
P
os
te
d
on

17
A
p
r
20
23

—
T
h
e
co
p
y
ri
gh

t
h
ol
d
er

is
th
e
au

th
or
/f
u
n
d
er
.
A
ll
ri
gh

ts
re
se
rv
ed
.
N
o
re
u
se

w
it
h
ou

t
p
er
m
is
si
on

.
—

h
tt
p
s:
//
d
oi
.o
rg
/1
0.
15
20
0/
w
in
n
.1
53
45
9.
99
35
1
—

T
h
is

a
p
re
p
ri
n
t
a
n
d
h
as

n
ot

b
ee
n
p
ee
r
re
v
ie
w
ed
.
D
a
ta

m
ay

b
e
p
re
li
m
in
a
ry
.

I Like Julia Because It Scales and Is Productive: Some Insights

From A Julia Developer

Christopher Rackauckas1

1Affiliation not available

April 17, 2023

1

READ REVIEWS

WRITE A REVIEW

CORRESPONDENCE:
me@chrisrackauckas.com

DATE RECEIVED:
August 18, 2018

DOI:
10.15200/winn.153459.99351

ARCHIVED:
August 18, 2018

CITATION:
Christopher Rackauckas, I Like
Julia Because It Scales and Is
Productive: Some Insights
From A Julia Developer, The
Winnower 5:e153459.99351 ,
2018 , DOI:
10.15200/winn.153459.99351

© Rackauckas This article is
distributed under the terms of
the Creative Commons
Attribution 4.0 International
License, which permits
unrestricted use, distribution,
and redistribution in any
medium, provided that the
original author and source are
credited.

In this post I would like to reflect a bit on the Julia programming language. These are my personal
views and I have had more than a year developing a lot of packages for the Julia programming
language. After roaming around many different languages including R, MATLAB, C, and Python; Julia
is finally a language I am sticking to. In this post I would like to explain why. I want to go back through
some thoughts about what the current state of the language is, who it's good for, and what changes I
would like to see. My opinions changed a lot since first starting to work on Julia, so I'd just like to share
the changed mindset one has after using the language deeply.

QUICK SUMMARY

Here's a quick summary of my views.

1. Julia is not only a fast language, but what makes it unique is how predictable the performance and
the compilation process is.

2. The language gives you lots of introspection tools to be able to easily isolate issues.
3. The opt-in type checking and allowing many different architectures to be fast is a strong bonus for

software development, especially when scaling to large software ecosystems, over other scripting
languages since it allows you to write simple and self-documenting code.

4. Julia's unique features make it easy to make packages which are type-generic and parallel.
5. Most of these benefits will be seen by package developers. "Users" will probably not see as much

of a difference in their own codes because the majority of their performance will be determined by
the packages they use.

6. To attract a new wave of users, Julia needs to start taking a "package-first" mentality and push
package-level unique features rather than language-level features. Language level is what
developers care about, but the majority of programmers are not developers.

7. We have all of the basics in Julia, but we need to start showing off (and working towards) how we
can be different. Every package should be picking some special features and types to support.
Speed is just one feature.

8. Julia can have a bright future, but we may need to start advertising and teaching it differently.
I think that to start, I need to discuss a topic which might be new to newcomers.

JULIA'S JIT IS NOT LIKE OTHER JITS, AND IT HELPS PACKAGE DEVELOPMENT

LuaJIT is a runtime that just-in-time compiles Lua, so is it the same thing or similar to Julia? What
about MATLAB's JIT? The answer is no, Julia's compilation strategy is very different. Other JIT setups
for scripting languages use something that's known as a tracing JIT. What these do is they track the
commands you are running and then via some algorithm (possibly probabilistic in some setups like
LuaJIT) it determines what parts of the code are repetitively ran enough that they warrant compilation,
and then code for those specific sets of commands are compiled and when the parser hits those areas
again it runs the JIT code.

