Light-Assistance in Nitrogen Fixation to Ammonia by Highly Dispersed Cs-Promoted Ru Clusters Supported on ZrO2

Yong Peng, Arianna Melillo, Run Shi, Antonio Franconetti, Josep Albero, and Hermenegildo García

1LIKAT
2ENS
3Technical Institute of Physics and Chemistry
4CIC bioGUNE
5Universitat Politècnica de València

April 27, 2023

Abstract

Light-assisted N2 fixation to NH3 under mild conditions is attracting massive attention to circumvent energy crisis and global warming. Herein, highly dispersed Cs-decorated Ru sub-nanometric clusters supported on ZrO2 NPs have been prepared by means of MOF-templated transformation method. The obtained catalyst exhibited N2 hydrogenation activity of 1.6 mmolNH3·gcat-1·h-1 in the dark (350 oC, 0.1 MPa). Remarkably this value increased by over 300 %, reaching 5.1 mmolNH3·gcat-1·h-1 (204 mmolNH3·gRu-1·h-1) under 1 Sun power illumination (1080 W/m2), with an estimated quantum efficiency of 39 %. The influence of the incident light wavelength has been evaluated, revealing 81 % and 213 % enhancement in the NIR and visible region, respectively. DFT calculations were carried out to understand the static adsorption states of Ru sub-nanoclusters. Mechanistic studies have confirmed the co-existence of a photothermal and a nonthermal-hot electron mechanism. XPS, PXRD and FTIR analysis have determined that the Cs species block surface Zr4+ acidity, increasing the basicity of the ZrO2 support. Moreover, partially reduced Cs?+ (0<?<1) species surrounding the Ru active sites are donating electron density to the adjacent Ru sites, favoring N2 adsorption. Finally, this photocatalyst has shown an extended stability for 100 h irradiation under continuous flow.

Article category: (Full Paper)
Subcategory: (Photothermal catalysis)

Light-Assistance in Nitrogen Fixation to Ammonia by Highly Dispersed Cs-Promoted Ru Clusters Supported on ZrO2

Yong Peng, Arianna Melillo, Run Shi, Antonio Franconetti, Josep Albero* and Hermenegildo García*

Dr. Y. Peng, Dr. A. Melillo, Dr. J. Albero, Prof. H. García,
Instituto Universitario de Tecnología Química (CSIC-UPV), Universitat Politècnica de València, Avda. de los Naranjos s/n, 46022 Valencia (Spain). E-mail: joalsan6@upvnet.upv.es; hgarcia@qim.upv.es

Dr. R. Shi,
Key Laboratory of Photochemical conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China

Dr. Antonio Franconetti,
KEYWORDS: metal clusters, photocatalysis, N\textsubscript{2} fixation, ammonia, MOF-derived photocatalyst, surface plasmonic resonance effects, hot electrons injection

Light-assisted N\textsubscript{2} fixation to NH\textsubscript{3} under mild conditions is attracting massive attention to circumvent energy crisis and global warming. Herein, highly dispersed Cs-decorated Ru sub-nanometric clusters supported on ZrO\textsubscript{2} NPs have been prepared by means of MOF-templated transformation method. The obtained catalyst exhibited N\textsubscript{2} hydrogenation activity of 1.6 mmol\textsubscript{NH\textsubscript{3}} \cdot g\textsubscript{cat}\textsuperscript{-1} \cdot h\textsuperscript{-1} in the dark (350 °C, 0.1 MPa). Remarkably this value increased by over 300 %, reaching 5.1 mmol\textsubscript{NH\textsubscript{3}} \cdot g\textsubscript{cat}\textsuperscript{-1} \cdot h\textsuperscript{-1}(204 mmol\textsubscript{NH\textsubscript{3}} \cdot g\textsubscript{Ru}\textsuperscript{-1} \cdot h\textsuperscript{-1}) under 1 Sun power illumination (1080 W/m\textsuperscript{2}), with an estimated quantum efficiency of 39 %. The influence of the incident light wavelength has been evaluated, revealing 81 % and 213 % enhancement in the NIR and visible region, respectively. DFT calculations were carried out to understand the static adsorption states of Ru sub-nanoclusters. Mechanistic studies have confirmed the co-existence of a photothermal and a nonthermal-hot electron mechanism. XPS, PXRD and FTIR analysis have determined that the Cs species block surface Zr\textsuperscript{4+} acidity, increasing the basicity of the ZrO\textsubscript{2} support. Moreover, partially reduced Cs\textsuperscript{δ+} (0<δ<1) species surrounding the Ru active sites are donating electron density to the adjacent Ru sites, favoring N\textsubscript{2} fixation. Finally, this photocatalyst has shown an extended stability for 100 h irradiation under continuous flow.

1. Introduction

Solar-assisted production of fuels and commodity chemicals, such as methanol, ethylene or ammonia, among others, is becoming increasingly considered as an appealing approach for energy sector decarbonization and climate change mitigation.\textsuperscript{[1]} In this regard, besides the classic photocatalytic mechanism, characterized by the photo-induced generation of electron/hole pairs and their direct participation in red/ox reactions, photothermal catalysis has recently appeared as a very convenient approach due to the higher efficiency.\textsuperscript{[2]} The photothermal mechanism consists on light absorption at the active metal sites, which causes an increase of its local temperature at the nanoscale, resulting in an enhanced catalytic activity of the metal sites. For instance, we have recently demonstrated that Cs-promoted Ru NPs supported in a low thermal conductivity support (SrTiO\textsubscript{3}) is a very convenient photothermal catalyst for N\textsubscript{2} hydrogenation at near 1 Sun light irradiation and 350 °C, obtaining 3.5 mmol\textsubscript{NH\textsubscript{3}} \cdot g\textsubscript{cat}\textsuperscript{-1} \cdot h\textsuperscript{-1}.\textsuperscript{[3]} However, the main challenge in catalysis lies on the preparation of more efficient and selective catalysts by active site engineering. In thermal catalysis, it is typically accepted that size reduction of active metal nanoparticles promotes an enhancement of the catalytic activity due to the exposure of a larger number of surface atoms per volume unit as well as the higher number of unsaturated coordination positions and defects.\textsuperscript{[4]} Thus, metal clusters containing hundreds to few atoms, or even single metal atom catalysts are currently widely investigated as efficient and selective catalysts. However, a precise control in size distribution during the preparation of sub-nanometric active sites still remains challenging, especially at the large scale, as consequence of their tendency to undergo agglomeration and particle growth.

