumulated C_{ant} until 1994 (Figure 13), suggesting a coherent scaling between long-term and recent C_{ant} accumulation rates. The model spread in ΔC_{ant} accumulation rates is also related with the spread in C_{ant} air-sea fluxes averaged over 1994-2007 (78% variance explained). These results show that past long-term ΔC_{ant} accumulation rates are a better predictor for present ΔC_{ant} accumulation rate than present C_{ant} air-sea fluxes. The reason for this is that C_{ant} air-sea fluxes are linked to changes in C_{ant} storage through ocean transport, which may differ substantially between models (Frölicher et al., 2015; Terhaar et al., 2021; Bourgeois et al., 2022). This becomes obvious when considering the myriad of processes involved, including the strength of the overturning circulation, the strength of the subtropical gyres, the isopycnic stirring by...
Table 3. Comparison of the Southern Ocean carbon sink estimate with the estimate presented in RECCAP1 (Lenton et al., 2013), which used a different definition of the Southern Ocean region (44-75°S) and covered a different period (1990-2009). GOBMs: Global Ocean Biogeochemistry Models. Reported numbers are means ± one standard deviation. Note for RECCAP1 the median of all models is reported.

<table>
<thead>
<tr>
<th>Estimate</th>
<th>GOBMs</th>
<th>Observation-based</th>
</tr>
</thead>
<tbody>
<tr>
<td>RECCAP2 1985-2018</td>
<td>-0.75 ± 0.28 PgC yr⁻¹</td>
<td>-0.73 ± 0.07 PgC yr⁻¹</td>
</tr>
<tr>
<td>RECCAP2 1985-2018 (44°-75°S)</td>
<td>-0.39 ± 0.24 PgC yr⁻¹</td>
<td>-0.30 ± 0.04 PgC yr⁻¹</td>
</tr>
<tr>
<td>RECCAP2 1990-2009 (44°-75°S)</td>
<td>-0.22 ± 0.25 PgC yr⁻¹</td>
<td>-0.14 ± 0.09 PgC yr⁻¹</td>
</tr>
<tr>
<td>RECCAP1 1990-2009 (44°-75°S)</td>
<td>-0.43 ± 0.38 PgC yr⁻¹</td>
<td>-0.27 ± 0.13 PgC yr⁻¹</td>
</tr>
</tbody>
</table>

mesoscale eddies, and localized subduction dynamics (Sallée et al., 2012; Morrison et al., 2022). The different way in which the GOBMs simulate these transport processes is possibly linked to the large model spread in ∆C_air-sea accumulation rates among GOBMs. Past studies have found that SSS affects the surface ocean density in the formation regions of mode and intermediate waters and could be used as a constraint of the C_air-sea fluxes, and thus of the C_air-sea storage within the recently-ventilated water masses (Terhaar et al., 2021). In this study and in Terhaar et al. (2023), we find that SSS explains a lower variance in the ∆C_air-sea accumulation rates ($R^2=61\%$; Figure 13) and in the C_air-sea fluxes ($R^2=57\%$ Terhaar et al., 2023) with respect to the ESMs ($R^2=0.74$) analyzed by Terhaar et al. (2021). The relationship may be weaker due to the different suite of models used in the ESM and GOBM ensembles and remaining biases associated with incomplete spin-up (Terhaar et al., 2023).

4 Discussion

4.1 Summary and progress since RECCAP1

We provide an updated estimate of the Southern Ocean carbon sink (see Figure 1 for regional extent). The numbers we present (Table 3) are not directly comparable with the RECCAP1 estimate (Lenton et al., 2013) due to different region definitions (Figure 1) and periods (1990-2009 vs. 1985-2018). The RECCAP1 regional definition of the Southern Ocean (44-75°S) cut across and missed a large part of the strong CO₂ uptake north of the Subantarctic Front. Recalculating the RECCAP2 numbers for the RECCAP1 region would reduce the Southern Ocean CO₂ sink to 52% (GOBMs) or 41% (pCO₂-products) of its original value (Table 3). Adjusting RECCAP2 numbers for the 1990-2009 period would further reduce fluxes by about another 50%. Compared on equal footing (44°-75°S and 1990-2009), we find the Southern Ocean to be a weaker carbon sink in RECCAP2 compared to RECCAP1.

The observational and modeling communities have made substantial progress on quantifying and characterizing the Southern Ocean carbon sink since RECCAP1 (Lenton et al., 2013). The creation of the Surface Ocean CO₂ Atlas and its annual updates have marked a step-change by facilitating the development of statistical models (a.k.a. pCO₂-products). The large and diverse ensemble of pCO₂-products help to identify the robust features of the Southern Ocean carbon sink. The pCO₂-products have a relatively small spread compared to the global ocean biogeochemistry models in terms of mean and seasonal cycle, indicating that the uncertainty from differences in mapping methods is small. However, the spread in the trend estimates is in fact larger in the products than in the GOBMs (Figure 10). Further, the narrow spread in mean and seasonal cycle does not
include the uncertainties due to sparse pCO$_2$ observations in the Southern Ocean, particularly in winter and before the 2000’s (Ritter et al., 2017). In addition, pCO$_2$-products share the uncertainties associated with the bulk formulation of air-sea CO$_2$ exchange (R. H. Wanninkhof et al., 2009; Fay et al., 2021). While they do have their shortcomings, the pCO$_2$ products are an advance for constraining the Southern Ocean carbon sink compared to the atmospheric inversions that were used in RECCAP1 (Lenton et al., 2013). This is because the surface ocean pCO$_2$ observations provide a more direct constraint on the air-sea CO$_2$ flux than the relatively small atmospheric CO$_2$ signals over the ocean that form the basis of the atmospheric inversions.

