
P
os
te
d
on

17
A
p
r
20
23

—
T
h
e
co
p
y
ri
gh

t
h
ol
d
er

is
th
e
au

th
or
/f
u
n
d
er
.
A
ll
ri
gh

ts
re
se
rv
ed
.
N
o
re
u
se

w
it
h
ou

t
p
er
m
is
si
on

.
—

h
tt
p
s:
//
d
oi
.o
rg
/1
0.
15
20
0/
w
in
n
.1
62
13
3.
39
05
4
—

T
h
is

a
p
re
p
ri
n
t
a
n
d
h
as

n
ot

b
ee
n
p
ee
r
re
v
ie
w
ed
.
D
a
ta

m
ay

b
e
p
re
li
m
in
a
ry
.

ModelingToolkit, Modelica, and Modia: The Composable Modeling

Future in Julia

Christopher Rackauckas1

1Affiliation not available

April 17, 2023

1



READ REVIEWS

WRITE A REVIEW

CORRESPONDENCE:
me@chrisrackauckas.com

DATE RECEIVED:
May 18, 2021

DOI:
10.15200/winn.162133.39054

ARCHIVED:
May 18, 2021

CITATION:
Christopher Rackauckas,
ModelingToolkit, Modelica, and
Modia: The Composable
Modeling Future in Julia, The
Winnower 8:e162133.39054 ,
2021 , DOI:
10.15200/winn.162133.39054

© Rackauckas This article is
distributed under the terms of
the Creative Commons
Attribution 4.0 International
License, which permits
unrestricted use, distribution,
and redistribution in any
medium, provided that the
original author and source are
credited. 

Let me take a bit of time here to write out a complete canonical answer to ModelingToolkit and how it
relates to Modia and Modelica. This question comes up a lot: why does ModelingToolkit exist instead
of building on tooling for Modelica compilers? I'll start out by saying I am a huge fan of Martin and
Hilding's work and we work very closely with them on the direction of Julia-based tooling for modeling
and simulation. ModelingToolkit, being a new system, has some flexibility in the design space it
explores, and while we are following a different foundational philosophy, we have many of the same
goals.

COMPOSABLE ABSTRACTIONS FOR MODEL TRANSFORMATIONS

Everything in the SciML organization is built around a principle of confederated modular development:
let other packages influence the capabilities of your own. This is highlighted in a paper about the
package structure of DifferentialEquations.jl. The underlying principle is that not everyone wants or
needs to be a developer of the package, but still may want to contribute. For example, it's not
uncommon that a researcher in ODE solvers wants to build a package that adds one solver to the
SciML\n ecosystem. Doing this in their own package for their own academic credit, but with the free
bonus that now it exists in the multiple dispatch world. In the design of DifferentialEquations.jl,
solve(prob,IRKGL16()) now exists because of their package, and so we add it to the documentation.
Some of this work is not even inside the organization, but we still support it. The philosophy is to
include every researcher as a budding artist in the space of computational research, including all of the
possible methods, and building an infrastructure that promotes a free research atmosphere in the
methods. Top level defaults and documentation may lead people to the most stable aspects of the
ecosystem, but with a flip of a switch you can be testing out the latest research.

The Modelica ecosystem (open standard, OpenModelica, multiple commercial implementations), which
started based on the simple idea of equation oriented modeling, has had a huge impact on industry
and solved lots of difficult real industrial problems. The modern simulation system designer today,
wants much more from their language and compiler stack. For example, in the Modelica language,
there is no reference to what transformations are being done to your models in order to make them
"simulatable". People know about Pantelides algorithm, and "singularity elimination", but this is outside
the language. It's something that the compiler maybe gives you a few options for, but not something
the user or the code actively interacts with. Every compiler is different, advances in one compiler do
not help your model when you use another compiler, and the whole world is siloed. By this design, it is
extremely difficult for an external user to write compiler passes in Modelica which effects this model
lowering process. You can tweak knobs, or write a new compiler, or fork OpenModelica and hack on
the whole compiler to just do the change you wanted. The barrier to entry can be significantly lowered,