COMPUTER SCIENCES

I Like Julia Because It Scales and Is Productive: Some
Insights From A Julia Developer

CHRISTOPHER RACKAUCKAS

✎

RACKAUCKAS The Winnower AUGUST 18 2018 1

https://thewinnower.com/topics/computer-sciences
https://thewinnower.com/papers/9323-i-like-julia-because-it-scales-and-is-productive-some-insights-from-a-julia-developer#submit
https://thewinnower.com/papers/9323-i-like-julia-because-it-scales-and-is-productive-some-insights-from-a-julia-developer#submit
mailto:me@chrisrackauckas.com
https://dx.doi.org/10.15200/winn.153459.99351
https://creativecommons.org/licenses/by/4.0/
https://www.reddit.com/r/Julia/comments/71kkom/when_to_use_julia/dndsn4s/

Julia on the other hand is almost static. When running any Julia function, it will first take your function
calls and then auto-specialize it down to concrete types. So f(x::Number)=x^2 will specialize to Float64
when you call it with f(1.0). Using this type information, it has a compile-time stage where it propagates
all type information as far as it can go. So if you internally do x^2, it will replace that with ^(::Float64,2)
(the 2 is a compile-time constant), and then since it can determine the types of everything, it will push
this all the way down to generate clean LLVM IR (and thus clean assembly code) for x^2 on Float64s.
It will cache this compiled version of the function so that way f(2.0) uses the same compiled code
(notice that the compilation process only needs the type and not the runtime values!). However, when
you then call it with f(1), it compiles a separate version for Int.

In some sense, this is very different. The obvious difference is that Julia's compilation process is
deterministic and is open to introspection. If you do

@code_warntype f(1.0)
@code_llvm f(1.0)
Julia will spit back at you its internal AST of the method specialized on Float64, and then the LLVM IR.
The nice thing about this is that you can check every step of the process. I never participated in
programming language development conversations before working with Julia, but this makes it easy.
You see this kick something out, you find out yourself how to optimize it, and then you can easily ask
someone "why doesn't the compiler optimize xyz away here?" and then that leads to code changes
(i.e. "oh, array aliasing is preventing compiler optimizations!"), new work on compiler optimizations, and
better performance. A recent place where just happened was in this Discourse discussion where a user
points out that a separate faster LLVM instruction could be used than the one that is actually emitted.

But what I really like about this process is that it's clear and deterministic. I can know exactly what my
packages are doing and why. This makes it very easy to optimize packages because you always know
what's going on. When trying to piece together 50+ packages like DifferentialEquations.jl, deterministic
rules for how to optimize code and easy means of introspection are essential to know what's going on.
This kind of transparency is something that's really easy to appreciate after working on something like
MATLAB where the internals are opaque.

There is a tradeoff though. In order for this process to work well it requires being able to propagate
type information. This requires that the types of the variables inside of a function are what's known as
"type-stable" or "type-inferrable". For example,

function g(a,n)
 x = 0
 for i in 1:n
 x += a
 end
end
will add a n times. If you call this with g(1.0,10), you'll notice this is not as fast as you'd hope. The
reason is because the type of x starts as a Int, and then Int+Float64 produces a Float64 and so x
changes types. Think about writing a C-code for doing this: you can't just have a variable change types
like that? So what Julia does is compile x in a way such that it is dynamically typed, and the lost
assumptions associated with doing this is why the performance drops down to that of
Python/MATLAB/R since now it has the same amount of dynamicness as a real scripting language: it's
all just a game of how much information is known by the compiler. So the way to think about it is, if
your code can be type-stable, Julia will take full advantage of this and make a completely static
function and compile that, otherwise it will make the necessary parts dynamic in order to handle the
extra features. Together, this is a pretty nifty way to mix ease of use and performance. At any time, you
can @code_warntype your function call and it will explicitly highlight which variables are "being
dynamic", and that tells you exactly what to optimize. For example,

Variables:
 #self#::#g
 a::Float64
 n::Int64
 i::Int64

I LIKE JULIA BECAUSE IT SCALES AND IS PRODUCTIVE: SOME INSIGHTS FROM A JULIA DEVELOPER :
COMPUTER SCIENCES

RACKAUCKAS The Winnower AUGUST 18 2018 2

https://discourse.julialang.org/t/help-speeding-up-a-test-progam-from-a-book/6383/16?u=chrisrackauckas

 #temp#@_5::Int64
 x::UNION{FLOAT64, INT64}
 #temp#@_7::Core.MethodInstance
 #temp#@_8::Float64