Metal-organic-frameworks (MOFs) have attracted much attention in the last decades as photocatalysts for that it presents several advantages over other alternative materials such as very large specific surface area, flexible design, micro- or mesoporous structures, and the possibility to incorporate a large variety of organic moieties or metals.\textsuperscript{[5]} Moreover, MOFs have recently demonstrated that can act as templates or precursors of very different materials including metal single atoms and clusters.\textsuperscript{[6]} The use of MOFs as sacrificial templates offers the advantage that the structure and chemical properties of the initial MOFs generally determine the morphology and porosity of the resulting materials. In fact, the use of MOFs as templates or precursors provide materials that exhibit excellent performance in different applications such as supercapacitors,\textsuperscript{[7]} electrocatalysis,\textsuperscript{[8]} photocatalysis\textsuperscript{[9]} and thermal catalysis.\textsuperscript{[10]} For instance, Zhang et al. have recently reported photocatalytic H\textsubscript{2} production with 56 % quantum efficiency using Cu single atoms anchored on TiO\textsubscript{2}.\textsuperscript{[11]} The high loading of highly dispersed Cu single atoms was achieved by anchoring Cu ions on MIL-125 MOF, and subsequent calcination, forming a metal-oxygen-titanium bond, which was found key to ensure uniformly immobilized metal single atoms while enabling at the same time high density of these single atom sites.
Herein, we report the preparation of Cs-decorated small Ru clusters (< 1 nm) homogeneously dispersed on ZrO$_2$ using UiO-66 MOF as template. The as-prepared material presents highly dispersed sub-nanometric Ru clusters at 2.5 wt.% loading. The optimized photocatalyst has demonstrated a NH$_3$ production rate at atmospheric pressure and 350 $^\circ$C in dark of \(1.6 \text{ mmol} \cdot \text{g}^{-1} \cdot \text{h}^{-1}\), while the activity increases by over 300 \% upon 1 Sun intensity light (1080 W·m$^{-2}$) irradiation, reaching \(5.1 \text{ mmol} \cdot \text{g}^{-1} \cdot \text{h}^{-1}\) (204 mmolNH$_3$ · g$_{\text{Ru}}$$^{-1}$ · h$^{-1}$) with a remarkably high AQE of 39 \%. Ru clusters prepared by impregnation method on commercial ZrO$_2$ exhibited almost 1 order of magnitude lower NH$_3$ production rate, stressing the convenience of the MOF template method. Mechanistic studies have determined that non-thermal hot electron injection and photothermal mechanisms operate simultaneously, improving the overall efficiency of the photocatalytic process. Moreover, this photocatalyst has demonstrated to be stable for at least 100 h of continuous irradiation under these conditions.

Scheme 1. Main steps in the Cs(6)Ru(2)@ZrO$_2$ photocatalyst preparation

2. Results and Discussion

2.1. Photocatalyst synthesis and characterization

Cs(6)Ru(2)@ZrO$_2$ photocatalyst (6 indicating the approximate Cs/Ru atomic ratio and 2 corresponding to the rough percentage of Ru on the material) was obtained by calcination at 550 $^\circ$C under air atmosphere of UiO-66 MOF to which previously appropriate amounts of RuCl$_3$ and CsNO$_3$ salts were consecutively adsorbed, as depicted in Scheme 1. Experimental Section describes in detail the procedure including the amounts of the corresponding precursors and preparation protocol. After incorporation of Ru and Cs, UiO-66(Zr) MOF preserved its structure and crystallinity, as confirmed by powder X-ray diffraction (PXRD, Fig. S1 in Supporting Information) and high-resolution field emission scanning electron microscopy (HR-FESEM, Fig. S2 in Supporting Information). Calcination at the open-air results in the decomposition of UiO-66(Zr) to high crystalline ZrO$_2$ with an average particle size of 15 nm as determined by statistical analysis of the high-resolution transmission electron microscopy images (HR-TEM, Fig. 1). Two different fringe edge distances of 1.86 Å and 3.0 Å, corresponding to (112) and (101) planes of ZrO$_2$ (JCPDS. 50-1089) were measured. In contrast, no obvious RuO$_2$ NPs or Cs species could be discerned from HR-TEM images. The presence and amount of Ru and Cs could be, however, quantified by X-ray fluorescence that confirmed the proportion of Ru and Cs to be 2.5 wt% and 11 wt%, respectively. PXRD patterns of Cs(6)Ru(2)@ZrO$_2$ exhibited broad peaks attributable to ZrO$_2$ NPs, together with weak peaks that correspond to CsCl (JCPDS 05-0607), which we propose to be formed via ion metathesis between CsNO$_3$ and RuCl$_3$ during calcination. No obvious peaks that could correspond to any Ru species (particularly no RuO$_2$ or metallic Ru) could be observed (see Fig. S3 in supporting Information), demonstrating the high dispersion of this element on the ZrO$_2$ support. According to previous report, the free hydroxyl group on the Zr$_6$ node can act as the coordination site for exotic cations (as shown in Fig. 1), and thus could prevent the Ru species from aggregation during the calcination step.

Aberration-corrected high-angle-annular-dark-field scanning transmission electron microscopy (AC-HAADF STEM) was employed to further study the Cs and Ru distribution in Cs(6)Ru(2)@ZrO$_2$ catalyst. Due to a similar Z value of Zr (Z=40) and Ru (Z=44), it is challenging to distinguish Ru species from ZrO$_2$ background. However, as can be observed in Fig. 1c and 1d, bright dots (less than 1 nm) can be discerned from the ZrO$_2$ background. Some of these bright spots were marked in these Figures with white arrows for better identifica-
tion. It is speculated that these bright dots correspond to Cs-surrounded Ru species. EDX mapping of these bright spots revealed that they contain Ru and Cs. These two elements are homogenously distributed in the whole ZrO$_2$ sample, further confirming the high Ru and Cs dispersion in Cs(6)Ru(2)@ZrO$_2$ photocatalyst.

Fig. 1. (a) and (b) HR-TEM images, (c) and (d) aberration corrected HAADF STEM images (the white arrows point to Cs+ surrounded Ru clusters), (e)-(i) EDX elemental mapping acquired from Cs(6)Ru(2)@ZrO$_2$ catalysts: f) Zr, g) O, h) Ru and i) Cs.