MATHEMATICS



ModelingToolkit, Modelica, and Modia: The Composable
Modeling Future in Julia

CHRISTOPHER RACKAUCKAS

✎

RACKAUCKAS The Winnower MAY 18 2021 1

https://thewinnower.com/topics/mathematics
https://thewinnower.com/papers/33669-modelingtoolkit-modelica-and-modia-the-composable-modeling-future-in-julia#submit
https://thewinnower.com/papers/33669-modelingtoolkit-modelica-and-modia-the-composable-modeling-future-in-julia#submit
mailto:me@chrisrackauckas.com
https://dx.doi.org/10.15200/winn.162133.39054
https://creativecommons.org/licenses/by/4.0/
https://github.com/SciML/ModelingToolkit.jl
https://github.com/ModiaSim/Modia.jl
https://www.modelica.org/
https://www.sciencedirect.com/science/article/abs/pii/S0965997818310251
https://github.com/SciML/IRKGaussLegendre.jl
https://diffeq.sciml.ai/stable/solvers/ode_solve/#IRKGaussLegendre.jl
https://github.com/rveltz/LSODA.jl


as the Julia compiler ecosystem has showed.

I think in many cases, the set of symbolic cases in Modelica may not be sufficient, and budding system
designers might want to write their own. For example, on SDEs there's a Lamperti transformation
which can exist which transforms general SDEs to SDEs with additive noise. It doesn't always apply,
but when it does it can greatly enhance solver speed and stability. This is niche enough that it may
never be in a commercial Modelica compiler (in fact, Modelica doesn't have SDEs at this moment), but
it's something that some user might want to be able to add to the process.

MODELINGTOOLKIT: OPENING THE DEVELOPMENT PROCESS

So the starting goal of ModelingToolkit is to give an open and modular transformation system on which
a whole \nmodeling ecosystem can thrive. My previous blog post exemplified how unfamiliar use cases
for code transformations can solve many difficult\n mathematical problems, and my goal is to give this
power to the whole development community. `structural_simplify` is something built into
ModelingToolkit to do "the standard transformations" on the standard systems, but the world of
transformations is so much larger. Log-transforming a few variables? Exponentiating a few to ensure
positivity? Lamperti transforms of SDEs? Transforming to the sensitivity equations? And not just
transformations, but functionality for inspecting and analyzing models. Are the equations linear? Which
parameters are structurally identifiable?

ModelingToolkit is a deconstruction of what a modeling language is. It pulls it down to its component
pieces and then makes it easy to build new modeling languages like Catalyst.jl which internally use
ModelingToo\nlkit for all of the difficult transformations. The deconstructed form is a jumping point for
building new domain-based languages, along with new transformations which optimize the compiler for
specific models. And then in the end, everybody who builds off of it gets improved stability,
performance, and parallelism as the core MTK passes improve.

BRINGING THE POWER TO THE PEOPLE

Now there's two major aspects that need to be handle to fully achieve such a vision though. If you want
people to be able to reuse code between transformations, what you want is to expose how you are
changing code. To achieve this goal, a new Computer Algebra System (CAS), Symbolics.jl, was
created for ModelingToolkit.jl. The idea being, if we want everyone writing code transformations, they
should all have easy access to a general mathematical toolset for doing such code transformations.
We shouldn't have everyone building a new code for differentiation, simplify, and substitution. And we
shouldn't have everyone relying on undocumented internals of ModelingToolkit.jl either: this should be
something that is open, well-tested, documented, and a well-known system so that everyone can easily
become a "ModelingToolkit compiler developer". By building a CAS and making it a Julia standard, we
can bridge that developer gap because now everyone knows how to easily manipulate models: they
are just Symbolics.jl expressions.