Body:
 begin
 x::UNION{FLOAT64, INT64} = 0 # line 3:
 SSAValue(2) = (Base.select_value)((Base.sle_int)(1, n::Int64)::Bool, n::Int64, (Base.sub_int)(1, 1)::Int64)::Int64
 #temp#@_5::Int64 = 1
 5:
 unless (Base.not_int)((#temp#@_5::Int64 === (Base.add_int)(SSAValue(2), 1)::Int64)::Bool)::Bool goto 29
 SSAValue(3) = #temp#@_5::Int64
 SSAValue(4) = (Base.add_int)(#temp#@_5::Int64, 1)::Int64
 #temp#@_5::Int64 = SSAValue(4) # line 4:
 unless (x::UNION{FLOAT64, INT64} isa Int64)::Bool goto 14
 #temp#@_7::Core.MethodInstance = MethodInstance for +(::Int64, ::Float64)
 goto 23
 14:
 unless (x::UNION{FLOAT64, INT64} isa Float64)::Bool goto 18
 #temp#@_7::Core.MethodInstance = MethodInstance for +(::Float64, ::Float64)
 goto 23
 18:
 goto 20
 20:
 #temp#@_8::Float64 = (x::UNION{FLOAT64, INT64} + a::Float64)::Float64
 goto 25
 23:
 #temp#@_8::Float64 = $(Expr(:invoke, :(#temp#@_7), :(Main.+), :(x), :(a)))
 25:
 x::UNION{FLOAT64, INT64} = #temp#@_8::Float64
 27:
 goto 5
 29:
 return
 end::Void

This is spitting back and telling me that x is typed as both Float64 and Int64 which is exactly the
problem I identified. But have no fear, Julia is based around typing, so it has ways to handle this. For
example, zero(a) gives you a 0 in the type of a, so

function g(a,n)
 x = zero(a)
 for i in 1:n
 x += a
 end
end
is a good generic type-stable function for any number which has zero and + defined. That's quite
unique: I can put floating point numbers in here, symbolic expressions from SymEngine.jl, ArbFloats
from the user-defined ArbFloats.jl fast arbitrary precision library, etc. Since Julia always auto-
specializes on the types, no matter what I give it, it will know how to replace zero with whatever it
needs to and do so at compile-time since at compile-time there's enough type information to know
what that constant should be, and then it will replace the + with calls to the correct version of +. Thus
there is no runtime overhead for handling genericness. All you have to do is remember to write your
code in a manner such that the types match what comes in (other helpful functions for this include
typeof, eltype, and similar). So Julia is not only built to make generic functions performant, but it also
has the right tools for handling types to make this actually easy to do.

I LIKE JULIA BECAUSE IT SCALES AND IS PRODUCTIVE: SOME INSIGHTS FROM A JULIA DEVELOPER :
COMPUTER SCIENCES

RACKAUCKAS The Winnower AUGUST 18 2018 3

https://github.com/symengine/SymEngine.jl
https://github.com/JuliaArbTypes/ArbFloats.jl

There is a little bit more of a cognitive burden here than in other languages. It's not much, but there are
a few things to keep in mind. Tracing JITs will more automatically handle typing by using runtime
information, but are harder to introspect and harder to determine when things are going wrong (also, it
cannot fully statically compile ahead of time). With Julia, you do need to understand and think about
your code in terms of types if you want full performance. But if you do so, then your code isn't "close to
C", it literally has enough information that it can create and compile a function which is as fast as C
(and any speed difference from C is usually due to the fact that you're using the LLVM (clang) compiler
instead of the more standard GCC, or Julia in some cases is missing the ability to add an optimization.
Extra compiler optimizations are part of the 1.x milestones. In practice you'll find that most codes are
The inability to handle types well is one of the main reasons I see developers having hard times scaling
up programs in scripting languages, but it's not an issue in Julia. So while LuaJIT and other well-
designed tracing JITs can in many cases match Julia's speed with enough work optimizing runtime
heuristics, they won't have the same ease of understanding and predictability as Julia, and won't have
as much of a robust type-checking system to plug into as your program and contributor base grows.

Sure, Numba uses a similar strategy as Julia. If you stick to only using Float64s and a few other basic
types (Float32, and some integer types?) you'll get something very similar to what's described here.
But I've described before that making robust generic software with this type-inference approach
requires a strong understanding and use of the type system, and I have never found Python+Numba
close to matching Julia in its ability to let the user directly handle types, and it's this combination of the
type system + the compilation strategy that makes Julia code scale well. This difference may not be
appreciated in one-off scripts, but when building and maintaining robust software I have found it
necessary.