Fig. 2. (a) Temperature dependence of NH$_3$ production rate with using Cs(6)Ru(2)@ZrO$_2$ as catalyst under dark (blue columns) and light irradiation (red columns). The inset shows in red the light enhancement (red line) and AQE (blue line). (b) Arrhenius plot under dark (black dots and best linear fitting) and light irradiation (red dots and line). (c) NH$_3$ production rate under dark conditions and upon light irradiation using different cut-off filters (FS: full Xe lamp spectrum, the number indicates the filter nominal shorter wavelength). Reaction conditions: catalyst 50 mg, feeding gas 15 mL min$^{-1}$ N$_2$ + 45 mL min$^{-1}$ H$_2$, atmospheric pressure, temperature 350 oC, light source 1080 W m$^{-2}$ (300 W Xe lamp). The error bars correspond to the standard deviation of three independent measurements, and the centre value for the error bars is the average of the three independent measurements.

2.2. Photo-Assisted Nitrogen Fixation Tests.

The activity of Cs(6)Ru(2)@ZrO$_2$ to promote photo-assisted nitrogen fixation was evaluated with a customized fixed-bed flow reactor made of quartz that allows the irradiation of the surface of the catalyst by a xenon lamp (see Experimental Section and ref [3] for a detailed information). As shown in Fig. 2a, the NH$_3$ production rate at 350°C in the dark was about ~1.6 mmol g$_{cat}^{-1}$ h$^{-1}$, and the activity increased by over 300 % upon 1 Sun intensity light (1080 W/m$^2$) irradiation, reaching 5.1 mmol g$_{cat}^{-1}$ h$^{-1}$ based on the mass of Cs(6)Ru(2)@ZrO$_2$ catalyst, or 204 mmol NH$_3$ g$_{Ru}^{-1}$ h$^{-1}$ (with TOF 20.61 h$^{-1}$) based on the mass of Ru, which, to the best of our knowledge, is the highest activity reported so far under similar reaction temperature and pressure (see Table S1 in Supporting Information for a list of precedents regarding the state-of-the-art NH$_3$ production rates at atmospheric pressure). Besides the absolute value of NH$_3$ production, the three
times light enhancement at only 1 Sun irradiation power is a record in the field of photothermal N\textsubscript{2} fixation, showing a high potential for practical application of this catalyst. Control experiments using UiO-derived ZrO\textsubscript{2} or a Ru NPs deposited on ZrO\textsubscript{2}(Ru@ZrO\textsubscript{2}) at the same loading as Cs(6)Ru(2)@ZrO\textsubscript{2} result in negligible NH\textsubscript{3} production (Fig. S4), indicating that the activity of Cs(6)Ru(2)@ZrO\textsubscript{2} originates from the synergistic effects of all three components. Possible nitrogen species contamination from the catalyst or the reactor that could result in NH\textsubscript{3} production was excluded by the control experiment with only H\textsubscript{2} gas feed, which resulted in a negligible 0.4 \mu mol*cat\textsuperscript{-1}*h\textsuperscript{-1} NH\textsubscript{3} production (Fig. S4 condition A). In addition, the \textsuperscript{15}N\textsubscript{2} isotopic experiment showing in solution \textsuperscript{1}H NMR spectroscopy the change of the N-H coupling from \textsuperscript{14}N (triplet) to \textsuperscript{15}N (doublet) firmly confirmed that NH\textsubscript{3} derives exclusively from N\textsubscript{2} gas as substrate (Fig. S5).

Temperature dependence of the NH\textsubscript{3} production rate was studied in the range from 200 to 350 °C, either in the dark or upon 1 Sun intensity xenon lamp irradiation. As shown in Fig. 2a, the reaction rates increase exponentially along with the reaction temperature in both light irradiation and in the dark, suggesting that light enhancement occurs by promoting a photothermal mechanism analogous to a thermal process. The light enhancement is presented in the inset in Fig. 2a, in which a sigmoidal curve decreasing from 40 to 4 times enhancement was observed along with the temperature. The higher light enhancement at relatively lower temperature indicates that apart from the photothermal effects, a photocatalytic pathway of N\textsubscript{2} activation and reduction also plays an important role at low reaction temperatures. In addition, the apparent quantum efficiency (AQE) was tentatively evaluated (the calculation details are available in the supplementary information), and the values at different temperature are also presented in the inset in Fig. 2a (blue curve). As can be observed, the AQE also exhibited a sigmoidal trend with a maximum solar to chemical energy conversion of 39 % at 350 °C. Arrhenius plots for both light and dark conditions are shown in Fig. 2b, in which a linear relationship is observed in the range of temperatures from 200 to 350 °C for both light and dark conditions, with slope values of -6.76 and -11.03, respectively. It has been widely accepted that the interaction of nanoparticles and the incident light can result in high localized temperature, which cannot be precisely determined by conventional thermometers. The macroscopic temperature measured by contacting the thermocouple on the catalyst surface is usually employed for estimating the activation energy of the Arrhenius plot.\textsuperscript{13} Hence, in the present case, the activation energies were estimated to be 56 and 91.7 kJ*mol\textsuperscript{-1} for light irradiation and the dark reaction, respectively. The relatively lower activation energy upon light irradiation indicates again that the light must facilitate the N\textsubscript{2} reduction process through a different mechanism than the purely photothermal one (coincident activation energy for both processes), probably involving photocatalytic N\textsubscript{2} electron reduction (vide infra).

In order to stress the advantages of the herein employed MOF templated method for the Ru(6)Cs(2)@ZrO\textsubscript{2} preparation, a photocatalyst containing the same Ru and Cs loadings supported on commercial ZrO\textsubscript{2} (Ru(6)Cs(2)@ZrO\textsubscript{2}-S) was also synthesized via a conventional impregnation method. HR-TEM images (Fig. S6) revealed the presence of Ru NPs over 10 nm loaded on the surface of ZrO\textsubscript{2}, demonstrating the essential role of the MOF-templated method in order to obtain highly dispersed small Ru clusters. The photocatalyst ammonia production rate using Ru(6)Cs(2)@ZrO\textsubscript{2}-S was only 0.73 mmol*cat\textsuperscript{-1}*h\textsuperscript{-1}, which is almost 7 times lower than that of Ru(6)Cs(2)@ZrO\textsubscript{2}, further highlighting the convenience of the synthetic strategy starting from UiO-66 MOF.