The larger GOBM ensemble provides a more representative process-based estimate and the spread in GOBMs has been reduced since RECCAP1 (see Table 3 Lenton et al., 2013). The remaining spread is nevertheless large and points towards critical need for model development, where the largest sources of uncertainty stem from biological processes in these models may still override information gained from assimilated observations. First, our results point to too little or too shallow ventilation of mode and intermediate waters (Figure 12), the causes of which can be related to insufficient vertical mixing or too sluggish northward export of the subducted waters (Morrison et al., 2022). However, while sea-surface salinity (SSS) was singled out as a strong predictor of C$_{ant}$ uptake and its interior storage in the GOBMs. Rather, Terhaar et al. (2023) find that biases in the normalized surface Revelle factor could explain the underestimation of C$_{ant}$ uptake. Finally, the relatively high pre-industrial CO$_2$ mixing ratios related to late starting dates in several GOBMs are likely causing an underestimation of the cumulative C$_{ant}$ storage, which is especially large in the Southern Ocean (Terhaar et al., 2023). For the natural carbon fluxes, the difficulty in capturing the delicate balance between physical and biological processes is clearly manifested by the large model spread (Figure 3). In addition, the different spin-up procedures could play a role. Terhaar et al. (2023) indicate that the natural CO$_2$ flux component may be biased towards uptake that is too strong, possibly related to GOBMs not being in steady-state (Terhaar et al., 2023), which is particularly relevant in the Southern Ocean where old water masses resurface. While long preindustrial spin-ups would bring the GOBMs closer to steady-state and thus reduce drift, they may come at the cost of less realistic surface conditions and their response to climate change and variability (Séférian et al., 2016). Interestingly, the two data-assimilated GOBMs differ to a large extent, illustrating that dynamical processes in these models may still override information gained from assimilated observations.

The averages of the GOBM and pCO$_2$-product ensembles agree for many key estimates, showing progress over the past 10 years: the mean and spatial distribution of the sink is in good agreement (Figure 2), although discrepancies of the magnitude and, particularly, the trends still persist (Figures 8 and 10; see also Canadell et al., 2021). The fact that these ensemble means agree so well in many respects provides some confidence
in the Southern Ocean CO$_2$ flux estimates because they are nearly independent. However, the agreement of GOBMs and pCO$_2$-products on the mean CO$_2$ flux is partly a result of compensation of regional and seasonal discrepancies (Figures 4, 5, 8). The agreement is also highly susceptible to the choice of river flux adjustment that either locates most outgassing of river-derived carbon in the Southern Ocean (Aumont et al., 2001) or in the tropical Atlantic (Lacroix et al., 2020). Reasons for the discrepancy between Aumont et al. (2001) and Lacroix et al. (2020) may be because of specific choices in nutrient and carbon input, lability of organic matter, resulting ocean model transport (see also the discussion in Terhaar et al., 2023). We here chose to use the river flux adjustment of Lacroix et al. (2020), scaled up to a global value of 0.65 PgC yr$^{-1}$, resulting in a small adjustment for the Southern Ocean of 0.04 PgC yr$^{-1}$. In contrast, the Southern Ocean (south of 20°S) adjustment based on Aumont et al. (2001) that is so far used in the Global Carbon Budget is higher by one order of magnitude (0.32 PgC yr$^{-1}$) and can explain the large mismatch in the mean flux (but not its trend) between GOBMs and pCO$_2$ products in the Southern Ocean in the Global Carbon Budget (Friedlingstein et al., 2022). The discrepancies in the trend cannot be explained by GOBM biases in warming trends as these are well reproduced (Figure 10). Similarly, the GOBM ensemble is not systematically biased towards formation of mode and intermediate waters that is too weak, in contrast to the ESMs, and an effect on the trend of the ocean carbon sink could not be evidenced (Terhaar et al., 2023). Further potential candidates for GOBM biases, which were not explored here, are stratification (Bourgeois et al., 2022), mixing, and mixed layer dynamics, which could also lead to excess carbon accumulation in the surface layer and thus may be the driver for the overestimation of the surface Revelle factor. In the pCO$_2$-products, the trend might be biased by data sparsity (Gloege et al., 2021; Hauck et al., 2023).