But lastly, using this strategy Julia actually can produce static binaries like compiled C or Fortran code,
so I think this fact will come in handy for making Julia into a package development language. Basically,
you can write packages in Julia, and someday it will be easy to generate a runtime-free binary (like
C/Fortran) others can link to. That leads me to my next point.

In some ways, I see Julia actually as a more productive C++ instead of a faster Python. At least as a
package developer I tend to use it like that, and a lot of its features essentially give you full generic
template programming that you'd attempt in C++, just with a lot less code. I think that for many
developers, this is a more appropriate way to consider Julia. But that's not Julia's whole audience,
which leads to my next point.

YOU WILL SEE THE MOST BENEFITS IN PACKAGE DEVELOPMENT

How much does this language choice actually effect real use cases? Well, I think it depends on who
you are. One thing that you'll notice is that, for the vast majority of users, the performance of your
scripts is almost entirely determined by the speed of your packages. This is true in pretty much any
scientific computing application that I know of, in Julia, R, MATLAB, Python, etc. If 90% of your time is
spent calling functions from DataFrames or JuMP, then the speed of your analysis code really doesn't
impact the final runtime all that much.

So in some sense I don't believe that Julia's performance will directly effect most users of the language
(and I think that this is true for R/Python/MATLAB as well). However, where it really manifests itself is
indirectly through package development productivity. Simply put, a Python package written in pure
Python is slow, like really really slow. Same with R and MATLAB. This impacts the development time
and resources since all of the major projects like SciPy, NumPy, and Pandas are almost entirely C++
code underneath. And this also impacts features. It's really hard to make traditional languages handle
things like arbitrary precision arithmetic well, and so you'll see that most functionality in things like
SciPy do not support all of the glory that Python allows since it's not really Python code! Then Python
packages are built on SciPy and its limitations, and that just further propagates the impossibility of
extending the algorithms to something more generic. Python in fact has so many issues here that
projects have had to internally develop their own JITs in order to get the performance, features, and
syntax they want. JitCODE and PyDSTool are two ODE solvers which developed DSLs and ways to
compile their code. One nice example is this video on PyTorch where the developer describes the
tracing JIT they built into their package. I seriously commend these individuals for building such
amazing systems, but dear god I do not want to spend my own development time building a

I LIKE JULIA BECAUSE IT SCALES AND IS PRODUCTIVE: SOME INSIGHTS FROM A JULIA DEVELOPER :
COMPUTER SCIENCES

RACKAUCKAS The Winnower AUGUST 18 2018 4

http://www.stochasticlifestyle.com/7-julia-gotchas-handle/
http://www.stochasticlifestyle.com/type-dispatch-design-post-object-oriented-programming-julia/
https://github.com/neurophysik/jitcode
https://github.com/robclewley/pydstool
https://www.youtube.com/watch?v=DBVLcgq2Eg0

compilation scheme for each new scientific project I am involved in! To me, these are language level
issues and should be addressed by the language. What the PyTorch developers had to build into their
package is what Julia gives you package developers for free, and as a scientist who doesn't want to
write compilers, I am super satisfied.

In Julia, packages can be written in Julia and be performant. As demonstrated above and in this post,
they can also be type-agnostic or type-generic and still be performant. This means that it's much
easier/quicker to develop "good" libraries in Julia, and that it's easy for any of these libraries to support
just about any type. An example for this is GenericSVD.jl which just implements an SVD-factorization
in Julia, and this compiles to fast code for things which are not supported by common Fortran bindings
like BigFloats, ArbFloats, complex numbers, etc. and the code is simple. It's a great simple package
which likely didn't take much development time but is already something very unique due to its type-
genericness and speed.

