A Quantile Generalised Additive Approach for Compound Climate Extremes: Pan-Atlantic Extremes as a Case Study

Leonardo Olivetti¹, Gabriele Messori¹, and Shaobo Jin¹

¹Uppsala University

April 16, 2023

Abstract

We present an application of quantile generalised additive models (QGAMs) to study spatially compounding climate extremes, namely extremes that occur (near-) simultaneously in geographically remote regions. We take as an example wintertime cold spells in North America and co-occurring wet or windy extremes in Western Europe, which we collectively term Pan-Atlantic compound extremes. QGAMs are largely novel in climate science applications and present a number of key advantages over conventional statistical models of weather extremes. Specifically, they remove the need for a direct identification and parametrisation of the extremes themselves, since they model all quantiles of the distributions of interest. They thus make use of all information available, and not only of a small number of extreme values. Moreover, they do not require any a priori knowledge of the functional relationship between the predictors and the dependent variable. Here, we use QGAMs to both characterise the co-occurrence statistics and investigate the role of possible dynamical drivers of the Pan-Atlantic compound extremes. We find that cold spells in North America are a useful predictor of subsequent wet or windy extremes in Western Europe, and that QGAMs can predict those extremes more accurately than conventional peak-over-threshold models.
A Quantile Generalised Additive Approach for Compound Climate Extremes: Pan-Atlantic Extremes as a Case Study

Leonardo Olivetti¹,², Gabriele Messori¹,²,³,⁴, Shaobo Jin⁵,⁶

¹Department of Earth Sciences, Uppsala University
²Centre of Natural Hazards and Disaster Science, Uppsala University
³Department of Meteorology, Stockholm University
⁴Bolin Centre for Climate Research, Stockholm University
⁵Department of Statistics, Uppsala University
⁶Department of Mathematics, Uppsala University

Key Points:

• Quantile general additive models (QGAMs) can model the relationship between compound climate extremes flexibly and robustly.
• North American cold spells are a useful predictor of subsequent wet or windy extremes in Western Europe.
• QGAMs can predict those extremes more accurately than conventional peak-over-threshold models.

Corresponding author: Leonardo Olivetti, leonardo.olivetti@geo.uu.se
Abstract
We present an application of quantile generalised additive models (QGAMs) to study spatially compounding climate extremes, namely extremes that occur (near-) simultaneously in geographically remote regions. We take as an example wintertime cold spells in North America and co-occurring wet or windy extremes in Western Europe, which we collectively term Pan-Atlantic compound extremes. QGAMS are largely novel in climate science applications and present a number of key advantages over conventional statistical models of weather extremes. Specifically, they remove the need for a direct identification and parametrisation of the extremes themselves, since they model all quantiles of the distributions of interest. They thus make use of all information available, and not only of a small number of extreme values. Moreover, they do not require any a priori knowledge of the functional relationship between the predictors and the dependent variable. Here, we use QGAMs to both characterise the co-occurrence statistics and investigate the role of possible dynamical drivers of the Pan-Atlantic compound extremes. We find that cold spells in North America are a useful predictor of subsequent wet or windy extremes in Western Europe, and that QGAMs can predict those extremes more accurately than conventional peak-over-threshold models.

Plain Language Summary
In this paper we propose a new data-driven method to study climate extremes occurring simultaneously in multiple, possibly remote, locations. Such extremes can pose a greater threat to human societies than single, isolated extremes, as their effects may exacerbate each other and lead to correlated losses. The method we suggest requires fewer assumptions than conventional extreme value statistical techniques, and can help us to identify previously unknown relationships between the extremes themselves and their possible drivers. We exemplify its use by studying the co-occurrence of periods of unusually cold weather in North America and uncommonly strong wind and abundant precipitation in Western Europe. We find that the new method has better predictive power for the European extremes than conventional statistical approaches. Furthermore, we confirm the results of previous studies suggesting an association between the wintertime extremes in North America and Western Europe.