4.2 Seasonal cycle and thermal versus non-thermal drivers

As a community, we have a good understanding of the mechanisms that drive pCO$_2$ seasonality in the Southern Ocean (Lenton et al., 2013), but we do not fully understand their magnitudes, opposing or synergistic, in different seasons and regions (Mongwe et al., 2018). Part of this lack of understanding is due to a lack of observations throughout all seasons, though particularly acute during winter (Gray et al., 2018; Bushinsky et al., 2019; Sutton et al., 2021). Further, complex biological processes affecting pCO$_2$ in summer are more difficult to accurately describe in GOBMs (Mongwe et al., 2018).

While pCO$_2$ products require little to no understanding to reconstruct the seasonal cycle, they may still suffer from a lack of data (Ritter et al., 2017). This may be shown by the narrow ensemble spread of the pCO$_2$-products during winter (Figure 7d-f), which may result from poor sampling distribution. That being said, an observation system simulation experiment (OSSE) showed that the seasonal cycle in most of the Southern Ocean is in fact well captured by one pCO$_2$ product (Gloege et al., 2021). The narrower GOBM spread of the non-thermal pCO$_2$ component during winter may also suggest that winter-time processes (circulation) are less complex than summer (circulation and biology, Figure 7d-f).

The introduction of biogeochemical Argo floats since the mid 2010’s has increased the number of winter observations (relative to the available ship-based observations), albeit inferred from pH and estimated total alkalinity and thus associated with a higher uncertainty (Williams et al., 2017). The machine learning approaches that include float-based observations result in stronger winter outgassing (Figure 4, Bushinsky et al., 2019). Direct pCO$_2$ measurements showed that the years used to train the machine learning model (2015-2018) may have had anomalously high pCO$_2$ (Sutton et al., 2021). However, if this is in fact the case, and not related to sampling locations, this may indicate much larger interannual variability in the Southern Ocean than the majority of the pCO$_2$-products currently estimate (Figure 8). Incorporating these data is thus potentially an
important goal for pCO$_2$-products, but it has proven difficult to incorporate the float-
based pCO$_2$ estimates further back in time than 2015, the start of the BGC-float record
and account for their higher uncertainty (Bushinsky et al., 2019; Williams et al., 2017).

GOBMs also have a lower pCO$_2$ ensemble spread during winter compared with sum-
mer and agree on the spatial location of the winter flux minimum (Figure 4). Neverthe-
less, the range in magnitude is still more than twice as large as those of the pCO$_2$-products
(Figure 7d-f). Since the thermal component is well captured in GOBMs (Figure 7d-e),
the non-thermal physical drivers (i.e., circulation) determines the uncertainty observed
in winter. In summer, GOBMs have difficulty capturing the delicate balance between
biological and physical processes that leads to a large spread in model pCO$_2$ and fluxes
(Mongwe et al., 2018). GOBMs may thus benefit from more process-based studies that
further our understanding of pCO$_2$ drivers during summer, i.e., biological productivity,
respiration, remineralization and sinking of organic carbon as part of the biological car-
bon pump.

4.3 Temporal variability of CO$_2$ fluxes

Our analysis reduces the previously reported discrepancy in variability of South-
ern Ocean air-sea CO$_2$ fluxes between data classes (GOBMs and pCO$_2$-product ensem-
ble means, Gruber, Landschützer, & Lovenduski, 2019). We relate the growing agree-
ment to the larger ensemble of pCO$_2$-products in our study, with the newer additions
having a substantially lower variability than the two pCO$_2$-products (Jena-CarboScope
and SOM-FFN) used by Gruber, Landschützer, and Lovenduski (2019). A recent study
using the same RECCAP data base also concluded that there is agreement on the mag-
nitude of interannual variability between GOBMs and pCO$_2$-products (Mayot et al., 2023).

The interannual to decadal variability of Southern Ocean air-sea CO$_2$ fluxes was
discussed extensively in the literature, and was often related to variations in the South-
ern Annual Mode (SAM) (Le Quéré et al., 2007; Lovenduski et al., 2007; Lenton & Matear,
2007; Hauck et al., 2013; Nicholson et al., 2022; Mayot et al., 2023). Also, regional wind
variability linked to the zonal wavenumber 3 was suggested as a driver of interannual CO$_2$
flux variability driving both the weakening in the 1990’s and the strengthening in the
2000’s (Landschützer et al., 2015; Keppler & Landschützer, 2019). The arguments of SAM
or wave number 3 as dominant drivers of CO$_2$ flux interannual variability might not be
fully independent from each other, as previously a wave number 3 like pattern was re-
ported to describe MLD anomalies during positive SAM events (Sallée et al., 2010).

The fact that the maximum IAV of GOBMs is found in the SPSS Indo-Pacific sec-
tor (section 3.3, Figure S12) supports the argument of the above mentioned references
that upwelling of carbon-rich deep water and related outgassing of natural carbon in re-
response to a positive SAM and strengthening of westerly winds may be the dominant driver
of interannual variability (Devries et al., 2017). This is further supported by studies of
atmospheric potential oxygen (APO), which can be used as a tracer of ocean-only pro-
cesses from measurements of CO$_2$ and O$_2$ at atmospheric stations (Stephens et al., 1998).
Nevison et al. (2020) showed that the interannual variations of APO seasonal minimum
from stations in the Southern Hemisphere were strongly correlated with the SAM dur-
ing years of positive phase. Further, they showed that GOBMs (as analyzed in this study)
can capture the variability of CO$_2$ and APO fluxes driven by the SAM variations dur-
ing the austral winter months. However, the study of Nevison et al. (2020) also illustrated
that the SAM index variability cannot fully explain the changes in APO seasonal win-
ter minima suggesting that other factors or modes of variability such as ENSO could im-
 pact the CO$_2$ and O$_2$ air-sea fluxes of the Southern Ocean as also previously suggested
in an ocean modeling study (Verdy et al., 2007).