This makes me think that most users should look at Julia a little differently. To me, Julia is a language
which is designed to make it easy to roll your own package and have them be performant. If you want
to develop libraries, then Julia is great for you and the benchmarks (among other things like multiple
dispatch and type-genericness) show why you should choose Julia over Python/R/MATLAB/etc. To me
it's almost a no-brainer to choose Julia for your next methods project or package. But if you're a user
who uses libraries, you cannot expect a blanket performance difference from your previous language
"just" because it's Julia. For example, Pandas is in Python, but it's fast because it's written in C++. Just
because you're switching to Julia you shouldn't expect functions on data table objects to be faster (in
fact, they might not be since Pandas is pretty well-optimized. One place where the package ecosystem
is currently not as well-optimized is plotting, where the plotting libraries need some restructuring to
improve performance.). What you can expect is that the development of the associated Julia libraries is
more transparent (it's in Julia) and generally performant as well. But also, all of the tools you'd use to
help out your own scripts make it easy to find out what's wrong in a library and contribute some code to
speed it up. Going from user to contributor and actually helping package development is super trivial
and probably the most underappreciated "feature" (or more, side effect of the design) of Julia.

But given the market for who actually chooses Julia, Julia packages do tend to be fast in the end Julia
is really top-of-the-class in many disciplines, though that is not true all around. But the fact that
development is fast and easy to write scalable packages in means that you can find a lot of odd unique
packages: lots of small numerical linear algebra or new optimization algorithm packages which run
performantly and just don't exist anywhere else make up a good chunk of what I find in Julia. To top it
off, Julia makes it easy to setup continuous integration in Windows, Mac, and Linux to get your
package off the ground and well-tested. Here's a video that goes through all of that. Again, package-
development level features.

FAST MULTIPARADIGMS MAKES MAINTENANCE EASIER

The big thing which has helped me scale packages is that Julia doesn't care how you program.
Looping, vectorization, functional styles with lots of recursion, etc.: it doesn't care. You can just choose
the form that is natural for your problem, write a code which uses that style, and know it's going to be
performant. This is very different than the R/MATLAB/Python mentality of "vectorize everything!", even
if it's not natural to vectorize. I remember doing some very "fun" hacks in MATLAB and Python
specifically in order to make good use of vectorized functions, and having to document inside of
comments a step-by-step explanation of what the hell the code is actually doing. Many of those times,
a 3 line loop which is almost copy-pasted from the paper's psudocode would've done the trick, but in
the name of performance I mangled the code. Julia doesn't require this, and I have very much
appreciated this when reviewing code from others.

This is probably the biggest difference. If you have appropriately vectorized code in
MATLAB/Python/R, the performance difference from Julia isn't actually too big. There's still a difference
because vectorization is particularly wasteful with memory and isn't actually optimal in most cases, but
it's within an order of magnitude. However, you are required to program in a specific way in these other
languages to get here, and if you're doing anything more than scripting you've probably found that this
doesn't scale because, well, sometimes code gets mangled when you force vectorization!

THERE IS BEAUTY IN USING THE FULL LANGUAGE

I LIKE JULIA BECAUSE IT SCALES AND IS PRODUCTIVE: SOME INSIGHTS FROM A JULIA DEVELOPER :
COMPUTER SCIENCES

RACKAUCKAS The Winnower AUGUST 18 2018 5

http://www.stochasticlifestyle.com/type-dispatch-design-post-object-oriented-programming-julia/
https://github.com/JuliaMath/GenericSVD.jl
https://www.youtube.com/watch?v=tx8DRc7_c9I&t=4s

Sure, Python isn't too bad if for performance you stick to arrays of 64-bit numbers as allowed in
NumPy arrays, and you use pre-written functions (C-bindings) in SciPy. But what if you really want to
create your own numbers as some object, and you want to build data structures using objects in order
to more easily scale your software? This is where this setup begins to take its toll. When saying that a
small part of the language is required to be used in order to get good performance, you get pidgeon-
holed away from the most intuitive code and have to move towards big arrays of numbers. Instead of
"naming" separate arrays, items are thrown into matrices with comments says "1:3 is chemical A, 4:7 is
chemical B, ...", which I did not find scales very well.

But in Julia, using types is actually performant. Structs in Julia are value-types, which means that they
create structures which inline the type-values instead of using indirection via pointers. This means that
a Complex{Float64}, which is a struct of two values (the real and imaginary parts), is in memory as a
128-bit chunk with two numbers. This is as performant as if you implemented some kind of intrinsic
type in C. You can use this without worry. And mutable structs, while including pointers, are much more
performant than objects in most scripting languages because functions auto-specialize on them. The
result is that you can make use of all of the language when building software that needs to be
performant, once again making it easier to scale projects.

