Neural Jump SDEs (Jump Diffusions) and Neural PDEs

Christopher Rackauckas®

L Affiliation not available

April 17, 2023

the
WINNOWER

Neural Jump SDEs (Jump Diffusions) and Neural PDEs

CHRISTOPHER RACKAUCKAS

CORRESPONDENCE:

DATE RECEIVED:
June 05, 2019

DOI:
10.15200/winn.155975.53637

ARCHIVED:
June 05, 2019

CITATION:

Christopher Rackauckas,
Neural Jump SDEs (Jump
Diffusions) and Neural PDEs,
The Winnower

6:€155975.53637 , 2019 , DOL:

© Rackauckas This article is
distributed under the terms of
the

, which permits
unrestricted use, distribution,
and redistribution in any
medium, provided that the
original author and source are
credited.

This is just an exploration of some new neural models | decided to jot down for safe keeping.
gives you the differentiable programming tools to allow you to use any
DifferentialEquations.jl problem type (DEProblem) mixed with neural networks.
, not just with neural ordinary differential equations, but also with things like
and neural delay differential equations.

At the time we made DiffEgFlux, we were the "first to the gate" for many of these differential equations
types and left it as an open question for people to find a use for these tools. And judging by the Arxiv
papers that went out days after NeurlPS submissions were due, it looks like people now have justified
some machine learning use cases for them. There were separate on neural stochastic
differential equations, showing them to be the limit of deep latent Gaussian models. Thus when you
stick these new mathematical results on our existing adaptive high order GPU-accelerated neural SDE
solvers, you get some very interesting and fast ways to learn some of the most cutting edge machine
learning methods.

So | wanted to help you guys out with staying one step ahead of the trend by going to the next
differential equations. One of the interesting NeurlPS-timed Arxiv papers was on . Following
the DiffEqFIux.jl spirit, you can just ;
implement them, add a neural network, and it will differentiate through them. So let's take it one step
further and show an example of how you'd do that. | wanted to take a look at , Or jump
stochastic differential equations, which are exactly what they sound like. They are a mixture of these
two methods. After that, | wanted to show how using some methods for stiff differential equations plus
a method of lines discretization gives a way to train neural partial differential equations.

Instead of being fully defined by neural networks, | will also be showcasing how you can selectively
make parts of a differential equation neuralitized and other parts pre-defined, something we've been
calling , s0 we'll demonstrate a mixed neural jump stochastic
differential equation and a mixed neural partial differential equation with fancy GPU-accelerated
adaptive etc. methods. I'll then leave as homework how to train a mixed neural jump stochastic partial
differential equation with the fanciest methods, which should be easy to see from this blog post (so
yes, that will be the MIT 18.337 homework). This blog post will highlight that these equations are all
already possible within our framework, and will also show the specific places we see that we need to
accelerate to really put these types of models into production.

NEURAL JUMP STOCHASTIC DIFFERENTIAL EQUATIONS (JUMP DIFFUSIONS)

To get to jump diffusions, let's start with a stochastic differential equation. A stochastic differential
equation is defined via

dX; = f(t,X)dt +g(t. X 1)dW

RACKAUCKAS The Winnower JUNE 05 2019

https://thewinnower.com/topics/mathematics
https://thewinnower.com/papers/22829-neural-jump-sdes-jump-diffusions-and-neural-pdes#submit
https://thewinnower.com/papers/22829-neural-jump-sdes-jump-diffusions-and-neural-pdes#submit
mailto:me@chrisrackauckas.com
https://dx.doi.org/10.15200/winn.155975.53637
https://creativecommons.org/licenses/by/4.0/
https://github.com/JuliaDiffEq/DiffEqFlux.jl
https://julialang.org/blog/2019/01/fluxdiffeq
https://github.com/FluxML/model-zoo/blob/master/other/diffeq/neural_sde.jl
https://arxiv.org/abs/1905.11065
https://arxiv.org/abs/1905.09883
https://arxiv.org/abs/1905.10403
http://docs.juliadiffeq.org/latest/tutorials/discrete_stochastic_example.html
http://docs.juliadiffeq.org/latest/tutorials/jump_diffusion.html
https://github.com/JuliaDiffEq/DiffEqFlux.jl#mixed-neural-des

