
P
os
te
d
on

17
A
p
r
20
23

—
T
h
e
co
p
y
ri
gh

t
h
ol
d
er

is
th
e
au

th
or
/f
u
n
d
er
.
A
ll
ri
gh

ts
re
se
rv
ed
.
N
o
re
u
se

w
it
h
ou

t
p
er
m
is
si
on

.
—

h
tt
p
s:
//
d
oi
.o
rg
/1
0.
15
20
0/
w
in
n
.1
53
45
9.
99
33
9
—

T
h
is

a
p
re
p
ri
n
t
a
n
d
h
as

n
ot

b
ee
n
p
ee
r
re
v
ie
w
ed
.
D
a
ta

m
ay

b
e
p
re
li
m
in
a
ry
.

Finalizing Your Julia Package: Documentation, Testing, Coverage,

and Publishing

Christopher Rackauckas1

1Affiliation not available

April 17, 2023

1

READ REVIEWS

WRITE A REVIEW

CORRESPONDENCE:
me@chrisrackauckas.com

DATE RECEIVED:
August 18, 2018

DOI:
10.15200/winn.153459.99339

ARCHIVED:
August 18, 2018

CITATION:
Christopher Rackauckas,
Finalizing Your Julia Package:
Documentation, Testing,
Coverage, and Publishing, The
Winnower 5:e153459.99339 ,
2018 , DOI:
10.15200/winn.153459.99339

© Rackauckas This article is
distributed under the terms of
the Creative Commons
Attribution 4.0 International
License, which permits
unrestricted use, distribution,
and redistribution in any
medium, provided that the
original author and source are
credited.

In this tutorial we will go through the steps to finalizing a Julia package. At this point you have some
functionality you wish to share with the world... what do you do? You want to have documentation,
code testing each time you commit (on all the major OSs), a nice badge which shows how much of the
code is tested, and put it into metadata so that people could install your package just by typing
Pkg.add("Pkgname"). How do you do all of this?

Note: At anytime feel free to checkout my package repository DifferentialEquations.jl which should be a
working example.

GENERATE THE PACKAGE AND GET IT ON GITHUB

First you will want to generate your package and get it on Github repository. Make sure you have a
Github account, and then setup the environment variables in the git shell:

$ git config --global user.name "FULL NAME"
$ git config --global user.email "EMAIL"
$ git config --global github.user "USERNAME"
Now you can generate your package via

using PkgDev
PkgDev.generate("PkgName","license")
For the license, I tend to use MIT since it is quite permissive. This will tell you where your package was
generated (usually in your Julia library folder). Take your function files and paste them into the /src
folder in the package. In your /src folder, you will have a file PkgName.jl. This file defines your module.
Generally you will want it to look something like this:

module PkgName

#Import your packages
using Pkg1, Pkg2, Pkg3
import Base: func1 #Any function you add dispatches to need to be imported directly

abstract AbType #Define abstract types before the types they abstract!

include("functionsForPackage.jl") #Include all the functionality

export coolfunc, coolfunc2 #Export the functions you want users to use

end
Now try on your computer using PkgName. Try your functions out. Once this is all working, this means
you have your package working locally.

WRITE THE DOCUMENTATION

COMPUTER SCIENCES

Finalizing Your Julia Package: Documentation, Testing,
Coverage, and Publishing

CHRISTOPHER RACKAUCKAS

�

✎

RACKAUCKAS The Winnower AUGUST 18 2018 1

https://thewinnower.com/topics/computer-sciences
https://thewinnower.com/papers/9324-finalizing-your-julia-package-documentation-testing-coverage-and-publishing#submit
https://thewinnower.com/papers/9324-finalizing-your-julia-package-documentation-testing-coverage-and-publishing#submit
mailto:me@chrisrackauckas.com
https://dx.doi.org/10.15200/winn.153459.99339
https://creativecommons.org/licenses/by/4.0/
https://github.com/ChrisRackauckas/DifferentialEquations.jl

For documentation, it's recommended to use Documenter.jl. The other packages, Docile.jl and
Lexicon.jl, have been deprecated in favor of Documenter.jl. Getting your documentation to generate
starts with writing docstrings. Docstrings are strings in your source code which are used for generating
documentation. It is best to use docstrings because these will also show up in the REPL, i.e. if
someone types ?coolfunc, your docstrings will show here.