1 Introduction
The statistical properties of climate extremes have been extensively studied using parametric approaches to extreme value theory (EVT; e.g. Fisher & Tippett, 1928; Gumbel, 1941; Davison & Smith, 1990; Coles, 2001; Mares et al., 2009; Elvidge & Angling, 2018; French et al., 2019), and since its inception, parametric EVT regression has been successfully used to investigate extreme event drivers (Gumbel, 1958; Pickands, 1975; Coles, 2001; Mares et al., 2009; do Nascimento et al., 2021). Parametric EVT aims to identify and characterise extreme observations by identifying their underlying distribution which, in turn, provides valuable information on the expected frequency and intensity of the extremes. Two fundamental approaches lie at the core of classic parametric EVT: the block maxima approach (BM) (Fisher & Tippett, 1928; Gumbel, 1958) and the peak over threshold (POT) approach (Pickands, 1975; Smith, 1984; Davison & Smith, 1990).

The BM approach defines \(k \) time periods (blocks) of equal length and extracts the \(n \) largest independent observations from each block (block maxima). According to the Fisher–Tippett–Gnedenko theorem (Fisher & Tippett, 1928), properly normalised block maxima converge to a distribution belonging to the generalised extreme value family of distributions (GEV). A challenge of the BM approach lies in finding a suitable size for the blocks (Ferreira & Haan, 2015). Small blocks may lead to the identification of some spurious extremes, whereas large blocks may ignore some extremes and slow down the
convergence to the GEV family of distributions. Furthermore, given that the Fisher–Tippett–Gnedenko
theorem is an asymptotic theorem, there is no guarantee that the appropriately normalised
block maxima belong to the GEV family of distributions when the sample size is lim-
ited.

The POT approach addresses these challenges by selecting a high threshold u, and
defining as extremes observations above that threshold (the maxima, μ). The excesses
follow approximately a generalised Pareto distribution (GPD), in accordance with Pickands’
threeonse (Pickands, 1975). The challenge in this case is to define an appropriate thresh-
old: sufficiently high to isolate extremes yet sufficiently low to ensure an appropriate sam-
ple size. Technical details of the BM and POT approaches are provided in the Support-
ing Information text S1.

While being a widely-used and versatile tool, implementing parametric EVT for
studying climate extremes presents some challenges. The first is finding a suitable em-
pirical definition for the extremes, as discussed above and also highlighted by Passow and
Donner (2019). Second, using parametric EVT in a regression context to study extreme
event drivers requires some a priori knowledge or assumption of the functional relation-
ship between the drivers and the extremes. Defining this relationship a priori is often
challenging and may result in simplistic or unrealistic assumptions about the relation-
ship between the two. Third, parametric EVT does not make optimal use of all the sta-
tistical information available, as it ignores all that is not an extreme (see also the dis-
cussion in Passow & Donner, 2019).

The literature offers extensions to the classic parametric EVT theory (Lucarini et
al., 2016) as well as a number of non-parametric alternatives (Koenker & Hallock, 2001;
Yee, 2015; Fasiolo et al., 2021). The main appeal of non-parametric techniques, such as
quantile-based methods, is that they do not require an empirical definition of the extremes
in the same way as parametric EVT does. Furthermore, they make use of all statisti-
cal information available, rather than just the extreme data. This is particularly rele-
vant when the interest lies in extreme events with a relatively short return period (e.g.
windstorms recurring every 6 months or 1 year at a given location), for which the con-
vergence of the GPD parameters may first be observed at quantiles larger than the one
of interest.

Here, we apply quantile generalised additive models (QGAMs, Fasiolo et al., 2021;
Koenker, 2011) to the study of spatially compounding climate extremes and their drivers,
namely extremes that occur (near-)simultaneously in geographically remote regions. The
synchronised – or compound – occurrence of remote extremes is often associated with
greater impacts than those of the corresponding individual extremes, for example expos-
ing actors with international coverage to correlated losses (Mills, 2005) and imperilling
global food security (Kornhuber et al., 2020). QGAMs are a non-parametric approach
which is largely novel in the context of climate science. They are a recent extension to
generalised additive models, bearing the promise of addressing the aforementioned three
key limitations of parametric EVT. We benchmark QGAMs against other parametric
and non-parametric approaches.