### 2.3. Photo-Assisted Mechanism

The influence of incident light wavelength range on the photo-assisted NH\textsubscript{3} production rate was studied to gain further insights into the underlying mechanism of the photo-assisted N\textsubscript{2} hydrogenation. As can be seen in Fig. 2c, compared to the NH\textsubscript{3} production rate under dark condition at 350°C (1.6 mmol*cat\textsuperscript{-1}*h\textsuperscript{-1}), UV light irradiation up to 380 nm results in only 0.06 mmol*cat\textsuperscript{-1}*h\textsuperscript{-1} of enhancement, which accounts for only 5.1 % of the total 300 % times light enhancement by irradiation with the full Xe spectrum. Whilst the NH\textsubscript{3} production rate reached 2.57 mmol*cat\textsuperscript{-1}*mol\textsuperscript{-1} upon the irradiation of NIR light (xenon lamp light filtered with a cut-off filter \(\lambda > 830\) nm), which makes up 81 % of the light enhancement. The rest 213 % of the light-enhanced activity comes from the visible light region from 400 nm to 830 nm.
To correlate the photo-assisted activity and the light response of each component, diffuse reflectance UV-Vis-NIR spectra were recorded for both Cs(6)Ru(2)@ZrO₂ and ZrO₂ samples (Fig. S7). Bare ZrO₂ support exhibited a characteristic absorption band at ~370 nm, and it lacks photoresponse in the visible to NIR range, ruling out its role as ‘photon antenna’ or ‘photosensitizer’ in the photo-assisted reaction. On the contrary, the loading of Ru onto the ZrO₂ support results in broad absorption band spanning from 200 to 2000 nm, which should be responsible for the wavelength-dependent activity enhancement. It has been reported that Ru NPs possess a very broad plasmon band extending from the visible to the NIR, and hence the visible to NIR range photoresponse can be attributed to the plasmonic effect of Ru NPs. As a consequence, light absorption by Ru NP plasmon band results in highly localized temperature,[14] and eventually, an enhanced NH₃ production rate.

Fig. 3. Dependence of the NH₃ production rate on (a) N₂ partial pressure in the dark (black sphere) and under light irradiation (red sphere), and (b) dependence on the H₂ partial pressure in the dark (black sphere), and upon light irradiation (red sphere) with Cs(6)Ru(2)@ZrO₂ catalyst at 350 °C under atmospheric pressure. Light source: xenon lamp 1080 W / m².

It has been shown in Fig. 2b that the activation energy decreases upon light irradiation and this apparent lower activation barrier is compatible, to some extent, with a reaction pathway through a non-thermal way,[15] since thermal and photothermal pathways should have a coincident activation energy. However, since the activation energy was obtained based on the macroscopic temperature, this conclusion still needs to be supported on a firm ground. To confirm the non-thermal contribution, parameters that are independent of the reaction temperature, but related to the reaction mechanisms as reagent reaction order should be measured. In this case, the reaction orders of the reagents were established by varying the reactant partial pressure under otherwise constant reaction conditions and some valuable kinetic information was attained by comparing the partial reaction order in the dark and under light irradiation. Fig. 3 presents the reaction order for N₂ and H₂ both in the dark and upon irradiation. As can be observed there, the N₂ reaction order decreased from 0.89 in dark to 0.70 upon light irradiation, indicating that light facilitates the activation/reaction of N₂. It is proposed that the higher reactivity of N₂ under illumination would be due to the transfer of hot electrons generated upon excitation of Ru NP plasmon band into the anti-bonding orbitals of adsorbed N₂, weakening the N≡N triple bond. The decrease of the reaction order for N₂ also agrees with the decrease of the apparent activation energy under illumination as shown in Fig. 2b. Interestingly, the H₂ reaction order changed from -0.5 in dark to +0.47 in the presence of light irradiation. The negative reaction order in dark conditions indicates that the H₂ adsorption, presumably by dissociation into hydride, blocks the active sites, hindering as consequence N₂ activation and making the reaction slower.[16] In this context, a plausible explanation for the positive H₂ order upon light irradiation is that, since light favors N₂ activation decreasing the reaction activation energy, the poisoning effect of H₂ is lesser, resulting in a positive H₂ reaction order upon light irradiation. Combining the kinetic data obtained from activation energy tests and reagent reaction order studies, it can be concluded that there are differences in the thermal and light-assisted mechanism that can be ascribed to photogenerated hot electrons assisting the reaction.

To further confirm the non-thermal-hot electron mechanism, photocurrent response of a Ru(2)@ZrO₂ elec-
trodes under Ar or N$_2$ atmosphere were studied. Additionally, a control experiment using a ZrO$_2$ electrode under N$_2$ atmosphere was also carried out, and the results are presented in Fig. S8. As can be observed, Ru(2)@ZrO$_2$ electrode shows an abrupt increase in the photocurrent (from ~11 µA to ~18 µA) upon light irradiation ($\lambda > 450$ nm). The observed photocurrent in Ru(2)@ZrO$_2$ electrode under N$_2$ atmosphere is much higher than that in Ar atmosphere, indicating that N$_2$ is reacting with the Ru(2)@ZrO$_2$ electrode under light conditions, and demonstrating that the light irradiation on the electrode induces hot electrons and facilitate the N$_2$ reduction process. It is worth commenting that the onset absorption edge of ZrO$_2$ is ~370 nm (Fig. S7), and hence, the photocurrent can only be attributed to the hot electrons induced by the interaction of Ru NPs and the incident light. Furthermore, the negligible photocurrent response in ZrO$_2$ under N$_2$ atmosphere, confirms that the hot electrons on the Ru NPs participate in the N$_2$ activation.