GPUS AND PARALLELISM IS STRAIGHTFORWARD AND GENERIC

Serial performance only gets you so far. Scaling up your project means two things: scaling up the size
and features of the codebase, and scaling up the computing power. I discussed how Julia excels in the
first part, but what about the second? What I have found really great about Julia is that its
parallelization is dead simple. Add @threads in front of a loop and done, its multithreaded. @parallel
and pmap do distributed parallelism via multiprocessing, and I have shown how in 5 minutes you can
parallelize your code across a whole cluster. Explicitly writing GPU kernels and using multiple GPUs is
easy.

I cannot forget one of my favorite developments as of late: GPUArrays.jl. Essentially, when you write
vectorized (broadcasted) code with a GPUArray, it automatically parallelizes on the GPU. Neat! But
this means that any generic function written in this style is already compatible to automatically compile
a GPU version. So things like OrdinaryDiffEq.jl (the ODE solvers of DifferentialEquations.jl), even
though they don't have a single piece of GPU-specific code in them, compile performant versions of
their solvers for GPUs, automatically, because Julia feels like being nice. Like seriously, once you get
a strong understanding about how types and dispatching works, Julia is absolutely mindblowing.

SUMMARY: JULIA IS GREAT FOR PACKAGE DEVELOPMENT, BUT USERS JUST SEE PACKAGES

And this leads me to my conclusion. In each of the sections above I note why Julia is great for building
packages in. In comparison to the other scripting languages, I find nothing comes close in terms of
productivity, scalability, resulting performance, and resulting features. No other languages makes it so
easy to make a function which is performant yet doesn't care what number types you use! And being
allowed to use the whole language "correctly" means that your code is much easier to understand and
grow. If you're looking to publish a package along with your algorithm, Julia is definitely the right place
to be. In that sense, this group will see Julia as an easier or more productive C++.

But for end users throwing together a 100 line script for a data analysis? I don't think that this crowd will
actually see as much of a difference between other scripting languages if the packages in the other
languages they are using are sufficiently performant (this isn't always true, but let's assume it is). To
people who aren't "pros" in the language, it will probably look like it just has a different syntax. It will be
a little faster than vectorized code in other languages if code is in type-stable functions, but most of the
differences a user will notice will come from the mixture of features and performance of packages.
Because of this, I am not sure if marketing the features of the language is actually the best way to
approach the general audience. The general audience will be convinced Julia is worthwhile only by the
package offering.

I want to end though with the fact that, since Julia packages are written in Julia, a Julia user is qualified
to write, debug, and contribute to packages. I myself never saw myself becoming a package dev until
about a year ago, and this transition only was because Julia makes the change so easy (it wasn't any
different than the Julia development I was already doing!). While this is a good highlight to people who

I LIKE JULIA BECAUSE IT SCALES AND IS PRODUCTIVE: SOME INSIGHTS FROM A JULIA DEVELOPER :
COMPUTER SCIENCES

RACKAUCKAS The Winnower AUGUST 18 2018 6

http://www.stochasticlifestyle.com/multi-node-parallelism-in-julia-on-an-hpc/
http://www.stochasticlifestyle.com/julia-on-the-hpc-with-gpus/
http://www.stochasticlifestyle.com/multiple-gpu-on-the-hpc-with-julia/
https://github.com/JuliaGPU/GPUArrays.jl

would read a blog post about programming languages, I still think this is a small niche when
considering the average programmer. I don't think that the average programmer sees this as an
upside. Most don't have the time to invest in this kind of development, and see that push that "you can
do it all yourself!" as a turn-off (even though it's "can" instead of "have to"!). It's a very different crowd
to be catered to.

MY RECOMMENDATIONS

PACKAGE ACCESSIBILITY AND DISCOVERABILITY

So in the end, I see Julia as in a state of transition. The way it was marketed before in terms of
performance benchmarks, the type-system, etc. are all things which appeal to package developers,
and Julia already has had great adoption by developers. But now Julia needs to start targeting general
audiences by sharing its packages. There are a few things in the Base Julia language like adding
noalias scopes that I would like to see, but pretty much everything (other than a few compiler
optimizations) I put as "not essential" now. What I see as essential is making packages more
accessible.