To illustrate the methodology, we consider the repeated occurrence of wintertime
cold spells in Eastern North America and wet or windy extremes in Western Europe, which
we collectively term Pan-Atlantic compound extremes. The repeated occurrence of these
extremes in recent winters (e.g. Coumou & Rahmstorf, 2012; Lee et al., 2015; Trenary
et al., 2015; Dodet et al., 2019; Wild et al., 2015) has led to hypothesise a connection
between the two sets of extremes (Messori et al., 2016; De Luca et al., 2020; Leeding et
al., 2023; Messori & Faranda, 2023). Nonetheless, a systematic statistical characterisa-
tion of such connection has largely been limited to simple co-occurrence statistics. The
aim here is to provide a proof-of-concept for the use of QGAMs in the study of compound
climate extremes. We therefore seek to evaluate the performance of QGAMs relative to
alternative statistical models by applying them to a previously studied set of spatially
compounding climate extremes, as opposed to investigating novel extreme occurrences
and related large-scale atmospheric drivers. We further highlight that we do not aim to
use the regression models we present as self-standing forecasting tools. In other words, we do not aim to forecast extreme event occurrences using only information from several days before the extremes – as one would do in a conventional forecasting exercise. Rather, we see these models as useful tools to robustly quantify the statistical connections between geographically remote extremes and investigate the roles of different potential dynamical drivers.

The remainder of this paper is structured as follows: Section 2 provides a short introduction to parametric EVT regression, and introduces quantile-based non-parametric approaches as an alternative, including QGAMs. Section 3 defines the scope of this paper, and discusses practical concerns related to variable selection and model formulation. Section 4 compares the methods presented in previous sections, by studying the Pan-Atlantic compound extremes and their possible dynamical drivers, considering specifically the North Atlantic jet stream and the North Atlantic Oscillation (NAO). Section 5 concludes the paper by providing a short summary of the findings and discussing the strengths and limitations of QGAM applications to study climate extremes.

2 Extreme Value Statistical Models

This section presents some parametric and non-parametric approaches to EVT regression and discusses how their performance can be compared in practice.

2.1 Parametric EVT regression

The relationship between the extremes and their likely precursors can be described parametrically through a generalised linear model, where the expected value of a BM or POT extreme at a time \(t \), \(E(M_t) \) is a function of previous values of itself, \(M_{t-k} \) and other factors likely to affect its strength, \(X_{t-k} \). Then:

\[
E(M_t|M_{t-k}, X_{t-k}) = M_{t-k}\phi + X_{t-k}\beta. \tag{1}
\]

Since the extremes are selected through the BM or the POT approach, parametric EVT regression largely shares the same strengths and limitations of these approaches.

2.2 Non-parametric EVT regression

Non-parametric models are a broad class of methods which do not rely on a predetermined functional relationship between the outcome and the predictor, but estimate it empirically (Härdle, 1990). Quantile-based models are a subset of non-parametric models which are particularly suitable to the analysis of extremes, as they can be used to estimate values in the tails of the distribution. A quantile \(Q(\tau) \) is defined as the inverse of the cumulative distribution function, uniquely identifying the value of the cumulative distribution function corresponding to probability \(\tau \).

2.2.1 Quantile Regression

The linear relationship between a conditional quantile of an output and a predictor can be estimated non-parametrically through quantile regression (Koenker & Hallock, 2001; Koenker & Bassett, 1978). Quantile regression aims to estimate the conditional quantile of the dependent variable \(Q_{Y|X}(\tau) \) as a function of the regressors \(X \), so that:

\[
Q_{Y|X}(\tau) = X\beta_\tau \tag{2}
\]

It solves the following minimisation problem:
\[
\min E\{\rho_r(Y - X^*\beta)\},
\]

where \(\rho_r = (\tau - 1)zI(z < 0) + \tau zI(z \geq 0)\) is the so-called "pinball loss", punishing predictions which are further away from the quantile of interest. Here, \(z\) is the residual and \(\tau\) the quantile of interest.