2.4 Cs promoter effects

The influence of Cs loading on the NH$_3$ production rate was also studied to clarify the role of Cs on the catalytic activity. As presented in Fig. S9, in the absence of Cs, Ru(2)@ZrO$_2$ catalyst exhibits a NH$_3$ production rate of 2.5 µmol·g$_{\text{cat}}$·h$^{-1}$ at 350 °C upon 1080 W/m$^2$ light irradiation. No remarkable activity enhancement was observed when the Cs to Ru atomic ratio increased from 0 to 3.5, with only 29.3 µmol·g$_{\text{cat}}$·h$^{-1}$·NH$_3$ production rate achieved. Surprisingly, a drastic enhancement of 170 times was achieved for a Cs to Ru ratio at 6, reaching a NH$_3$ production rate of 5.1 mmol·g$_{\text{cat}}$·h$^{-1}$. Further increasing the Cs to Ru ratio to 10 decreases the catalytic activity, dropping down to 2.98 mmol·g$_{\text{cat}}$·h$^{-1}$. Therefore, the maximum effect was observed for a Cs to Ru ratio of 6. The dependence of NH$_3$ production activity on the amount of Cs loading in dark condition also follows the same trend as that upon irradiation, with a NH$_3$ production rate of 0.0018, 0.011, and 1.6 mmol·g$_{\text{cat}}$·h$^{-1}$ for Cs to Ru ratio at 0, 3.5 and 6, respectively. Observation of the same trend in the dark and under light irradiation suggests that the role of Cs promoting the reaction is the same under both conditions. It should be reminded that chloride adsorbed on metallic sites, such as Au and Ru, leads to deactivation due to its strong binding to the metal.[17] Following this clue, it can be reasonably speculated that one of the roles of CsNO$_3$ is to remove chloride from Ru. This hypothesis is in accordance with the previously commented PXRD data (Fig. S1) that shows the formation of CsCl in the calcination process. In addition, the value 3.5 matches with the stoichiometry of RuCl$_3$ reacting with CsNO$_3$ since the consumption of the chloride needs at least three CsNO$_3$ molecules for each Ru.

The decomposition of CsNO$_3$ was also confirmed by XPS characterization. The N1s spectrum of Cs(6)Ru(2)@ZrO$_2$ revealed negligible amount of nitrogen species in the sample (Fig. S10), demonstrating the decomposition of nitrate during the calcination step. In addition, deconvolution of C1s spectrum collected from Cs(6)Ru(2)@ZrO$_2$ revealed a high proportion of the component attributable to carbonate (~289 eV, Fig. S10), together with peaks centered at 286.1, 281.9, and 284.9 eV, of which the former two corresponding to RuO$_2$, and the later one being sp$^2$carbon. Carbonate would be derived from the reaction of cesium hydroxide/oxide with ambient water and CO$_2$ since it is very hydroscopic and strongly basic (Equation 1). In contrast, the Ru(2)@ZrO$_2$ sample in the absence of Cs exhibited very low concentration of carbonate, ruling out the possibility that carbonate came from the ZrO$_2$ support.

$$2\text{CsOH} + \text{CO}_2 \rightarrow \text{Cs}_2\text{CO}_3 + \text{H}_2\text{O} \quad (1)$$

At least two different Cs species in Cs(6)Ru(2)@ZrO$_2$ catalysts, namely, CsCl and Cs$_2$CO$_3$, were confirmed by PXRD and XPS, respectively, and thus, it is interesting to study in which form the Cs species facilitates N$_2$ fixation reaction. Taking the advantage that the Cs salt (CsCl, Cs$_2$CO$_3$, and CsOH) are highly soluble in water, Cs(6)Ru(2)@ZrO$_2$ catalyst was thoroughly washed with MilliQ water and the resulting sample was tested for N$_2$ fixation. As expected, no activity was obtained, neither in dark nor upon light irradiation (see Fig. S11). Afterwards, CsCl was added to the catalyst by impregnation method, but still no activity was observed. Surprisingly, the catalytic activity was regained upon addition of CsNO$_3$, with 0.37 and 2.14 mmol g$_{\text{cat}}$·h$^{-1}$ achieved in dark and light irradiation conditions, respectively. The amount of NH$_3$ produced during the activation process was equal to the mole amount of CsNO$_3$, indicating all the NO$_3^-$ has been decomposed to CsOH or Cs$_2$O before the test (Equation 2 and 3), which are generally regarded as the real species that facilitate the N$_2$ activation. In addition, the absence of CO$_2$ in the activation process excludes the possible
formation of Cs₂CO₃ as the active Cs species. However, impregnation of Cs₂CO₃ as the initial Cs precursor instead of CsNO₃ also results in identical activity (Fig. S11, condition 5). Presumably, Cs₂CO₃ can also be decomposed to CsOH or Cs₂O species during the activation process.

\[ 2CsNO_3 + H_2 \rightarrow 2CsOH + 2NO_2 \] (2)

\[ 2CsNO_3 + H_2 \rightarrow Cs_2O + 2NO_2 + H_2O \] (3)

---

**Fig. 4.** XP spectra of (a) Ru 3d + C1s and (b) Ru 3p collected from Ru(2)@ZrO₂ after activation. (c) Ru 3d + C1s and (d) Ru 3p collected from Cs(6)Ru(2)@ZrO₂ after activation.

Upon in-situ activation at 350 °C for 2 h, the Ru 3d \( \frac{5}{2} \) peak of Ru(2)@ZrO₂ shifts from 282 eV to 280.8 eV, indicating the reduction of RuO₂ to metallic Ru species (Fig. S10c and Fig. 4a). The Cs(6)Ru(2)@ZrO₂ after the activation shows even lower Ru binding energy, with Ru 3d \( \frac{5}{2} \) component peaking at 279.7 eV, together with COO and C-O components at 289 and 286 eV. The negative shift of Ru⁰ binding energy in the presence of Cs indicates the back-electron donation from Cs species to Ru clusters, and as a consequence, an increased electron density on the Ru clusters, which finally facilitates the N₂ activation and its hydrogenation.\(^{[3]}\)

The negative shift of the Ru binding energy was also observed in Ru 3p spectrum, in which a 1.5 eV shift to lower binding energy from 461.6 to 460.1 eV was observed (Fig. 4b and 4d). Furthermore, a higher binding energy of Cs 3d \( \frac{5}{2} \) (724.8 eV, Fig. S12) compared to the reported Cs⁺ (724.0 eV), but still lower than that of metallic Cs (726.0 eV), indicates the Cs⁺ was partially reduced with an average oxidation state 0 < δ < 1. Tending to be Cs⁺, Cs²⁺ can donate electron density to the adjacent Ru⁰. In addition, it can be observed in Fig. S12 that O1s peak for both Ru(2)@ZrO₂ and Cs(6)Ru(2)@ZrO₂ samples exhibit a main peak at 530 eV corresponding to ZrO₂. However, in the case of Cs(6)Ru(2)@ZrO₂, a higher contribution of OH⁻ (531.4 eV) population to the O1s peak is observed, indicating that the Cs₂CO₃ partially decomposed to CsOH during the activation process. These additional OH⁻ would result in higher basicity, favouring N₂ adsorption and subsequent activation.\(^{[3]}\)