As someone well-aware of the packages which are available, I can tell you that "lack of packages" isn't
really a problem with the ecosystem: you can find a great package that does what you're looking for. In
fact, this weird idea that Julia doesn't have packages yet leads to some silly chatroom discussions
where a newcomer joins the Gitter channel and asks "I wanna contribute to the language... has x been
done yet?", give back 10 example, "y?", give back 5 examples, "z?", 5 examples, "oh, I'm surprised
how much is already done!".

This chat happens quite often, which is fine, but it points to a problem. We really need to work more on
"discoverability" and "noob-friendly docs", both items which I'm not entirely sure what the easiest way
to handle are. But, I think that this is what is required for Julia to grow (word choice is on purpose: grow
instead of succeed, because Julia to me is clearly already successful enough to sustain a development
community and thus invest your own time in it, though the community could grow much more). If we
think of newcomers as coming in waves: wave 1 brought in language devs and was extremely
successful (as evidenced by the over 500 committers to just the Base language, more than projects
like cpython, Cython, or PyPy has ever had!), wave 2 brought in package devs and has been very
successful as well, but now we need to gear up for wave 3: the package users. This means that
package discoverability is what will bring in the third wave. Tools like JuliaObserver.com need to be
better advertised as standard parts of the Julia-sphere.

PACKAGE UNIQUENESS

Julia packages should spend more time on their unique parts. Everyone has optimization packages,
and people in Python are using things written in C/C++/Fortran like NLopt and IPOPT and so the
performance difference is essentially nil in these well-developed cases. But a native Julia package can
have other advantages as well. Working out of the box with complex and arbitrary precision numbers,
using autodifferentiation, being compatible with DistributedArrays and GPUArrays to allow these forms
of parallelism without having to transfer back to the CPU for the optimizer's parts. These features are
huge for large classes of researchers (I know that quantum physicists want better complex number
support everywhere!) and this is where Julia's packages shine: genericness. Supporting genericness
and parallelism should be front and center with every big Julia package, and it should have unique
examples to show it off.

We already have very strong libraries in quite a few domains of scientific computing. Here's what Julia
sounds like when, instead of saying "Julia can do ______", you say some unique things about the
libraries:

1. Constrainted optimization and mathematical programming. JuMP's DSL automatically defines
Jacobians and Hessians via autodifferentiation. Its solver independence makes it easy to switch
between libraries to choose the most efficient one for the problem.

2. Numerical linear algebra. Not only does th standard library expose more of BLAS and LAPACK via
special matrix types than other languages, there are many special-purpose libraries for linear
solving. IterativeSolvers.jl allows you to use any LinearMap, meaning that by passing a lazy
LinearMap it automatically works as matrix-free preconditioned GMRES etc., and there are many

I LIKE JULIA BECAUSE IT SCALES AND IS PRODUCTIVE: SOME INSIGHTS FROM A JULIA DEVELOPER :
COMPUTER SCIENCES

RACKAUCKAS The Winnower AUGUST 18 2018 7

https://juliaobserver.com/
https://jump.readthedocs.io/en/latest/
https://github.com/JuliaMath/IterativeSolvers.jl
https://github.com/Jutho/LinearMaps.jl

(and a growing number) of methods to choose from. This library also supported complex and
arbitrary precision numbers. In case you were wondering, there does exist PETSc.jl is a binding to
the infamous PETSc library, and it is compatible with MPI.

3. Differential equations. I've already discussed the feature set of DifferentialEquations.jl.
4. Autodifferentiation. With ForwardDiff.jl and its operator overloading approach, pretty much any Julia

code can use forward-mode autodifferentiation without any modifications, including the Base library.
This means there's almost no reason to use numerical differentiation of any pure-Julia code!
Reverse-mode autodifferentiation exists as well, but I'll leave a note pointing to the future
Cassette.jl.

I'm not an image processing guy but Images.jl is a large library developed by Tim Holy which must
have some unique points. A major contributor to Julia is Steven Johnson, the creator of FFTW (and
NLopt which has a Julia binding), the widely used FFT library, is a big Julia contributor and there has
been discussions about building a generic FFT library in Julia. In addition, many applied
mathematicians are pointing to mixed-precision algorithms as a big possibility for increasing the
performance of scientific applications, and Julia's strong control over types and specialization on types
is perfect for handling such algorithms.