By estimating the effect of the regressors on an ensemble of extreme quantiles, it is possible to draw some conclusions on how the regressors affect the intensity of the extremes. This is done without relying on the large sample asymptotics employed by parametric EVT, thus without the need of reducing sample size.

The main limitation of quantile regression is that it is a linear model, ignoring all possible non-linear effects of the regressors on the quantile of interest.

2.2.2 Quantile Generalised Additive Models

Generalised additive models (GAMs, Wood, 2017; Hastie & Tibshirani, 1986) are a broad family of non-parametric models describing the dependent variable as an additive function of unknown smooths of the regressors. A smooth function is a function which is derivable up to certain order at each point throughout its domain. GAMs can be described as follows:

\[
g(E(Y)) = \beta_0 + f_1(X_1) + f_2(X_2) + ... + f_i(X_i),
\]

where \(E(Y)\) is the expected value of the outcome, \(g()\) is the link function, \(\beta_0\) is an intercept, and \(f_1(X_1) + f_2(X_2) + ... + f_i(X_i)\) are smooth functions of the predictors.

GAMs do not require determining the functional relationship between the outcome and the predictors a priori. This is instead determined empirically, through a data-driven process testing a large number of possible combinations. First, a set of bases is chosen for the predictors, so that the original covariates \(X_1, X_2, ..., X_i\) are embedded into a larger feature space \(X^*\) including higher order terms of the original covariates. Then, the best model is chosen out of the expanded feature space by minimising a loss function of choice, \(L(X^*)\), while penalising for excessive complexity. In the absence of a link function, a natural choice of loss function is the quadratic loss, so the best model is chosen according to the following minimisation:

\[
\min E\{(Y - X^*\beta)^2 + \lambda J\},
\]

where \((Y - X^*\beta)^2\) is the sum of squared residuals, \(\lambda\) is a smoothing parameter and \(J\) is a penalty term. A common penalty term is \(J = \int f(x)^2dx\), with other forms of penalty also being possible (James et al., 2022). \(J\) is larger when the function becomes wigglier, punishing excessive functional complexity. Choosing larger values of the smoothing parameter \(\lambda\) pushes the model towards a simpler functional form, so that \(\lambda \to \infty\) makes GAM equivalent to linear regression. The value of \(\lambda\) is usually determined empirically, through generalised cross-validation or restricted maximum likelihood. For technical details, the reader is referred to Wood (2017).

Classic GAMs as expressed in equation 4 model the expected value of the outcome and not of the maxima, making them unsuitable for extreme value analysis. One approach could be to model the expected value of a series of independent and identically distributed maxima \((M_1, M_2, ..., M_N)\), by selecting the maxima through a BM or a POT approach; however, this reintroduces into the model the limitations related to those approaches.

An alternative approach is to model a conditional quantile of the outcome as a function of the predictors, as in quantile regression: this approach goes under the name of quantile generalised additive model (QGAM).
QGAMs are a recent extension of GAMs and quantile regression, which model a chosen conditional quantile of interest as a sum of unknown smooth functions of the regressors (Fasiolo et al., 2021). This builds on earlier theoretical work from Koenker (2011). QGAMs can be expressed as follows:

\[Q_{Y|X}(\tau) = f_1(X_1) + f_2(X_2) + \ldots + f_i(X_i), \]

where \(Q_{Y|X}(\tau) \) is a conditional quantile of choice of the dependent variable. They aim to minimise a loss function similar to the one described by equation 3,

\[\min E\{\rho_\tau^*(Y - X^* \beta)\}, \]

where \(\rho_\tau^* \) is defined as:

\[\rho_\tau^* = (\tau - 1)\frac{z}{\sigma}I(z < 0) + \lambda \log(1 + e^{\frac{z}{\lambda}}) \]

\(\rho_\tau^* \) is the extended log-f loss, which, similarly to the pinball loss, punishes predictions which are further away from the quantile of interest. \(\sigma > 0 \) is a scale parameter and \(\lambda > 0 \) is a penalty term, meant to prevent excessive functional complexity. As \(\lambda \) approaches 0, \(\rho_\tau^* \) becomes equivalent to \(\rho_\tau \), the pinball loss used in quantile regression (Fasiolo et al., 2021).