the

WINNOWER

NEURAL JUMP SDES (JUMP DIFFUSIONS) AND NEURAL PDES :

which is essentially saying that there is a deterministic term f and a continuous randomness term g
driven by a Brownian motion. Theorems like Donsker's theorem can be thought of as a generalization
of the central limit theorem, saying that continuous stochastic processes of some large class can be
reinterpreted as this kind of process (due to the Gaussian-ness of Brownian motion), so in some sense
this is a very large encompassing class. If you haven't seen

, please check that out now. Let's start with a code that uses reverse-mode
automatic differentiation through a GPU-accelerated high order adaptive SDE solver. The code looks
like:

using Flux, DiffEgFlux, StochasticDiffEq, Plots, DiffEqMonteCarlo

u0 = Float32[2.; 0.] |> gpu
datasize = 30
tspan = (0.0f0,1.0f0)

function trueODEfunc(du,u,p,t)
true_A =[-0.1 2.0;-2.0 -0.1] |> gpu
du .= ((u."3)'true_A)'
end
t = range(tspan[1],tspan[2],length=datasize)
mp = Float32[0.2,0.2] |> gpu
function true_noise_func(du,u,p,t)
du .= mp.*u
end
prob = SDEProblem(trueODEfunc,true_noise_func,u0,tspan)

Take a typical sample from the mean

monte_prob = MonteCarloProblem(prob)

monte_sol = solve(monte_prob,SOSRI(),num_monte = 100)
monte_sum = MonteCarloSummary(monte_sol)

sde_data = Array(timeseries_point_mean(monte_sol,t))

dudt = Chain(x -> x."3,
Dense(2,50,tanh),
Dense(50,2)) |> gpu
ps = Flux.params(dudt)
n_sde = x->neural_dmsde(dudt,x,mp,tspan,SOSRI(),saveat=t,reltol=1e-1,abstol=1e-1)

pred = n_sde(u0) # Get the prediction using the correct initial condition

dudt_(u,p,t) = Flux.data(dudt(u))
g(u,p,t) = mp.*u
nprob = SDEProblem(dudt_,g,u0,(0.0f0,1.2f0),nothing)

monte_nprob = MonteCarloProblem(nprob)

monte_nsol = solve(monte_nprob,SOSRI(),num_monte = 100)
monte_nsum = MonteCarloSummary(monte_nsol)
#plot(monte_nsol,color=1,alpha=0.3)

p1 = plot(monte_nsum, title = "Neural SDE: Before Training")
scatter!(p1,t,sde_data’,lw=3)

scatter(t,sde_data[1,:],label="data")
scatter!(t,Flux.data(pred[1,:]),label="prediction")

function predict_n_sde()

RACKAUCKAS The Winnower JUNE 05 2019

https://julialang.org/blog/2019/01/fluxdiffeq

the

WINNOWER

NEURAL JUMP SDES (JUMP DIFFUSIONS) AND NEURAL PDES :

n_sde(u0)
end
loss_n_sde1() = sum(abs2,sde_data .- predict_n_sde())
loss_n_sde10() = sum([sum(abs2,sde_data .- predict_n_sde()) foriin 1:10])
Flux.back!(loss_n_sde1())

data = lterators.repeated((), 10)

opt = ADAM(0.025)

cb = function () #callback function to observe training
sample = predict_n_sde()
loss against current data
display(sum(abs2,sde_data .- sample))
plot current prediction against data
cur_pred = Flux.data(sample)
pl = scatter(t,sde_data[1,:],label="data")
scatter!(pl,t,cur_pred[1,:],label="prediction")
display(plot(pl))

end

Display the SDE with the initial parameter values.
cb()