To further study the influence of Cs species on the electron density and acidity of active sites in Cs(6)Ru(2)@ZrO₂, CO chemisorption on both Ru(2)@ZrO₂ and Cs(6)Ru(2)@ZrO₂ was performed by mon-
itoring the process by Fourier-Transformed Infrared Spectroscopy (FT-IR). Before collecting the spectra, the samples were activated at 350 °C \textit{in-situ} under H\textsubscript{2} atmosphere to simulate the reaction conditions. **Fig. S13a** shows the evolution of IR spectra of Ru(2)@ZrO\textsubscript{2} in the CO vibration region (2300-1900 cm\textsuperscript{-1}) upon increasing CO pressure. As can be observed, a broad band peaking at \textasciitilde{}2050 cm\textsuperscript{-1} appears initially at low CO pressure, accompanied by a component at \textasciitilde{}2189 cm\textsuperscript{-1}. The peak at 2050 cm\textsuperscript{-1} is attributed to CO adsorbed linearly on metallic Ru\textsuperscript{[18]} whilst the band at \textasciitilde{}2189 cm\textsuperscript{-1} can be attributed to the CO weakly adsorbed on Zr\textsuperscript{4+} surface sites. Upon increasing the CO pressure, the peak of CO adsorbed on weaker acid Zr\textsuperscript{4+} site increases, and new peaks centered at 2153 cm\textsuperscript{-1} emerged, which can be assigned to CO aggregates on Ru\textsuperscript{0} sites\textsuperscript{[18-19]}. Cs(6)Ru(2)@ZrO\textsubscript{2} sample exhibited also the broad band attributable to CO adsorbed on Ru sites, but with 37 cm\textsuperscript{-1} redshift to 2013 cm\textsuperscript{-1}, providing an additional experimental support for the higher electron density on Ru sites when Cs is present in comparison to that of Ru(2)@ZrO\textsubscript{2} (**Fig. S13b**). It must be noticed that the intensity of this peak is much lower than that of Ru(2)@ZrO\textsubscript{2}, suggesting the decrease of exposed Ru atoms due to the partial coverage by Cs species. Upon increasing the CO pressure, another band attributed to multiple CO adsorption on each Ru sites appeared at \textasciitilde{}2137 cm\textsuperscript{-1}, the wavenumber being also redshifted in comparison to that of Ru(2)@ZrO\textsubscript{2}, further confirming a higher electron density on Ru sites due to the presence of Cs. The absence of CO absorption signal from Zr\textsuperscript{4+} sites could be attributed to the neutralization of the surface acidity by the CsOH species derived from the CsNO\textsubscript{3} decomposition\textsuperscript{[20]}. Based on the CO-FTIR spectroscopic results, it can be concluded that the higher electron density of Ru sites, and a more basic support favor the activation of adsorbed N\textsubscript{2}, resulting in an enhanced NH\textsubscript{3} production rate.

**Fig. 5.** (a) Molecular electrostatic potential (MEP) plotted onto the 0.001 a.u. surface for Ru\textsubscript{6} and Ru\textsubscript{6}CsOH clusters; \(V_s\) values are given in kcal mol\textsuperscript{-1}. (b) Adsorption states of molecular N\textsubscript{2} for Ru\textsubscript{6} and Ru\textsubscript{6}CsOH (states I and II) clusters optimized at M06-L/def2-TZVP level. \(\Delta G\textsubscript{ads}\) are given in eV.

Density Functional Theory (DFT) calculations at M06-L/def2-TZVP level of theory were carried out to
understand the static adsorption states of Ru sub-nanoclusters (Ru$_6$). The electrostatic potential on Ru atoms is always positive ($V_s \geq 22$ kcal/mol) (Fig. 5); therefore, it is expected that they behave as adsorption sites. On the other hand, the effect of a partially covered surface by Cs atoms was also considered introducing one Cs atom in our models. This introduction has a significant influence on electrostatic potential $V_s$ values above the Ru center. In quantitative terms, an important decrease of $V_s$ values was obtained for those Ru atoms located at the surroundings of Cs, while the most distant Ru atom almost remained unchanged ($V_s \leq 16$ kcal/mol). This calculation agrees with the observed electron donation effect of Cs on Ru previously commented.

Our DFT calculations yield a feasible adsorption of molecular N$_2$ on the top of any Ru atom with an adsorption free energy $\Delta G_{ads}$ of -0.85 eV ($r_{N-Ru}$ 2.0 Å). In addition, this adsorption is characterized by a slightly lengthening of N-N bond length of 0.03 Å from the computed internuclear equilibrium distance ($r_{eq} = 1.095$ Å) which suggests an initial weak pre-activation of N$_2$. On the other hand, the introduction of a Cs atom in the cluster (Ru$_6$CsOH) strongly modifies the adsorption of N$_2$ in agreement with computed MEP values. Two possibilities were explored (Fig. 5b, I and II). In particular, the adsorption at the Cs-Ru interface proved to be the strongest adsorption site ($\Delta G_{ads} \geq -1.09$ eV, state II). In this situation, a simultaneous adsorption takes place involving both Cs and Ru species, therefore, explaining the role of Cs in the catalyst near Ru NPs. In addition, the stronger adsorption correlates with a longer N-N bond length of 1.15 Å, larger than the obtained for the Ru$_6$ cluster, indicating a certain N$_2$preactivation. The other adsorption state (I) involves a distant Ru atom (Cs as reference) and it is associated with a $\Delta G_{ads}$ of -0.79 eV. The geometrical features indicate that this state is similar to the Ru$_6$ cluster, with no much influence of the Cs presence in the cluster. Thus, spatial proximity appears to be a prerequisite for a stronger N$_2$activation.

2.5. Reaction mechanism

In-situ FT-IR spectroscopy was employed to study the reaction mechanism as reported before. First, Cs(6)Ru(2)@ZrO$_2$ was in-situ reduced in the FT-IR chamber at 350 °C under H$_2$ atmosphere for 2 h. Then, H$_2$ and N$_2$ gases were sequentially introduced into the chamber in opposite sequences, in order to confirm if the firstly introduced feeding gas (H$_2$ or N$_2$) could form detectable adsorbed activated species, and, if NH$_3$ is finally produced when the two reagents (N$_2$ or H$_2$) are sequentially fed to the system. It must also be commented that before the gas change, the FT-IR chamber was purged with Ar for 15 min to remove the free gaseous molecules introduced in the previous step. This ensures that the two gases are not simultaneous in the FT-IR chamber. As shown in Fig. 6a, no NH$_3$ signal was detected by firstly introducing H$_2$ and subsequently N$_2$. Whilst the typical peaks attributed to NH$_3$ molecules were detected in the gas phase by first introducing N$_2$, and then the H$_2$ gas. These results indicate that activated N$_2$ species, adsorbed on the active sites, are subsequently hydrogenated, forming, thus, NH$_3$ as the final product.