The second major aspect is to achieve a natural embedding into the host language. Modelica is not a
language in which people can write compiler passes, which introduces a major gap between the
modeler and the developer of extensions to the modeling language. If we want to bridge this gap, we
need to ensure the whole modeling language is used from a host which is a complete imperative
programming language. And you need to do so in a language that is interactive, high performance, and
has a well-developed ecosystem for modeling and simulation. Martin and Hilding had seen this fact as
the synthesis for Modia with how Julia uniquely satisfies this need, but I think we can take it a step
further. To really make the embedding natural, you should be able to on the fly automatically convert
code to and from the symbolic form. In the previous blog post I showcased how ModelingToolkit.jl
could improve people's code by automatically parall\nelizing it and performing index reduction even if
the code was not written in ModelingToolkit.jl. This grows the developer audience of the transformation
language from "anyone who wants to transform models" to "anyone who wants to automate improving
models and general code". This expansion of the audience is thus pulling in developers who are

MODELINGTOOLKIT, MODELICA, AND MODIA: THE COMPOSABLE MODELING FUTURE IN JULIA :
MATHEMATICS

RACKAUCKAS The Winnower MAY 18 2021 2

https://arxiv.org/abs/1804.04344
https://arxiv.org/abs/2103.05244
https://www.stochasticlifestyle.com/generalizing-automatic-differentiation-to-automatic-sparsity-uncertainty-stability-and-parallelism/
https://github.com/SciML/Catalyst.jl
https://discourse.julialang.org/t/ann-symbolics-jl-a-modern-computer-algebra-system-for-a-modern-language/56251
https://www.stochasticlifestyle.com/generalizing-automatic-differentiation-to-automatic-sparsity-uncertainty-stability-and-parallelism/


interested in things like automating parallelism and GPU codegen and bringing them into the MTK
developer community.

In turn, since all of these advances then apply to the MTK internals and code generation tools such as
Symbolics.jl's build_function, new features are coming all of the time because of how the community is
composed. The CTarget build_function was first created to transpile Julia code to C, and thus
ModelingToolkit models can generate C outputs for compiling into embedded systems. This is
serendipity when seeing one example, but it's design when you notice that this is how the entire
system is growing so fast.

BUT CAN DISTRIBUTED DEVELOPMENT BE AS GOOD AS SPECIALIZED CODE?

Now one of the questions we received early on was, won't you not be able to match the performance
of a specialized compiler which was only made to work on Modelica, right? While at face value it may
seem like hyperspecialization could be beneficial, the true effect of hyperspecialization is that
algorithms are simply less efficient because less work has been put into them. Symbolics.jl has
become a phenomenon of its own, with multiple different hundred comment threads digging through
many aspects of the pros and cons of its designs, and that's not even including the 200 person chat
channel which has had tens of thousands of messages in the less than 2 months since the CAS was
released. Tons of people are advising how to improve every single plus and multiply operation.

So it shouldn't be a surprise that there are many details that have quickly been added which are still
years away from a Modelica implementation. It automatically multithreads tree traversals and rewrite
rules. It automatically generates fast parallelized code, and can do so in a way that composes with
tearing of nonlinear equations. It lets users define their own high-performance and parallelized
functions, register them, and stick them into the right hand side. And that is even excluding the higher
level results, like the fact that it is fully differentiable and thus allows training neural networks
decomposed within the models, and automatically discover equations from data.

Just at the very basic level we can see that the CAS is transforming the workflows of scientists and
engineers in many aspects of the modeling process. By distributing the work of improving symbolic
computing, we have already taken examples which were essentially not obtainable and making them
instant with Symbolics.jl:

We are building out a full benchmarking system for the symbolic ecosystem to track performance over
time and ensure it reaches the top level. It's integrating pieces from The OSCAR project, getting lots of
people tracking performance in their own work, and building a community. Each step is another major
improvement and this ecosystem is making these steps fast.

BUT HOW DO YOU CONNECT TO MODELICA?