Flux.train!(loss_n_sde1 , ps, lterators.repeated((), 100), opt, cb = cb)
Flux.train!(loss_n_sde10, ps, lterators.repeated((), 100), opt, cb = cb)

dudt_(u,p,t) = Flux.data(dudt(u))

g(u,p,t) = mp.*u
nprob = SDEProblem(dudt_,g,u0,(0.0f0,1.2f0),nothing)

monte_nprob = MonteCarloProblem(nprob)

monte_nsol = solve(monte_nprob,SOSRI(),num_monte = 100)
monte_nsum = MonteCarloSummary(monte_nsol)
#plot(monte_nsol,color=1,alpha=0.3)

p2 = plot(monte_nsum, title = "Neural SDE: After Training", xlabel="Time")
scatter!(p2,t,sde_data’,lw=3,label=["x""y" "z" "y"])

plot(p1,p2,layout=(2,1))

savefig("neural_sde.pdf")

savefig("neural_sde.png")

This just uses the to tell Flux to use reverse-mode AD (using Tracker.jl, unless
you check out a bunch of weird Zygote.jl branches: wait for Zygote) and then trains the neural network
using a discrete adjoint. While the previously posted example uses forward-mode, we have found that
this is much much faster on neural SDEs, so if you're trying to train them, | would recommend using
this code instead (and I'll get the examples updated).

Now to this equation let's add jumps. A jump diffusion is defined like:
du= f(up,t)dt+> g, (ut)dW' +> c;(u,pt)dp,

where d.;p,- are the jump terms. The jump terms differ from the Brownian terms because they are non-
continuous: they are zero except at countably many time points where you "hit" the equation with an
amount c,-(u.,p,t]. The timing at which these occur is based on an internal rate A; of the jump dp:-.

Jump diffusions are important because, just as there is a justification for the universality of stochastic
differential equations, there is a justification here as well. The says that essentially

RACKAUCKAS The Winnower JUNE 05 2019

https://github.com/JuliaDiffEq/DiffEqFlux.jl#diffeq-layer-functions
https://en.wikipedia.org/wiki/L%C3%A9vy_process#L%C3%A9vy%E2%80%93It%C3%B4_decomposition

the

WINNOWER

NEURAL JUMP SDES (JUMP DIFFUSIONS) AND NEURAL PDES :

any Markov process can be decomposed into something of this form. They also form the basis for
many financial models, because for example changing regimes into a recession isn't gradual but rather
sudden. Models like Merton's model thus use these as an essential tool in quantitative finance. So let's
train a neural network on that!

What we have to do is define jump processes and append them onto an existing differential equation.

along with their pros and cons, so
for now we will use ContinuousRateJump. Let's define a ContinuousRateJump which has a constant
rate and a neural network that decides what the effect of the jump (¢;(u,p,t)) will be. To do this, you'd
simply put the neural network in there:

rate(u,p,t) = 2.0

affect!(integrator) = (integrator.u = dudt2(integrator.u))

jump = ConstantRateJump(rate,affect!)

where dudt2 is another neural network, and then wrap that into a jump problem:

prob = SDEProblem(dudt_,g,gpu(param(x)),tspan,nothing)

jump_prob = JumpProblem(prob,Direct(),jump,save_positions=(false,false))

And of course you can make this fancier: just replace that rate 2.0 with another neural network, make
the g(u,p,t) term also have a neural network, etc.: explore this as you wish and go find some cool stuff.
Let's just stick with this as our example though, but please go ahead and make these changes and
allow DiffEgFlux.jl to help you to explore your craziest mathematical idea!

