
P
os
te
d
on

17
A
p
r
20
23

—
T
h
e
co
p
y
ri
gh

t
h
ol
d
er

is
th
e
au

th
or
/f
u
n
d
er
.
A
ll
ri
gh

ts
re
se
rv
ed
.
N
o
re
u
se

w
it
h
ou

t
p
er
m
is
si
on

.
—

h
tt
p
s:
//
d
oi
.o
rg
/1
0.
15
20
0/
w
in
n
.1
53
45
9.
99
00
3
—

T
h
is

a
p
re
p
ri
n
t
a
n
d
h
as

n
ot

b
ee
n
p
ee
r
re
v
ie
w
ed
.
D
a
ta

m
ay

b
e
p
re
li
m
in
a
ry
.

Optimal Number of Workers for Parallel Julia

Christopher Rackauckas1

1Affiliation not available

April 17, 2023

1



READ REVIEWS

WRITE A REVIEW

CORRESPONDENCE:
me@chrisrackauckas.com

DATE RECEIVED:
August 18, 2018

DOI:
10.15200/winn.153459.99003

ARCHIVED:
August 18, 2018

CITATION:
Christopher Rackauckas,
Optimal Number of Workers for
Parallel Julia, The Winnower
5:e153459.99003 , 2018 , DOI:
10.15200/winn.153459.99003

© Rackauckas This article is
distributed under the terms of
the Creative Commons
Attribution 4.0 International
License, which permits
unrestricted use, distribution,
and redistribution in any
medium, provided that the
original author and source are
credited. 

How many workers do you choose when running a parallel job in Julia? The answer is easy right? The
number of physical cores. We always default to that number. For my Core i7 4770K, that means it's 4,
not 8 since that would include the hyperthreads. On my FX8350, there are 8 cores, but only 4 floating-
point units (FPUs) which do the math, so in mathematical projects, I should use 4, right? I want to
demonstrate that it's not that simple.

WHERE THE INTUITION COMES FROM

Most of the time when doing scientific computing you are doing parallel programming without even
knowing it. This is because a lot of vectorized operations are "implicitly paralleled", meaning that they
are multi-threaded behind the scenes to make everything faster. In other languages like Python,
MATLAB, and R, this is also the case. Fire up MATLAB and run

A = randn(10000,10000)
B = randn(10000,10000)
A.*B
and you will see that all of your cores are used. Threads are a recent introduction to Julia, and so in
version 0.5 this will also be the case.

Another large place where implicit parallelization comes up is in linear algebra. When one uses a
matrix multiplication, it is almost surely calling an underlying program which is an implementation of
BLAS. BLAS (Basic Linear Algebra Subroutines) is aptly named just a set of functions for solving linear
algebra problems. These are written in either C or Fortran and are heavily optimized. They are well-
studied and many smart people have meticulously crafted "perfect code" which minimizes cache
misses and all of that other low level stuff, all to make this very common operation run smoothly.

Because BLAS (and LINPACK, Linear Algebra Package, for other linear algebra routines) is so
optimized, people say you should always make sure that it knows exactly how many "real" processors
it has to work with. So in my case, with a Core i7 with 4 physical cores and 4 from hyperthreading,
forget the hyperthreading and thus there are 4. With the FX8350, there are only 4 processors for doing
math, so 4 threads. Check to make sure this is best.

WHAT ABOUT FOR YOUR CODE?

Most likely this does not apply to your code. You didn't carefully manage all of your allocations and tell
the compiler what needs to be cached etc. You just wrote some beautiful Julia code. So how many
workers do you choose?

Let's take my case. I have 4 real cores, do I choose 4? Or do I make 3 workers to allow for 1 to
"command" the others freely? Or do I make 7/8 due to hyperthreading?