On top of the interannual variability, on which pCO$_2$ products and GOBMs seem
to reach reasonable agreement, discrepancies in the CO$_2$ flux trend since 2000 have emerged
manuscript submitted to Global Biogeochemical Cycles

(Figure 8, Friedlingstein et al., 2022). These discrepancies highlight a major knowledge gap and urgently need to be resolved by critical analysis of potential biases in pCO$_2$-products as well as GOBMs (see section 4.1). While there is no evidence so far that adjustments of CO$_2$ fluxes based on model evaluation of interfrontal salinity and Revelle factor affect the trend (Terhaar et al., 2023), data sparsity tends to lead to an overestimation of decadal variability and trend in at least two of the pCO$_2$-products (Gloege et al., 2021; Hauck et al., 2023). Hence, both data classes need to be inspected for deficiencies.

4.4 Zonal asymmetry of the fluxes

While the primary spatial mode of variability in the Southern Ocean is from north to south, zonal variability in the dynamics, biogeochemistry, and carbon fluxes have been reported in the literature (Landschützer et al., 2015; Tamsitt et al., 2016; Rintoul, 2018; Prend et al., 2022). Similarly, we find substantial zonal asymmetry in both the mean states, and seasonal and interannual variability of the Southern Ocean CO$_2$ fluxes (Figures S10, S12); yet many of our results have been presented in a zonally-averaged perspective for the sake of brevity.

In this work, we find that the largest zonal asymmetries in the Southern Ocean mean air-sea CO$_2$ flux occur in the SPSS biome (Figure 4b-e, S12). Here, the Pacific and Indian sectors are larger sources (or weaker sinks) of CO$_2$ to the atmosphere than the Atlantic sector. This is consistent with the pCO$_2$-based products (Figure S12d-f). The float-based pCO$_2$-products amplify this winter outgassing dramatically. However, the GOBMs and the assimilative model ensemble averages do not show a coherent and convincing increase in outgassing in the Indian and Pacific relative to the Atlantic. The zonal asymmetry reported in the observation-based products is consistent with a recent BGC-float-based study that reported stronger outgassing in the Indian and Pacific sectors of the Southern Ocean (Prend et al., 2022). The authors attributed this dominance to stronger winter-time entrainment of deep waters to the surface in these regions. The zonal asymmetry is also apparent in the air-sea CO$_2$ fluxes decomposed into natural and anthropogenic contributions (Figure S7). Here, too, the SPSS is the region with the greatest asymmetry. In the Indian sector, the large natural outgassing fluxes of the ensemble mean are nearly perfectly opposed by the anthropogenic uptake.

4.5 Link large-scale synthesis to observational programs

The analysis presented here provides a synthesis of large-scale datasets with a focus on budgets, spatial and temporal patterns of fluxes and carbon accumulation, and a first-order assessment of large-scale processes (e.g., thermal versus non-thermal, anthropogenic vs natural carbon fluxes). In particular, it highlights spatio-temporal windows for which discrepancies between data classes are largest (e.g., magnitude of winter outgassing, delicate balance of physical versus biological processes in summer, magnitude of decadal trend of the Southern Ocean carbon sink). Importantly, this synthesis builds on contributions from many individual groups contributing repeat observations of surface and interior ocean biogeochemical properties from research vessels and ships of opportunity (e.g., Talley et al., 2016; Hoppema et al., 1998; van Heuven et al., 2014; Metzl et al., 1999; Pardo et al., 2017). The ship-based observations form the cornerstone for many of the data classes in this study: observation-based ocean interior estimates of CO$_2$ storage assess changes in deep ocean measurements of CO$_2$, the surface pCO$_2$ estimates use observations from ships of opportunity, and the GOBMs are evaluated against ocean interior observations. And while sampling biases and gaps in the ship-based measurements may be filled by autonomous platforms with lower accuracy (e.g., BGC-floats), they will always require crossover validation measurements from the high-accuracy shipboard measurements. This emphasizes that the ship-based observations need to continue into the future to characterize the evolution of the Southern Ocean carbon cycle. This will only become more important, once stabilization of atmospheric CO$_2$ will lead to a
larger weight on ocean processes for control of air-sea fluxes relative to the current quasi-
exponential growth rate of atmospheric CO$_2$.