Now when you solve this, the jumps also occur along with the stochastic differential equation. To show
what that looks like, let's define a jump diffusion and solve it 100 times, taking its mean as our training
data:

using Flux, DiffEgFlux, StochasticDiffEq, Plots, DiffEqMonteCarlo,
DiffEqdump

u0 = Float32[2.; 0.]
datasize = 30
tspan = (0.0f0,1.0f0)

function trueODEfunc(du,u,p,t)
true_A =[-0.1 2.0; -2.0 -0.1]
du .= ((u."3)'true_A)'
end
t = range(tspan[1],tspan[2],length=datasize)
const mp = Float32[0.2,0.2]
function true_noise_func(du,u,p,t)
du.=mp.*u
end

true_rate(u,p,t) = 2.0

true_affect!(integrator) = (integrator.u[1] = integrator.u[1]/2)

true_jump = ConstantRateJump(true_rate,true_affect!)

prob = SDEProblem(trueODEfunc,true_noise_func,u0,tspan)

jump_prob = JumpProblem(prob,Direct(),true_jump,save_positions=(false,false))

Take a typical sample from the mean

monte_prob = MonteCarloProblem(jump_prob)

monte_sol = solve(monte_prob,SOSRI(),num_monte = 100,parallel_type=:none)
plot(monte_sol,titte="Training Data")

monte_sum = MonteCarloSummary(monte_sol)

RACKAUCKAS The Winnower JUNE 05 2019

http://docs.juliadiffeq.org/latest/types/jump_types.html

the
WINNOWER NEURAL JUMP SDES (JUMP DIFFUSIONS) AND NEURAL PDES :

sde_data = Array(timeseries_point_mean(monte_sol,t))
From the plot you can see wild discontinuities mixed in with an equation with continuous randomness.
Just lovely.

A full code for training a neural jump diffusion thus is:

using Flux, DiffEgFlux, StochasticDiffEq, Plots, DiffEqMonteCarlo,
DiffEgqJump

u0 = Float32[2.; 0.] |> gpu
datasize = 30
tspan = (0.0f0,1.0f0)

function trueODEfunc(du,u,p.t)
true_A =[-0.1 2.0;-2.0 -0.1] |> gpu
du .= ((u."3)'true_A)'
end
t = range(tspan[1],tspan[2],length=datasize)
const mp = Float32[0.2,0.2] |> gpu
function true_noise_func(du,u,p,t)
du.=mp.*u
end

true_rate(u,p,t) = 2.0

true_affect!(integrator) = (integrator.u[1] = integrator.u[1]/2)

true_jump = ConstantRateJump(true_rate,true_affect!)

prob = SDEProblem(trueODEfunc,true_noise_func,u0,tspan)

jump_prob = JumpProblem(prob,Direct(),true_jump,save_positions=(false,false))

Take a typical sample from the mean

monte_prob = MonteCarloProblem(jump_prob)

monte_sol = solve(monte_prob,SOSRI(),num_monte = 100,parallel_type=:none)
monte_sum = MonteCarloSummary(monte_sol)

sde_data = Array(timeseries_point_mean(monte_sol,t))

dudt = Chain(x -> x."3,
Dense(2,50,tanh),
Dense(50,2)) |> gpu

dudt2 = Chain(Dense(2,50,tanh),
Dense(50,2)) |> gpu

ps = Flux.params(dudt,dudt2)

g(u,p,t) = mp.*u
n_sde = function (x)
dudt_(u,p,t) = dudt(u)
rate(u,p,t) = 2.0
affect!(integrator) = (integrator.u = dudt2(integrator.u))
jump = ConstantRateJump(rate,affect!)
prob = SDEProblem(dudt_,g,param(x),tspan,nothing)
jump_prob = JumpProblem(prob,Direct(),jump,save_positions=(false,false))
solve(jump_prob, SOSRI(); saveat=t ,abstol = 0.1, reltol = 0.1) |> Tracker.collect
end

pred = n_sde(u0) # Get the prediction using the correct initial condition

dudt__(u,p,t) = Flux.data(dudt(u))