COMPUTER SCIENCES



Optimal Number of Workers for Parallel Julia
CHRISTOPHER RACKAUCKAS

�

✎

RACKAUCKAS The Winnower AUGUST 18 2018 1

https://thewinnower.com/topics/computer-sciences
https://thewinnower.com/papers/9321-optimal-number-of-workers-for-parallel-julia#submit
https://thewinnower.com/papers/9321-optimal-number-of-workers-for-parallel-julia#submit
mailto:me@chrisrackauckas.com
https://dx.doi.org/10.15200/winn.153459.99003
https://creativecommons.org/licenses/by/4.0/
http://www.stochasticlifestyle.com/wp-content/uploads/2016/03/ExecutionTimeVsWorkers.svg


I decided to test this out on a non-trivial example. I am not going to share all of the code (I am
submitting it as part of a manuscript soon), but the basic idea is that it is a high-order adaptive solver
for stochastic differential equations. The code sets up the problem and then calls pmap to do a Monte
Carlo simulation and solve the equation 1000 times in parallel. The code is mostly math, but there is a
slight twist where some values are stored on stacks (very lightweight datastructure). To make sure I
could trust the times, I ran the code 1000 times and took the average, min, and max times.

So in this case, what was best? The results speak for themselves.

Average wall times vs Number of Worker Processes, 1000 iterations
Number of Workers Average Wall Time Max Wall Time Min Wall Time

1 62.8732 64.3445 61.4971
3 25.749 26.6989 25.1143
4 22.4782 23.2046 21.8322
7 19.7411 20.2904 19.1305
8 19.0709 20.1682 18.5846
9 18.3677 18.9592 17.6
10 18.1857 18.9801 17.6823
11 18.1267 18.7089 17.5099
12 17.9848 18.5083 17.5529
13 17.8873 18.4358 17.3664
14 17.4543 17.9513 16.9258
15 16.5952 17.2566 16.1435
16 17.5426 18.4232 16.2633
17 16.927 17.5298 16.4492
Note there are two "1000"s here. I ran the Monte Carlo simulation (each solving the SDE 1000 times
itself) 1000 times. I plotted the mean, max, and min times it took to solve the simulation. From the plot
it's very clear that the minimum exists somewhere around 15. 15!

What's going on? My guess is that this is because of the time that's not spent on the actual
mathematics. Sometimes there are things performing logic, checking if statements, allocating new
memory as the stacks grow bigger, etc. Although it is a math problem, there is more than just the math
in this problem! Thus it seems the scheduler is able to effectively let the processes compete and more
fully utilize the CPU by pushing the jobs around. This can only go so far: if you have too many workers,
then you start to get cache misses and then the computational time starts to increase. Indeed, at 10
workers I could already see signs of problems in the resource manager.

OPTIMAL NUMBER OF WORKERS FOR PARALLEL JULIA : COMPUTER SCIENCES

RACKAUCKAS The Winnower AUGUST 18 2018 2



Overload at 10 Workers as
seen in Window's Resource
Manager

However, allowing one process to start re-allocating memory but causing a cache miss (or whatever it's
doing) seems to be a good tradeoff at low levels. Thus for this code the optimal number of workers is
far above the number of physical cores.

MORAL OF THE STORY

OPTIMAL NUMBER OF WORKERS FOR PARALLEL JULIA : COMPUTER SCIENCES

RACKAUCKAS The Winnower AUGUST 18 2018 3

https://i2.wp.com/www.stochasticlifestyle.com/wp-content/uploads/2016/03/overload-at-10.png


The moral is, test your code. If your code is REALLY efficient, then sure, making sure you don't mess
with your perfect code is optimal. If your code isn't optimal (i.e. it's just some Julia code that is pretty
good and you want to parallelize it), try some higher numbers of workers. You may be shocked what
happens. In this case, the compute time dropped more than 30% by overloading the number of
workers.

OPTIMAL NUMBER OF WORKERS FOR PARALLEL JULIA : COMPUTER SCIENCES

RACKAUCKAS The Winnower AUGUST 18 2018 4


	Optimal Number of Workers for Parallel Julia
	CORRESPONDENCE:
	DATE RECEIVED:
	WHERE THE INTUITION COMES FROM
	DOI:
	ARCHIVED:
	CITATION:

	WHAT ABOUT FOR YOUR CODE?
	MORAL OF THE STORY