This is a rather good question because there are a lot of models already written in Modelica, and it
would be a shame for us to not be able to connect with that ecosystem. I will hint that there is coming
tooling as part of JuliaSim for connecting to many pre-existing model libraries. In addition, we hope to

MODELINGTOOLKIT, MODELICA, AND MODIA: THE COMPOSABLE MODELING FUTURE IN JULIA :
MATHEMATICS

RACKAUCKAS The Winnower MAY 18 2021 3

https://github.com/JuliaParallel/Dagger.jl
https://github.com/JuliaGPU/KernelAbstractions.jl
https://symbolics.juliasymbolics.org/dev/manual/build_function/
https://symbolics.juliasymbolics.org/dev/manual/build_function/#Symbolics._build_function-Tuple%7BSymbolics.CTarget, Array%7Bvar%22#s25%22, N%7D where %7Bvar%22#s25%22%3C:Equation, N%7D, Vararg%7BAny, N%7D where N%7D
https://symbolics.juliasymbolics.org/dev/tutorials/converting_to_C/
https://discourse.julialang.org/t/ann-symbolics-jl-a-modern-computer-algebra-system-for-a-modern-language/56251
https://discourse.julialang.org/t/cas-best-practices/58092/5
https://discourse.julialang.org/t/cas-benchmarks-symbolics-jl-and-maxima/58359
https://news.ycombinator.com/item?id=26356854
https://github.com/JuliaSymbolics/SymbolicUtils.jl/blob/v0.11.0/page/rewrite.md#composing-rewriters
https://symbolics.juliasymbolics.org/v0.1/tutorials/auto_parallel/
https://arxiv.org/abs/2103.05244
https://symbolics.juliasymbolics.org/dev/manual/functions/
https://diffeqflux.sciml.ai/dev/
https://datadriven.sciml.ai/dev/
https://i2.wp.com/www.stochasticlifestyle.com/wp-content/uploads/2021/04/1615836332229.jpg
https://oscar.computeralgebra.de/
https://juliacomputing.com/products/juliasim/


make use of tooling like Modia.jl and TinyModia.jl and collaboration with the Modelica community will
help us make a bridge.

CONCLUSION: DESIGNING AROUND THE DEVELOPER COMMUNITY HAS MANY BENEFITS

The composability and distributed development nature of ModelingToolkit.jl is its catalyst. This is why
ModelingToolkit.jl looks like it has rocket shoes on: it is fast and it is moving fast. And it's because of
the thought put into the design. It's because ModelingToolkit.jl is including the entire research
community as its asset instead of just its user. I plan to keep moving forward from here, looking back to
learn from the greats, but building it in our own image. We're taking the idea of a modeling language,
distributing it throughout one of the most active developer communities in modeling and simulation, in
a language which is made to build fast and parallelized code. And you're invited.

PS: WHAT ABOUT SIMULINK?

I'm just going to post a self-explanatory recent talk by Jonathan at the NASA Launch Services Program
who saw a 15,000x acceleration by moving from Simulink to ModelingToolkit.jl.

Enough said. While we don’t expect every application will see this kind of speedup (although we wish
they will!), we would love to hear about your experiences with ModelingToolkit.

MODELINGTOOLKIT, MODELICA, AND MODIA: THE COMPOSABLE MODELING FUTURE IN JULIA :
MATHEMATICS

RACKAUCKAS The Winnower MAY 18 2021 4

https://github.com/ModiaSim/Modia.jl
https://github.com/ModiaSim/TinyModia.jl

	ModelingToolkit, Modelica, and Modia: The Composable Modeling Future in Julia
	CORRESPONDENCE:
	DATE RECEIVED:
	DOI:
	COMPOSABLE ABSTRACTIONS FOR MODEL TRANSFORMATIONS
	ARCHIVED:
	CITATION:

	MODELINGTOOLKIT: OPENING THE DEVELOPMENT PROCESS
	BRINGING THE POWER TO THE PEOPLE
	BUT CAN DISTRIBUTED DEVELOPMENT BE AS GOOD AS SPECIALIZED CODE?
	BUT HOW DO YOU CONNECT TO MODELICA?
	CONCLUSION: DESIGNING AROUND THE DEVELOPER COMMUNITY HAS MANY BENEFITS
	PS: WHAT ABOUT SIMULINK?