![Fig. 6. (a) In-situ FT-IR spectra in gas phase after the introduction in sequence of N$_2$ and H$_2$ gas (green line) and the inverse sequence (blue line), collected at 350°C. The chamber was purged with Ar before...](image-url)
any gas change to remove any molecule remaining in the gas phase from the previous step avoiding the simultaneous presence in the gas phase of N$_2$ and H$_2$. (b) Pictorial illustration of the proposed mechanism of photothermal N$_2$ activation and hydrogenation to NH$_3$ by Cs(6)Ru(2)@ZrO$_2$ photocatalyst.

Based on the above studies, a reaction mechanism has been proposed regarding the photo-assisted N$_2$ fixation by Cs(6)Ru(2)@ZrO$_2$ photocatalyst, as can been seen in Fig. 6b. Metallic Ru species absorbs visible and NIR light, undergoing high localized temperature increase, due to the local surface plasmonic resonance effects (LSPR) and conversion of the photon energy into heat. Simultaneously, the LSPR also induces hot electrons that can be injected to the anti-bonding orbitals of the adsorbed N$_2$. Favored by the hot electrons injection, together with the high localized temperature at the Ru NP and the back electron donating from the CsOH species, the adsorbed N$_2$ molecules become activated and hydrogenated to form NH$_3$ with a considerable high reaction rate.

2.6. Photocatalysts stability

The stability of Cs(6)Ru(2)@ZrO$_2$ catalyst was evaluated by operating the photothermal reaction continuously for 100 h at 350°C under 1080 W/m$^2$ light irradiation, measuring the NH$_3$ production rate along time. As shown in Fig. S14, the Cs(6)Ru(2)@ZrO$_2$ exhibited superior stability without activity loss during the 100 h test. Also, no changes were observed in the PXRD pattern of the 100 h-used catalyst compared to that acquired from the fresh catalyst (Fig. S15), indicating no structural changes or obvious Ru NP aggregation. In addition, no Ru NPs were observed in the used photocatalyst, as confirmed by HR-TEM characterization (Fig. S16).

3. Conclusions

This study reports the preparation of highly dispersed Cs-decorated Ru sub-nanometric clusters on ZrO$_2$ by means of UiO-66 MOF templated method. The obtained material presents an outstanding visible and NIR light response for N$_2$ fixation to NH$_3$, increasing the NH$_3$ production rate ca. 300% under 1 Sun light irradiation at 350°C and atmospheric pressure. The role of the Cs species decorating the Ru clusters has been determined to neutralize the surface Zr$^{4+}$ acidity, increasing the basicity of the ZrO$_2$ support. Moreover, the partially reduced Cs$^{\delta+}$ ($0<\delta<1$) species have been found to cover in part the Ru active sites, donating electron density to adjacent Ru atoms. Thus, the presence of Cs promotes the stronger adsorption of N$_2$ onto the Ru atoms, resulting in a pre-activation of the adsorbed N$_2$, as predicted by DFT calculations on models. Mechanistic studies have confirmed the co-existence of photothermal and nonthermal-hot electron mechanisms, improving the overall efficiency of this photocatalyst. Moreover, this photocatalysts have demonstrated an extended stability under the present reaction conditions. These results pave the way to design efficient and stable materials for photo-assisted commodity and fuels production under mild conditions.

4. Experimental Section

**Synthesis of UiO-66(Zr).** UiO-66(Zr) was synthesized according to the previous reported work. Specifically, terephthalic acid (0.33 g, 2 mmol) and ZrCl$_4$ (0.46 g, 2 mmol) were added to a Teflon-lined autoclave containing DMF (6 mL). The sealed Teflon was heated at 200°C for 12 h. After cooling to room temperature, the resulting white precipitate was washed with DMF at 120°C for 2 h (three times) under vigorous stirring and, then, the DMF was extracted by methanol in a Soxhlet system. Finally, the solid was dried in vacuum at 150°C for overnight.

**Synthesis of Cs(x)Ru(y)@ZrO$_2$.** In a typical procedure for the synthesis of Cs(6)Ru(2)@ZrO$_2$, 200 mg/mL of UiO-66(Zr) suspension was impregnated with 4.1 mg (20 μmol) of RuCl$_3$ by sonicating in water bath for 1 h, followed by adding 23 mg (120 μmol) of CsNO$_3$. Subsequently, the water was slowly evaporated at 75°C under gentle stirring, and then, dried at 150°C under vacuum for 3 h. Finally, the Cs/Ru incorporated UiO-66 was subjected to calcination at 550°C for 2 h and the obtained Cs(6)Ru(2)@ZrO$_2$ catalyst was directly used without further treatment.
The synthesized of Cs(x)Ru(y)@ZrO₂ with different Cs and Ru loading was prepared following the same protocol as that for Cs(6)Ru(2)@ZrO₂.

**Photocatalytic Tests.** Photo-assisted nitrogen fixation tests were performed in a customized fixed-bed photothermal reaction system as reported previously by our group.[⁶] In a typical experiment, the photocatalyst (50 mg) was loaded on the fused quartz frit placed inside a borosilicate glass tube reactor. External heating was supplied by an electrical heating mantle wrapped on the walls of the flow reactor and the temperature at the photocatalyst bed was monitored by a K-type thermocouple connected to the electrical heater controller. A 300 W xenon lamp (1080 W/m²) was used to irradiate the surface of the photocatalyst through a quartz tube that was mounted on the top of the reactor. The spot of the light source on the catalyst surface was 10 mm in diameter, ensuring a collimated beam that irradiates uniformly the whole catalyst surface. Before each test, the catalyst was activated with H₂ for 2 h at 350°C and the effluent of the last 30 min of the activation process was collected and analyzed to exclude any possible NH₃ contamination from the system or the photocatalyst. The feeding gases (H₂ 45 mL/min and N₂15 mL/min) were purified by passing them through 5 mM H₂SO₄ acid, milli-Q water and CaCl₂ dryer in sequence before introducing them into the reactor. The produced NH₃ was trapped by 5 mM H₂SO₄ acid and then quantified by indophenol blue method and ¹H NMR spectroscopy. For the determination of the reaction order, variable H₂ or N₂ flow rate, compensated by argon flow to have a constant total flow of 60 mL/min, was introduced into the system under dark or upon light irradiation conditions. Specifically, four groups of feeding gas of (H₂, N₂, Ar) with different flow rates (mL/min) of (5, 15, 40), (10, 15, 35), (15, 15, 30) and (25, 15, 20) were employed in the determination of the H₂ partial reaction order. Four other groups of feeding gas of (N₂, H₂, Ar) with different flow rates (mL/min) of (5, 15, 40), (10, 15, 35), (15, 15, 30) and (25, 15, 20) were used for determination of the N₂ partial reaction order. The NH₃ production rates were calculated based on the mass of loaded catalyst, unless otherwise noted (for example, mmolNH₃ · g₉₆⁻¹ · h⁻¹ is the rate based on the mass of Ru).