Further, detailed regional process studies employing a wide range of methodologies across disciplines are also important to further our holistic understanding of the Southern Ocean carbon cycle and to improve the description of biogeochemistry and ecosystem dynamics in GOBMs, particularly in summer. One example for such an interdisciplinary field program is along the continental shelf west of the Antarctic Peninsula where shipboard observations indicate a strong, near-shore summer undersaturation of surface pCO$_2$ (Eveleth et al., 2017) and seasonal reduction in surface dissolved inorganic carbon (Hauri et al., 2015). The seasonal trends in the ocean CO$_2$ system on the shelf reflect a combination of biological net community production (Ducklow et al., 2018) and meltwater input diluting surface dissolved inorganic carbon and alkalinity (Hauri et al., 2015). Regional ocean biogeochemical models simulate similar onshore-offshore gradients in surface chlorophyll, biological productivity, dissolved inorganic carbon, and pCO$_2$ as well as the observed large interannual biophysical variability associated with year-to-year variations in seasonal sea-ice advance and retreat phenology (Schultz et al., 2021). Observed decadal trends for the region from the early 1990s to late 2010s indicate that reduced sea-ice extent associated with climate change drives an increase in upper ocean stability, phytoplankton biomass and biological dissolved inorganic carbon drawdown, resulting in a growing net downward air-sea CO$_2$ flux during summer (Brown et al., 2019).

Recent year-round, autonomous mooring observations of pCO$_2$ and pH suggest a gradual increase in surface ocean pCO$_2$ and dissolved inorganic carbon over the fall and winter, with CO$_2$ outgassing during winter when pCO$_2$ is supersaturated largely blocked by sea-ice cover (Shadwick et al., 2021; M. Yang et al., 2021). Similar large-scale programs are needed in other parts of the Southern Ocean given its size and importance in the global carbon cycle. On-going research activities, also as part of the Southern Ocean Observing System (SOOS), e.g., in the Ross (Smith et al., 2021) and Weddell Seas (Arndt et al., 2022) have the potential of being extended.

5 Conclusions

Here, we present a schematic overview that summarizes the main characteristics of the Southern Ocean carbon cycle 1985-2018, as derived in this analysis and its supplementary material (Figure 14). In general, the sink strength for atmospheric CO$_2$ (net CO$_2$ flux, FCO$_2$) increases from South to North, but with important zonal asymmetry. The Atlantic and Indian Ocean sectors of the Subtropical Seasonally Stratified biome (STSS) are the regions that act as strongest sinks. In the Subpolar Seasonally Stratified biome (SPSS), the Atlantic sector stands out as the only sector acting as an annual mean CO$_2$ sink. Also the seasonal cycle shows a distinct north-south gradient. In the ice-covered biome (ICE) the peak uptake occurs in summer and is driven by the seasonal cycle of dissolved inorganic carbon (DIC), i.e. by physical DIC transport and biological processes. In contrast, the dominant driver of the seasonal cycle of CO$_2$ uptake in the STSS is temperature, and thus the season of peak uptake occurs in winter. Trends in net CO$_2$ uptake derived from Global Ocean Biogeochemistry Models (GOBMs) and surface ocean pCO$_2$ observation based products (pCO$_2$-products) disagree in all biomes, but the discrepancy is strongest in the Pacific sector of the STSS. In terms of anthropogenic CO$_2$ (C_{ant}), the strongest uptake occurs in the SPSS. This is not visible in the map of net CO$_2$ flux, because the anthropogenic uptake manifests itself as a suppression of natural CO$_2$ outgassing. The largest anthropogenic carbon storage occurs in the STSS and northward.

Our analysis confirms the important role of the Southern Ocean in the global carbon cycle. We have highlighted key knowledge gaps that need to be closed through extended observation systems and augmented process descriptions in the dynamic models in order to further reduce uncertainties.
Figure 14. Main characteristics of the Southern Ocean carbon cycle 1985-2018. The surface ocean color shading depicts the net air-sea CO$_2$ flux (FCO$_2$) as the average of the ensemble means from pCO$_2$-products and Global Ocean Biogeochemistry Models (GOBMs). Blue color denotes a CO$_2$ flux into the ocean, and red color a flux out of the ocean. The zonal mean section shows the anthropogenic carbon (C$_{ant}$) accumulation in the ocean interior from GOBMs. ICE: ice-covered biome, SPSS: Subpolar Seasonally Stratified Biome, STSS: Subtopical Seasonally Stratified Biome.
Open Research Section

All RECCAP2 data is hosted on https://zenodo.org/. Link will be updated during the review process.

Acknowledgments

Acknowledgments will be added during the review.

References

Chau, T. T. T., Gehlen, M., & Chevallier, F. (2022). A seamless ensemble-based reconstruction of surface ocean pCO₂ and air-sea CO₂ fluxes over...

...

Subsurface Warming and Surface Cooling in a Warming Climate. AGU Advances, 1(2). doi: 10.1029/2019av000132

Mauritsen, T., Bader, J., Becker, T., Behrens, J., Bittner, M., Brokopf, R., ... Roeckner, E. (2019). Developments in the MPI-M Earth System Model version 1.2 (MPI-ESM1.2) and Its Response to Increasing CO₂. *Journal of Advances in Modeling Earth Systems*.