To do this, you just add strings before your function definitions. For example,

"Defines a cool function. Returns some stuff"
function coolFunc()
 ...
end

"""
Defines an even cooler function. ``LaTeX``.

```math
SameAs$$LaTeX
```

Returns
 * Markdown works in here
"""
function coolFunc2()
 ...
end
Once you have your docstrings together, you can use them to generate your documentation. Install
Documenter.jl in your local repository by cloning the repository with Pkg.clone("PkgLocation"). Make a
new folder in the top directory of your package named /docs. In this directory, make a file make.jl and
add the following lines to the file:

using Documenter, PkgName

makedocs(modules=[PkgName],
 doctest=true)

deploydocs(deps = Deps.pip("mkdocs", "python-markdown-math"),
 repo = "github.com/GITHUBNAME/GITHUBREPO.git",
 julia = "0.4.5",
 osname = "linux")
Don't forget to change PkgName and repo to match your project. Now make a folder in this directory
named /src (i.e. it's /docs/src). Make a file named index.md. This will be the index of your
documentation. You'll want to make it something like this:

#Documentation Title

Some text describing the package.

Subtitle

More text

Tutorials

```@contents
Pages = [
    "tutorials/page1.md",
    "tutorials/page2.md",
    "tutorials/page3.md"

FINALIZING YOUR JULIA PACKAGE: DOCUMENTATION, TESTING, COVERAGE, AND PUBLISHING :
COMPUTER SCIENCES

RACKAUCKAS The Winnower AUGUST 18 2018 2



    ]
Depth = 2
```

Another Section
```@contents
Pages = [
    "sec2/page1.md",
    "sec2/page2.md",
    "sec2/page3.md"
    ]
Depth = 2
```

Index

```@index
```
At the top we explain the page. The next part adds 3 pages to a "Tutorial" section of the
documentation, and then 3 pages to a "Another Section" section of the documentation. Now inside
/docs/src make the directories tutorial and sec2, and add the appropriate pages page1.md, page2.md,
page3.md. These are the Markdown files that the documentation will use to build the pages.

To build a page, you can do something like as follows:

Title

Some text describing this section

Subtitle

```@docs
PkgName.coolfunc
PkgName.coolfunc2
```
What this does is it builds the page with your added text/titles on the top, and then puts your docstrings
in below. Thus most of the information should be in your docstrings, with quick introductions before
each page. So if your docstrings are pretty complete, this will be quick.

BUILD THE DOCUMENTATION

Now we will build the documentation. cd into the /docs folder and run make.jl. If that's successful, then
you will have a folder /docs/build. This contains markdown files where the docstrings have been added.
To turn this into a documentation, first install mkdocs. Now add the following file to your /docs folder as
mkdocs.yml:

site_name: PkgName
repo_url: https://github.com/GITHUBUSER/PkgName
site_description: Description
site_author: You
theme: readthedocs

markdown_extensions:
 - codehilite
 - extra
 - tables
 - fenced_code
 - mdx_math # For LaTeX

extra_css:
 - assets/Documenter.css

FINALIZING YOUR JULIA PACKAGE: DOCUMENTATION, TESTING, COVERAGE, AND PUBLISHING :
COMPUTER SCIENCES

RACKAUCKAS The Winnower AUGUST 18 2018 3

extra_javascript:
 - https://cdn.mathjax.org/mathjax/latest/MathJax.js?config=TeX-AMS_HTML
 - assets/mathjaxhelper.js

docs_dir: 'build'

pages:
- Introduction: index.md
- Tutorial:
 - Title 1: tutorials/page1.md
 - Title 2: tutorials/page2.md
 - Title 3: tutorials/page3.md
- Another Section:
 - Title 1: sec2/page1.md
 - Title 2: sec2/page2.md
 - Title 3: sec2/page3.md
Now to build the webpage, cd into /docs and run `mkdocs build`, and then `mkdocs serve`. Go to the
local webserver that it tells you and check out your documentation.

TESTING

Now that we are documented, let's add testing. In the top of your package directory, make a folder
/test. In there, make a file runtests.jl. You will want to make it say something like this:

#!/usr/bin/env julia

#Start Test Script
using PkgName
using Base.Test

Run tests

tic()
println("Test 1")
@time @test include("test1.jl")
println("Test 2")
@time @test include("test2.jl")
toc()
This will run the files /test/test1.jl and /test/test2.jl and work if they both return a boolean. So make
these test files use some of your package functionality and at the bottom make sure it returns a
boolean saying whether the tests passed or failed. For example, you can have it make sure some
number is close to what it should be, or you can just put `true` on the bottom on the file. Now use

Pkg.test("PkgName")
And make sure your tests pass. Now setup accounts at Travis CI (for Linux and OSX testing) and
AppVoyer (for Windows testing). Modify .travis.yml to be like the following:

Documentation: http://docs.travis-ci.com/user/languages/julia/
language: julia
os:
 - linux
 - osx
julia:
 - nightly
 - release
 - 0.4.5
matrix:
 allow_failures:
 - julia: nightly
notifications:

FINALIZING YOUR JULIA PACKAGE: DOCUMENTATION, TESTING, COVERAGE, AND PUBLISHING :
COMPUTER SCIENCES

RACKAUCKAS The Winnower AUGUST 18 2018 4

 email: false
script:
- if [[-a .git/shallow]]; then git fetch --unshallow; fi
 - julia -e 'Pkg.clone(pwd())'
 - julia -e 'Pkg.test("PkgName",coverage=true)'
after_success:
 - julia -e julia -e 'Pkg.add("Documenter")'
 - julia -e 'cd(Pkg.dir("PkgName")); include(joinpath("docs", "make.jl"))'
 - julia -e 'cd(Pkg.dir("PkgName")); Pkg.add("Coverage"); using Coverage; Codecov.submit(Codecov.process_folder())'
 - julia -e 'cd(Pkg.dir("PkgName")); Pkg.add("Coverage"); using Coverage; Coveralls.submit(process_folder())'
If you are using matplotlib/PyPlot you will want to add

ENV["PYTHON"]=""; Pkg.build("PyCall"); using PyPlot;
before Pkg.test("PkgName",coverage=true). Now edit your appvoyer.yml to be like the following:

environment:
 matrix:
 - JULIAVERSION: "julialang/bin/winnt/x86/0.4/julia-0.4-latest-win32.exe"
 - JULIAVERSION: "julialang/bin/winnt/x64/0.4/julia-0.4-latest-win64.exe"
matrix:
 allow_failures:
 - JULIAVERSION: "julianightlies/bin/winnt/x86/julia-latest-win32.exe"
 - JULIAVERSION: "julianightlies/bin/winnt/x64/julia-latest-win64.exe"
branches:
 only:
 - master
 - /release-.*/

notifications:
 - provider: Email
 on_build_success: false
 on_build_failure: false
 on_build_status_changed: false

install:
Download most recent Julia Windows binary
 - ps: (new-object net.webclient).DownloadFile(
 $("http://s3.amazonaws.com/"+$env:JULIAVERSION),
 "C:\projects\julia-binary.exe")
 - set PATH=C:\Miniconda3;C:\Miniconda3\Scripts;%PATH%
Run installer silently, output to C:\projects\julia
 - C:\projects\julia-binary.exe /S /D=C:\projects\julia

build_script:
Need to convert from shallow to complete for Pkg.clone to work
 - IF EXIST .git\shallow (git fetch --unshallow)
 - C:\projects\julia\bin\julia -e "versioninfo();
 Pkg.clone(pwd(), \"PkgName\"); Pkg.build(\"PkgName\")"

test_script:
 - C:\projects\julia\bin\julia --check-bounds=yes -e "Pkg.test(\"PkgName\")"

ADD COVERAGE

I was sly and already added all of the coverage parts in there! This is done by the commands which
add Coverge.jl, the keyword coverage=true in Pkg.test, and then specific functions for sending the
coverage data to appropriate places. Setup an account on Codecov and Coveralls.

FIX UP README

Now update your readme to match your documentation, and add the badges for testing, coverage, and

FINALIZING YOUR JULIA PACKAGE: DOCUMENTATION, TESTING, COVERAGE, AND PUBLISHING :
COMPUTER SCIENCES

RACKAUCKAS The Winnower AUGUST 18 2018 5

docs from the appropriate websites.

UPDATE YOUR REPOSITORY

Now push everything into your Git repository. `cd` into your package directory and using the command
line do:

git add --all
git commit -m "Commit message"
git push origin master
or something of the like. On Windows you can use their GUI. Check your repository and make sure
everything is there. Wait for your tests to pass.

PUBLISH YOUR PACKAGE

Now publish your package. This step is optional, but if you do this then people can add your package
by just doing `Pkg.add("PkgName")`. To do this, simply run the following:

Pkg.update()
using PkgDev
PkgDev.register("PkgName")
PkgDev.tag("PkgName")
PkgDev.publish()
This will give you a url. Put this into your browser and write a message with your pull request and
submit it. If all goes well, they will merge the changes and your package will be registered with
METADATA.jl.

That's it! Now every time you commit, your package will automatically be tested, coverage will be
calculated, and documentation will be updated. Note that for people to get the changes you made to
your code, they will need to run `Pkg.checkout("PkgName")` unless you tag and publish a new version.

FINALIZING YOUR JULIA PACKAGE: DOCUMENTATION, TESTING, COVERAGE, AND PUBLISHING :
COMPUTER SCIENCES

RACKAUCKAS The Winnower AUGUST 18 2018 6

	Finalizing Your Julia Package: Documentation, Testing, Coverage, and Publishing
	CORRESPONDENCE:
	DATE RECEIVED:
	DOI:
	GENERATE THE PACKAGE AND GET IT ON GITHUB
	ARCHIVED:
	CITATION:

	WRITE THE DOCUMENTATION
	BUILD THE DOCUMENTATION
	TESTING
	ADD COVERAGE
	FIX UP README
	UPDATE YOUR REPOSITORY
	PUBLISH YOUR PACKAGE