RACKAUCKAS The Winnower JUNE 05 2019

the
WINNOWER NEURAL JUMP SDES (JUMP DIFFUSIONS) AND NEURAL PDES :

rate_ (u,p,t) =2.0

affect!__(integrator) = (integrator.u = Flux.data(dudt2(integrator.u)))

jump = ConstantRateJump(rate__,affect!_)

nprob = SDEProblem(dudt__,g,u0,(0.0f0,1.0f0),nothing)

njump_prob = JumpProblem(prob,Direct(),jump, save_positions = (false,false))

monte_nprob = MonteCarloProblem(njump_prob)
monte_nsol = solve(monte_nprob,SOSRI(),num_monte = 1000,parallel_type=:none, abstol = 0.1, reltol = 0.1)
monte_nsum = MonteCarloSummary(monte_nsol)

#plot(monte_nsol,color=1,alpha=0.3)
p1 = plot(monte_nsum, title = "Neural Jump Diffusion: Before Training")
scatter!(p1,t,sde_data’,lw=3)

scatter(t,sde_data[1,:],label="data")
scatter!(t,Flux.data(pred[1,:]),label="prediction")

function predict_n_sde()
n_sde(u0)
end

loss_n_sde1() = sum(abs2,sde_data .- predict_n_sde())

function loss_n_sde100()
loss = sum([sum(abs2,sde_data .- predict_n_sde()) foriin 1:100])
@show loss
loss

end

function loss_n_sde500()
loss = sum([sum(abs2,sde_data .- predict_n_sde()) foriin 1:500])
@show loss
loss

end

Flux.back!(loss_n_sde1())

data = lterators.repeated((), 10)

opt = ADAM(0.025)

cb = function () #callback function to observe training
sample = predict_n_sde()
loss against current data
display(sum(abs2,sde_data .- sample))
plot current prediction against data
cur_pred = Flux.data(sample)
pl = scatter(t,sde_data[1,:],label="data")
scatter!(pl,t,cur_pred[1,:],label="prediction")
display(plot(pl))

end

Display the SDE with the initial parameter values.
cb()

Flux.train!(loss_n_sde1 , ps, lterators.repeated((), 100), opt, cb = cb)

Notice how it's almost exactly the same as the SDE code but with the definition of the jumps. You still
get the same high order adaptive GPU-accelerated (choice of implicit, etc.) SDE solvers, but now to
this more generalized class of problems. Using the GPU gives a good speedup in the neural network
case, but slows it down quite a bit when generating the training data since it's not very parallel. Finding

RACKAUCKAS The Winnower JUNE 05 2019 6

the

WINNOWER

NEURAL JUMP SDES (JUMP DIFFUSIONS) AND NEURAL PDES :

out new ways to use GPUs is one thing | am interested in perusing here. Additionally, using a lower
tolerance StackOverflows Tracker.jl, which is something we have fixed with Zygote.jl and will be
coming to releases once Zygote.jl on the differential equation solvers is more robust. Lastly, the
plotting with GPU-based arrays is wonky right now, we'll need to make the interface a little bit nicer.
However, this is a proof of concept that this stuff does indeed work, though it takes awhile to train it to
a "decent" loss (way more than the number of repetitions showcased in here).

[Note: you need to add using CuArrays to enable the GPU support. | turned it off by default because |
was training this on my dinky laptop :)]

NEURAL PARTIAL DIFFERENTIAL EQUATIONS

Now let's do a neural partial differential equation (PDE). We can start by pulling code from

. Here I'm going to
strip the stochastic part off, simply because | want to train this on my laptop before the flight ends, so
again I'll leave it as an exercise to do the same jump diffusion treatment to this PDE. Let's start by
defining the method of lines discretization for our PDE. If you don't know what that is, please go read
that blog post on defining SPDEs. What happens is the discretization gives you a set of ODEs to solve,
which looks like:

using OrdinaryDiffEq, RecursiveArrayTools, LinearAlgebra,
DiffEqOperators, Flux, CuArrays