Watson, A. J., Schuster, U., Shuttler, J. D., Holding, T., Ashton, I. G., Landschützer, P., ... Goddijn-Murphy, L. (2020). Revised estimates of ocean-atmosphere CO$_2$ flux are consistent with ocean carbon inventory. Nature Communications,
11(1), 1–6. doi: 10.1038/s41467-020-18203-3

Introduction

- The supplementary material contains additional information and analysis. In particular, we present additional analysis, resolved to show results of individual data sets and further separation into Atlantic, Pacific and Indian Ocean sectors of the Southern Ocean.

Text S1. Linear CO\textsubscript{2} flux trends in the control simulation

In the whole Southern Ocean, the linear trend in simulation B (Figure S1) is smaller than 10 TgC yr-1 decade-1 for 10 out of the 14 models; larger than 10 TgC yr-1 decade-1 for the other four (maximum 55 TgC yr-1 decade-1). Overall, the trend in simulation B is thus small compared to the mean fluxes in simulation A.

Text S2. Non steady state component of ΔC\textsubscript{ant} accumulation rates

In Figures 11-13 we show the steady state ΔC\textsubscript{ant} for OCIMv2021 and two GOBMs (CNRM, and MPIOM-HAMOCC), since it is the only one available, whereas the total ΔC\textsubscript{ant} (i.e. the sum of the steady state and non-steady components) is shown for the other data
sets. This warrants a closer inspection at the non-steady ΔC_{ant} (Fig. S3) in relation to the steady ΔC_{ant}. Indeed, total ΔC_{ant} accumulation rates between 1994-1007 patterns may be affected by decadal changes in ocean circulation occurring over that period, which would affect its non-steady component (but not its steady component). As it can be seen from Fig. S3, $\Delta C_{\text{ant}}^{\text{ns}}$ is around 10-20% of the total ΔC_{ant} (Fig. S4). The spatial patterns of $\Delta C_{\text{ant}}^{\text{ns}}$ are quite diverse among GOBMs (despite having an overall tendency towards increased ΔC_{ant} uptake in the Weddell Sea), which is surprising considering that GOBMs are forced by similar atmospheric reanalysis products. It can be concluded that other factors, such as model internal variability and the individual strategy to perform a steady-state simulation, play a role in driving $\Delta C_{\text{ant}}^{\text{ns}}$.

Text S3. Computation of annual MLD diagnostic

Given its important role in ventilating the deep ocean (Morrison et al., 2022), we include here an assessment of mixed layer depth (MLD) across different GOBMs. In addition to the user-defined fixed-threshold September MLD provided by all of GOBMs, we additionally computed MLDs based on the interior temperature and salinity values using a variable density threshold method (Holte et al., 2017). Because, following the RECCAP-2 protocol, most GOBMs provided only annually-averaged temperature and salinity values, we call this diagnostic an annual MLD diagnostic. Monthly means would have been the preferred choice, considering the large seasonal variations in the upper ocean temperature and salinity, but this diagnostic has the advantage of being computed uniformly across all GOBMs and of using a variable density threshold, which has been shown to provide a more realistic picture especially at high latitudes (Holte et al., 2017). 3D monthly fields were only available for two hindcast models (NEMO-PlankTOM12 and CCSM-WHOI) and for the observed World Ocean Atlas 2018 (WOA18 climatology). An analysis of the impact of using annual means instead of monthly means of temperature and salinity, shows an underestimation of annual MLD diagnostic with respect to the monthly MLD diagnostic of around 45%-50% but no significant differences in spatial patterns.

Text S4. Composite analysis of “GOBMs high” and “GOBMs low”

To gain a better understanding of the factors driving the inter-model spread in ΔC_{ant} accumulation rates, we analyzed composites for GOBMs overestimating (hereafter “GOBMs high”, Figure 11c) and underestimating (hereafter “GOBMs low”, Figure 11d) ΔC_{ant} with respect to the average of the two observationally-constrained estimates. A consistent pattern of higher ΔC_{ant} accumulation rates in the “GOBMs high” with respect to “GOBMs low” emerges (Fig. 11c,d, Figure S4). Composite anomalies with respect to the multi-model-mean of different physical variables (Fig. S17) can help interpret the drivers of the different ΔC_{ant} accumulation rates in “GOBMs high” and “GOBMs low”. “GOBMs high” consistently show positive anomalies of C_{ant} air-sea fluxes throughout the Southern Ocean (except for some areas around Antarctica), associated with higher-than-average sea surface salinity (SSS) and deeper mixing in the STSS and SPSS biomes. Mixing anomalies are distributed more uniformly when using the annual MLD diagnostic (Text S3) than when using the user-defined September MLD. The clear dependence of
C_{ant} air-sea fluxes on SSS in the STSS and SPSS biomes is in line with Terhaar et al. (2021) and with results from the Evaluation Chapter of RECCAP-2 (Terhaar et al., 2023) where a tight relationship is found between C_{ant} air-sea fluxes and SSS averaged between the Polar Front (approximately the southern edge of the SPSS biome) and the Subtropical Front (approximately the northern edge of the STSS biome). Interestingly, “GOBMs high” models have lower-than-average SSS in the ICE biome, possibly because of thicker sea ice (Fig. S17), which impedes the formation of polynyas and associated brine rejection. By construction, the anomalies of “GOBMs low” provide a specular picture with respect to “GOBMs high”.