¹⁵N₂ isotopic Experiment.¹⁵N₂ isotopic experiment was performed in a photo-assisted nitrogen fixation set-up as described above modified by recirculating the exit gases in a recirculation system. Specifically, a rubber suction bulb, together with a “T” connector were used to collect the inlet and outlet of the flow reaction set-up. In a typical test, the feeding gas of H₂ and¹⁵N₂ was filled in sequence to the close circulation system after it was thoroughly purged with argon gas. Afterwards, the mixture gas was manually circulated by means of the rubber suction bulb inside the system for 30 min under the typical reaction conditions. The NH₃ collected at the 5 mM H₂SO₄ solution was analyzed by ¹H NMR spectroscopy.

**Ammonia Quantification.** NH₃ was quantitatively determined using indophenol method and confirmed by¹H NMR spectroscopy method. For the indophenol method, 5 mL of the formed NH₃ solution was added to 200 μL 100 mg mL⁻¹ phenol/ethanol solution, followed by adding 200 μL 0.5 wt % sodium nitroprusside aqueous solution and subsequently by 500 μL oxidizing solution (0.25 M NaOH solution containing 20 wt% sodium citrate and 1 wt % sodium hypochlorite). After being kept for 3 h, the light absorption intensity at 640 nm was measured by UV-vis spectroscopy and the NH₃ concentration was thus calculated based on the established absorption-concentration calibration plot (Fig. S17). It must be noted here that the absorption intensity of the unknown concentration NH₃ must be in the range of the calibration curve, otherwise, an appropriate dilution of the NH₃ solution must be done before the indophenol reagents are added. For NH₃ quantification by¹H NMR spectroscopy, 500 μL of the solution collected was mixed with 100 μL deuterium oxide and 40 μL of a D₂O solution of known concentration DMSO (250 μg/mL) as the internal standard. The amount of NH₃ was then obtained based on the calibration with the spectrum of known concentration of (NH₄)₂SO₄ and DMSO standard solution. A typical ¹H NMR spectrum with the presence of (NH₄)₂SO₄ and DMSO is shown in Fig. S18.

**Estimation of the Apparent Quantum Efficiency (AQE).** The apparent quantum efficiency was estimated by the following equation:[¹⁵]

\[
AQE = \frac{\text{number of reacted electrons}}{\text{number of incident photons}} \times 100 \% = \frac{\text{number of reacted electrons}}{(P \times S \times t) / (hc/\lambda)} \times 100 \%
\]
Where the number of reacted electrons were calculated by subtracting the ammonia production upon light irradiation by that in dark condition; $P$ is the intensity of the incident light ($1080 \, \text{W} / \text{m}^2$); $S$ is the catalyst surface area; $t$ is the irradiation time; $h$ is the Planck constant; $c$ is the light velocity of light and $\lambda$ is the wavelength of the incident light. Passband filters was tentatively applied for the AQE estimation, but limited by the reaction setup, the filters must be put inside the lamp device. However, due to the high temperature inside the lamp, the passband filters cracked after a few minutes’ irradiation. Therefore, the number of incident photons was estimated under condition that assuming the xenon lamp spectrum has an identical intensity for all the wavelength range, and taking 550 nm wavelength as the average energy of all the photons.

Therefore, number of incident photons to the catalyst surface in 1 h can be calculated as follow:

$$N(\text{photons}) = 1080 \, (\text{W} / \text{m}^2) \times 3.14 \times (0.5 \, \text{cm})^2 \times 3600 \, \text{s} / (6.63 \times 10^{-34} \, \text{J} [\text{Hz}]^{-1} \times 3 \times 10^8 \, \text{m} [\text{?}] \, \text{s}^{-1} / 550 \, \text{nm}) = 8 \times 10^{20} = 1.32 \, \text{mmol}$$

**Computational Details.** Full geometry optimizations were carried out with Gaussian 16 package$^{[21]}$ using the Minnesota 2006 local functional (M06-L)$^{[22]}$ and def2-TZVP basis set$^{[23]}$ with effective core potential for Ru and Cs atoms. In addition, density fitting approximation was automatically generated and used. The stability and spin multiplicity of Ru$_6$ clusters has been studied in previous theoretical works.$^{[24]}$ At M06-L/def2-TZVP level, our results suggest that the octahedral geometry ($2S + 1 = 9$) is slightly more stable than the trigonal prism. Therefore, subsequent calculations were exclusively carried out using this geometry as starting point. In order to characterize the nature of optimized structures, analyses of frequencies were also conducted showing that all optimized structures are minima (absence of imaginary frequencies). The possibility of different adsorption points was taken into account for both Ru$_6$ and Ru$_6$CsOH species. Molecular electrostatic potential (MEP) surfaces were computed at the same level using the 0.001 a.u. isosurface.

**Supporting Information**

Supporting Information is available from the Wiley Online Library or from the author.

**Acknowledgements**

Financial support by the Spanish Ministry of Science and Innovation (PDI2021-126071-OB-CO21 and Severo Ochoa), Generalitat Valenciana (Prometeo 2021/038), and European Union Horizon 2020 research and innovation programme under grant agreement no 862453 (FlowPhotoChem) is gratefully acknowledged.

**Conflict of Interest**

The authors declare no conflict of interests.

Received: (will be filled in by the editorial staff) Revised: (will be filled in by the editorial staff) Published online: (will be filled in by the editorial staff)

**References**


Highly dispersed Cs-decorated Ru clusters supported on ZrO$_2$ has demonstrated an outstanding catalytic activity for light-assisted N$_2$ fixation to NH$_3$. This material has been obtained through UiO-66 MOF templated method. More than 90% of the spectral response is located in the visible and NIR region. Mechanistic studies revealed the co-existence of photothermal and non-thermal hot-electron injection mechanisms.