The main thing is that, if we only talk about "Python does this, does Julia do _____?", then we can only
talk about speed. We have lots of unique developments already, so we should change the
conversation to highlight the things that packages in Julia can do that other packages cannot.

PACKAGE DISTRIBUTIONS AND BRANDING

Another thing I think we should be doing is bundling together packages as distributions. We somewhat
do this with the organizations (JuliaStats, JuliaOpt, etc.), but it's not the same as having a single
cohesive documentation. People know and respect SciPy. It's a hodgepodge of different things, but
you know who's going to look at your bug reports and you've other parts of SciPy and that's why over
time you respect it. It's very hard to get that kind of respect for a lone 5 star github package. I think
cohesive documentation for orgs and metapackages, much like I have done with
DifferentialEquations.jl is required in order to get big "mainstream" packages that users can know and
trust.

"USER"-FOCUSED TUTORIALS

I think Julia can become big since it gives package developers so many tools to make big performant
package ecosystems with ease. But this has made most people in the community focused on talking to
other "developers". We should reach out to "users" with simple examples and tutorials, and understand
that most people don't want to contribute to a package or anything like that, but really just want to add
a package and use a function to spit out a plot as fast as possible. For the next wave of Julia users, we
should show should how the package ecosystem enables this kind of usage, and that's how Julia will
grow.

I believe that we should target teaching resources directly to them, similar to what's seen in other
languages. I see workshops for "learn how to do regression in R!", "learn how to build websites with
Shiny!", "learn how to use Pandas!", but for Julia I only seem to see "let's learn Julia in depth: how to
write fast code and the type system". We should instead run workshops directly on Optim, JuMP,
DifferentialEquations, etc. at various universities where we are already "teaching Julia", and have it
setup as "direct to skill" for specific disciplines instead of teaching fancy language-level features.
Although it's hard because I too am a purist in "learn the language and you can do it all!", I think we
need to reach out more to those who only want to do a very specific thing, and train them in Julia for
psychology research, Julia for climate models, etc. And honestly, I can't think off of the top of my head
a good tutorial that says "here's how to do scientific computing in Julia", and works through some
specific issues and skills that piece together a few important libraries. We need to write some
resources along these lines.

At least, that's what I think. Feel free to agree/disagree in the comments below.

I LIKE JULIA BECAUSE IT SCALES AND IS PRODUCTIVE: SOME INSIGHTS FROM A JULIA DEVELOPER :
COMPUTER SCIENCES

RACKAUCKAS The Winnower AUGUST 18 2018 8

http://www.stochasticlifestyle.com/comparison-differential-equation-solver-suites-matlab-r-julia-python-c-fortran/
https://github.com/JuliaDiff/ForwardDiff.jl
https://www.youtube.com/watch?v=SXJ0ZfawzxA
https://juliaimages.github.io/latest/index.html
http://www.fftw.org/
https://nlopt.readthedocs.io/en/latest/
https://github.com/JuliaOpt/NLopt.jl
https://nickhigham.wordpress.com/2015/10/20/the-rise-of-mixed-precision-arithmetic/
http://docs.juliadiffeq.org/latest/

	I Like Julia Because It Scales and Is Productive: Some Insights From A Julia Developer
	CORRESPONDENCE:
	DATE RECEIVED:
	DOI:
	QUICK SUMMARY
	ARCHIVED:
	CITATION:

	JULIA'S JIT IS NOT LIKE OTHER JITS, AND IT HELPS PACKAGE DEVELOPMENT
	YOU WILL SEE THE MOST BENEFITS IN PACKAGE DEVELOPMENT
	FAST MULTIPARADIGMS MAKES MAINTENANCE EASIER
	THERE IS BEAUTY IN USING THE FULL LANGUAGE
	GPUS AND PARALLELISM IS STRAIGHTFORWARD AND GENERIC
	SUMMARY: JULIA IS GREAT FOR PACKAGE DEVELOPMENT, BUT USERS JUST SEE PACKAGES
	MY RECOMMENDATIONS
	PACKAGE ACCESSIBILITY AND DISCOVERABILITY
	PACKAGE UNIQUENESS
	PACKAGE DISTRIBUTIONS AND BRANDING
	"USER"-FOCUSED TUTORIALS