Figure S1. CO_2 flux in simulation B (control) for each individual GOBM for the (a) Southern Ocean, (b) STSS, (c) SPSS, and (d) ICE biomes.

Figure S2. Same as Figure 6a-c, but with MPIOM-HAMOCC included. Note the different y-axes scales compared to Figure 6.
Figure S3. Non-steady state anthropogenic carbon ($\Delta C_{\text{ant}}^{\text{ns}}$) accumulation rates over the period 1994-2007. Shown are only models where this decomposition is possible.
Figure S4. ΔC\textsubscript{ant} accumulation rate from 1994 to 2007 integrated to 3000 m depth for individual models. ΔC\textsubscript{ant}tot is shown for “GOBMs high” models CESM-ETHZ, MRI-ESM2-1, NorESM-OC1.2, and NEMO-PlankTOM12 (top row), for “GOBMs low” models CCSM-WHOI, CNRM-ESM2-1, EC-Earth3, FESOM_REcoM_LR, ORCA025-GEOMAR, ORCA1-LIM3-PISES, and MPIOM-HAMOCC and for the regional model ROMS-SouthernOcean-ETHZ (middle and bottom rows). ΔC\textsubscript{ant}ss is shown for MPIOM-HAMOCC and CNRM-ESM2-1 (as justified in the main text and Text S2). Biome boundaries are shown as contours.
Figure S5: Zonal mean of flux density for individual GOBMs in the period 2015-2018. We show the (a) annual, (b) summer, and (c) winter zonal averages. The black markers on the x-axes show the mean location of the biome boundaries with the names of the biomes shown in gray. The MPIOM-HAMOCC model is excluded in panels b and c because of an overly strong seasonal amplitude.
Figure S6: Same as Figure 3, but separating the total climate effect on CO$_2$ fluxes (gray) into the climate effect on natural (yellow) and anthropogenic (dark red) CO$_2$ fluxes. The climate effects on natural and anthropogenic CO$_2$ fluxes partly compensate each other.
Figure S7: Same as Figure 3, but further split into Atlantic, Pacific and Indian Ocean sectors. The sub-biome-scale natural–anthropogenic decomposition of the air-sea CO$_2$ fluxes from the Global Ocean Biogeochemical Models in the Southern Ocean for the (a) Subtropical Seasonally Stratified, (b) Subpolar Seasonally Stratified, and (c) ICE biomes. The bars show the model ensemble mean, the circles show the individual models, and the error bars represent one standard deviation around the mean.
Figure S8. Temporal average of the contemporary Southern Ocean \(\text{CO}_2 \) flux (FCO\(_2\)) 2015-2018. A positive flux denotes outgassing from ocean to atmosphere. GOBMs: global ocean biogeochemistry models. (a) The green and blue bar plots show the ensemble mean of the GOBMs and pCO\(_2\)-products, and open circles indicate the individual GOBMs and pCO\(_2\) products. The ensemble standard deviation (1σ) is shown by the error bars. The other bars show other individual estimates as indicated in the legend (see also methods). (b-d) maps of spatial distribution of net \(\text{CO}_2 \) flux for ensemble means of GOBMs, pCO\(_2\)-products and of the data-assimilated regional model B-SOSE. (e) zonal mean flux of the different data sets. Thick green and blue lines show the ensemble means, and thin green and blue lines show the individual GOBMs and pCO\(_2\)-products. Other colors as in panel a. Approximate boundaries for biomes are marked with black points on the x axis.
Figure S9: The season of maximum CO$_2$ uptake per grid cell for the pCO$_2$-products over the period indicated in the panels.
Figure S10: Seasonal cycle monthly climatology of FCO2 for the nine subregions of the Southern Ocean (see Figure 1). The top, middle and bottom rows show the STSS, SPSS and ICE biomes respectively, while the left, center and right columns represent the Atlantic, Indian, and Pacific sectors of each biome respectively. The standard deviation of the GOBMs (solid green) and pCO$_2$-products (solid blue) are shown in the narrow lower panels of each subplot. Data has not been centered to a specific year, and each dataset has the start and end years as noted in Table 1.
Figure S11: Same as Figure 7d-f, but showing all individual global and regional ocean biogeochemistry models and data assimilating models.