Define the constants for the PDE

const az = 1.0f0

const az = 1.0f0

const B1 = 1.0f0

const B2 = 1.0f0

const B3 = 1.0f0

constri = 1.0f0

const r2 = 1.0f0

const D = 100.0f0

const y1 = 0.1f0

const y2 = 0.1f0

const y3 = 0.1f0

const N =100

const X = reshape([i for i in 1:N for jin 1:N],N,N) |> gpu
const Y = reshape([j foriin 1:N for jin 1:N],N,N) |> gpu
const o1 = 1.0f0.*(X.>=80)

const Mx = Array(Tridiagonal([1.0f0 for i in 1:N-1],[-2.0f0 for i in 1:N],[1.0f0 for i in 1:N-1])) |> gpu
const My = copy(Mx)

Mx[2,1] = 2.0
Mx[end-1,end] = 2.0
My[1,2] = 2.0

My[end,end-1] = 2.0

Define the initial condition as normal arrays
u0 = rand(Float32,N,N,3) |> gpu

const MyA = zeros(Float32,N,N) |> gpu
const AMx = zeros(Float32,N,N) |> gpu
const DA = zeros(Float32,N,N) |> gpu

Define the discretized PDE as an ODE function
function f(_du,_u,p,t)

u = reshape(_u,N,N,3)

du= reshape(_du,N,N,3)

RACKAUCKAS The Winnower JUNE 05 2019

http://www.stochasticlifestyle.com/solving-systems-stochastic-pdes-using-gpus-julia/

the
WINNOWER NEURAL JUMP SDES (JUMP DIFFUSIONS) AND NEURAL PDES :

A = @view u[:,:,1]

B = @view u[:,:;,2]

C = @view u[;,:,3]

dA = @view dul[:,:,1]

dB = @view du[;,:,2]

dC = @view du[:,:,3]

mul!l(MyA,My,A)

mul!(AMx,A,Mx)

@. DA = D*(MyA + AMXx)

@.dA=DA +a1-B1*A-ri*A*B + r2*C

@.dB =02 - B2"B-rn*A*B + r2*C

@.dC =03 - B3*C +n*A*B - r2*C
end

Solve the ODE

prob = ODEProblem(f,vec(u0),(0.0f0,100.0f0))

@time sol = solve(prob,BS3(), progress=true,saveat = 5.0)
@time sol = solve(prob,ROCK2(),progress=true,saveat = 5.0)

using Plots; pyplot()

p1 = surface(X,Y,reshape(sollend],N,N,3)[:,:,1],title = "[A]")
p2 = surface(X,Y,reshape(sollend],N,N,3)[:,:,2].title = "[B]")
p3 = surface(X,Y,reshape(sol[end],N,N,3)[:,:,3],title = "[C]")
plot(p1,p2,p3,layout=grid(3,1))
savefig("neural_pde_training_data.png")

using DiffEgFlux, Flux

u0 = param(u0)
tspan = (0.0f0,100.0f0)

ann = Chain(Dense(3,50,tanh), Dense(50,3)) |> gpu
p1 = DiffEqFlux.destructure(ann)
ps = Flux.params(ann)

_ann = (u,p) -> reshape(p[3*50+51 : 2*3*50+50],3,50)*
tanh.(reshape(p[1:3*50],50,3)*u + p[3*50+1:3*50+50]) + p[2*3*50+51:end]

function dudt_(_u,p,t)

u = reshape(_u,N,N,3)

A=u[;,:;,1]

DA =D .* (A*Mx + My*A)

_du = mapslices(x -> _ann(x,p),u,dims=3) |> gpu

du = reshape(_du,N,N,3)