Figure S12: Same as Figure 8b-d, but further split into Atlantic, Pacific and Indian Ocean sectors of the biomes.
Figure S13: Comparison of surface ocean pCO$_2$ from DIC-dominant (blue), DIC-weak (yellow) global and regional ocean biogeochemistry models (see Table S1) and pCO$_2$-products (blue) to pCO2 from gridded SOCAT v2022 data set (see also Figure 9 for full Southern Ocean analysis, and section 3.3.1). Here, we calculate bias and RMSE for all observations for a given season and region. The bias is the sum of the residuals while the RMSE is the square root of the sum of the squared residuals.
Figure S14: Same as Figure 10, but CO₂ flux trend shown here for the period 1985 to 2000. Note different scales than in Figure 10.
Figure S15: Same as Figure 10, but CO₂ flux trend shown here for the period 2001 to 2018. Note different scales than in Figure 10.
Figure S16: CO₂ flux and temperature trends 1985-2018 for individual models. (a) Net CO₂ flux trend from simulation A, (b) Steady state CO₂ flux trend ($F_{nat ss}$ and $F_{ant ss}$) from simulation, (c) sea surface temperature (SST) trend in simulation A.
Figure S17: Composite anomalies averaged over years 1994-1007 of a,b) C_{ant} flux, c,d) sea surface salinity, e,f) MLD annual diagnostic using variable density threshold, g,h) user-defined September MLD with fixed density threshold, and i,j) sea ice concentration for models with ΔC_{ant} higher (“GOBMs high”, left column) and lower (“GOBMs low”, right column) than the average of the observation-based products eMLRC* and OCIM-v2021.
Shown are anomalies with respect to the multi-model-mean of these nine models. The “GOBMs high” models are CESM-ETHZ, MRI-ESM-1, NorESM-OC1.2, and NEMO-PlankTOM12. The “GOBMs low” models are: CCSM-WHOI, CNRM-ESM2-1, EC-Earth3, FESOM-REcoM-LR, ORCA025-GEOMAR, ORCA1-LIM3-PISCES and MPIOM-HAMOCC. CNRM-ESM2 was excluded from the composite analysis because it shows areas of negative ΔC_{ant}; ROMS-SouthernOcean-ETHZ was also excluded because it has a different spin-up procedure with respect to other models (see Methods Section). The robustness of the patterns has been tested by removing in turn one model from the list. The patterns are retained even when the two models at the higher end (NorESM-OC1.2) and lower end (CCSM-WHOI) are removed from the composites. By construction, the sum of anomaly patterns in GOBMs high and GOBMs low is zero (in other words, the patterns are specular with respect to the multi model mean).

Figure S18: Anomalies, computed with respect to eMLR(C*), of ΔC_{ant} accumulation rates for the “GOBMs high” (top row), “GOBMs low” and for the regional model ROMS-SouthernOcean-ETHZ (middle and bottom rows). Contours show, for each model, the zonally-averaged potential density for the period 1994-2007 (with a 0.02 kg m$^{-3}$ spacing), where the thick contour indicates the 1027.6 kg m$^{-3}$ isopycnal.
Figure S19: Anomalies, computed with respect to OCIM-v2021, of ΔC_{ant} accumulation rates for the “GOBMs high” (top row), for “GOBMs low” and for the regional model ROMS-SouthernOcean-ETHZ (middle and bottom rows). Contours show, for each model, the zonally-averaged potential density for the period 1994-2007 (with a 0.02 kg m$^{-3}$ spacing), where the thick contour indicates the 1027.6 kg m$^{-3}$ isopycnal.
Table S1. Illustration of the Global Ocean Biogeochemistry Models (GOBMs) simulations A to D. Simulation A and C are forced with interannual varying atmospheric CO$_2$ as in historical observations, and simulations B and D are forced with constant (preindustrial atmospheric CO$_2$. Climate forcing varies interannually in simulations A and D, and a repeated single year or multi-year climatology is used in simulations B and C. F_{net}: net air-sea CO$_2$ flux. Flux components: C_{ant}: anthropogenic carbon, C_{nat}: natural carbon, ss: steady state, ns: non steady state. See main text for explanation.

<table>
<thead>
<tr>
<th>CO$_2$ atm</th>
<th>Climate forcing</th>
<th>Flux component</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td></td>
<td>$F_{\text{net}} = C_{\text{ant}}^{ss} + C_{\text{ant}}^{ns} + C_{\text{nat}}^{ss} + C_{\text{nat}}^{ns}$</td>
</tr>
<tr>
<td>B</td>
<td></td>
<td>C_{nat}^{ss}</td>
</tr>
<tr>
<td>C</td>
<td></td>
<td>$C_{\text{ant}}^{ss} + C_{\text{nat}}^{ss}$</td>
</tr>
<tr>
<td>D</td>
<td></td>
<td>$C_{\text{nat}}^{ns} + C_{\text{nat}}^{ss}$</td>
</tr>
</tbody>
</table>

Table S2. Refers to the classification of models in Figure 7 into those that have a strong or weak DIC seasonal cycle contribution to pCO$_2$. We refer to these as DIC dominant or DIC weak rather than thermal or non-thermal as the thermal contribution is relatively similar for all models as the RECCAP2 models use atmospheric forcing, resulting in well-constrained temperature contributions.

<table>
<thead>
<tr>
<th>DIC dominant</th>
<th>Global and regional ocean biogeochemistry models</th>
</tr>
</thead>
<tbody>
<tr>
<td>CCSM WHOI, CESM ETHZ, MRI-ESM2, NorESM-OC1, ORCA025-GEOMAR, ROMS-SouthernOcean-ETHZ</td>
<td></td>
</tr>
</tbody>
</table>

| DIC weak | CNRM-ESM2, EC-Earth3, FESOM-REcoM-HR, FESOM-REcoM-LR, MOM6-Princeton, ORCA1-LIM3-PISCES, PlankTOM12 |