X = vec(cat(dul[:,:,1]+DA,dul[:,:,2],du[:,:,3],dims=3))
end

prob = ODEProblem(dudt_,vec(Flux.data(u0)),tspan,Flux.data(p1))
@time diffeq_fd(p1,Array,length(u0)*length(0.0f0:5.0f0:100.0f0),prob,ROCK2() ,progress=true,
saveat=0.0f0:5.0f0:100.0f0)

function predict_fd()
diffeq_fd(p1,Array,length(u0)*length(0.0f0:5.0f0:100.0f0),prob,ROCK2(),progress=true,
saveat=0.0f0:5.0f0:100.0f0)

RACKAUCKAS The Winnower JUNE 05 2019

the

WINNOWER

NEURAL JUMP SDES (JUMP DIFFUSIONS) AND NEURAL PDES :

end

function loss_fd()
_sol = predict_fd()
loss = sum(abs2,Array(sol) .- _sol)
@show loss
loss
end
loss_fd()

data = Iterators.repeated((), 10)
opt = ADAM(0.025)

Flux.train!(loss_fd, ps, data, opt)

The interesting part of this neural differential equation is the local/global aspect of parts. The mapslices
call makes it so that way there's a local nonlinear function of 3 variables applied at each point in space.
While it keeps the neural network small, this currently does not do well with reverse-mode automatic
differentiation or GPUs. That isn't a major problem here because, since the neural network is kept
small in this architecture, the number of parameters is also quite small. That said, reverse-mode AD
will be required for fast adjoint passes, so this is still a work in progress / proof of concept, with a very
specific point made (all that's necessary here is overloads to make mapslices work well).

One point that really came out of this was the ODE solver methods. The ROCK2 method is much
faster when generating the training data and when running diffeq_fd. It was a difference of 3 minutes
with ROCK2 vs 40 minutes with BS3 (on the CPU), showing how specialized methods really are the
difference between the problem being solvable or not. The standard implicit methods like Rodas5
aren't performing well here either since the 30,000x30,000 dense matrix, and | didn't take the time to
specify sparsity patterns or whatnot to actually make them viable competitors. So for the lazy neural
ODE use with sparsity, ROCK2 seems like a very interesting option. This is a testament to our newest
GSoC crew's results since it's one of the newer methods implemented by our student Deepesh Thakur.
There are still a few improvements that need to be made to make the eigenvalue estimates more GPU-
friendly as well, making this performance result soon carry over to GPUs as well (currently, the
indexing in this part of the code gives it trouble, so a PR is coming probably in a week or so). Lastly,
I'm not sure what's a good picture for these kinds of things, so I'm going to have to think about how to
represent a global neural PDE fit.

CONCLUSION

Have fun with this. There are still some rough edges, for example plotting is still a little wonky because
all of the automatic DiffEq solution plotting seems to index, so the GPU-based arrays don't like that (I'll
update that soon now that it's becoming a standard part of the workflow). Use it as starter code and
find some cool stuff. Note that the examples shown here are not the only ones that are possible. This
all just uses Julia's generic programming and differentiable programming infrastructure in order to
automatically generate code that is compatible with GPUs and automatic differentiation, so it's
impossible for me to enumerate all of the possible combinations. That means there's plenty of things to
explore. These are very early preliminary results, but shows that these equations are all possible.
These examples show some places where we want to continue accelerating by both improving the
methods and their implementation details. | look forward to doing an update with Zygote soon.

RACKAUCKAS The Winnower JUNE 05 2019

	Neural Jump SDEs (Jump Diffusions) and Neural PDEs
	CORRESPONDENCE:
	DATE RECEIVED:
	DOI:
	ARCHIVED:
	CITATION:
	NEURAL JUMP STOCHASTIC DIFFERENTIAL EQUATIONS (JUMP DIFFUSIONS)
	NEURAL PARTIAL DIFFERENTIAL EQUATIONS
	CONCLUSION