Similarly to quantile regression, QGAMs do not make any assumptions on the distribution of the extremes, and only require defining a set of quantiles of interest to study the effect of the regressors on the output. Furthermore, similarly to GAMs, they model the relationship between the output and the regressors empirically, without requiring any previous knowledge of the functional relationship between the two.

A possible limitation of GAMs and QGAMs is that they are additive in nature, and even though interactions between terms may be modelled, every interaction has a large effect on the computational burden of the model, thus limiting de facto the number of regressors which may be added to the model.

2.3 Benchmarking EVT models

In order to compare the performance of the EVT models presented so far, we apply them to full-complexity climate data. We specifically consider the association between cold spells in North America and wet or windy extremes in Western Europe. Following previous literature looking at these extremes (Messori et al., 2016; De Luca et al., 2020; Leeding et al., 2023; Messori & Faranda, 2023), we consider surface extremes occurring one to a few times per year (e.g. 1% - 5% extreme quantiles), rather than extreme events with multiannual return times. A useful statistical model should be able to verify whether any relation between surface temperature in North America and surface extremes in Western Europe is present, and, if this is the case, make use of this and additional information on the state of the North Atlantic atmospheric circulation to improve the prediction of said extremes. In particular, we identify three key characteristics of a useful EVT model in this context:

1. It should provide a spatially resolved prediction of extremes in Western Europe, which is more accurate than competing models, given that similar information is provided.

2. It should provide a consistent estimate of the spatially resolved return levels of the extremes in Western Europe, where consistency is the defined as the property of an estimator whose probability of being arbitrarily close to the true value tends to one for increasing sample size.
3. It should improve its performance whenever relevant information is added to the model. The following steps are implemented to assess the performance of the models:

- For objective 1, we compute and compare the pseudo R^2 quantile regression goodness of fit introduced by Koenker and Machado (1999). This is defined as:

\[
R^2_{\text{pseudo}} = 1 - \frac{L_{\text{complete}}}{L_{\text{baseline}}},
\]

where L_{complete} is the pinball loss of the model of interest, and L_{baseline} is the pinball loss of a model using the unconditional quantile $Q_\tau(Y)$ of the anomalies at a given grid point as a fixed prediction for all observations at that same grid point.

- For objective 2, we define \hat{PO} as the percentage of overpredictions in the test sample. An unbiased EVT model should overpredict the value of the output a percentage of times corresponding to the probability τ of the target conditional quantile $Q_{Y|X}(\tau)$, so that $\hat{PO} = \tau$. An estimate of the bias of the model is then given by the absolute difference between the percentage of overpredictions \hat{PO} and τ, so that

\[
\tilde{\text{Bias}} = |\hat{PO} - \tau|
\]

- For objective 3, we first use the models to make spatially resolved predictions of extreme wind or precipitation events in Western Europe based on the latitude and the longitude of each location. Then, we add some information on the upstream large-scale atmospheric circulation and compare the results. A model fulfilling objective 3 is expected to progressively improve its performance, given that more information is provided and that this information has been identified as relevant to the extremes in previous studies (Messori et al., 2016; Leeding et al., 2023).

Holdout cross-validation is performed by splitting the dataset into three parts: a training set, a validation set and a test set, containing approximately 50%, 25% and 25% of the available observations, respectively. The random split uses seasonal data blocks (we focus on the winter season, see Sect. 3) to minimise information leakage between the different sets. The models are trained using the training set, with feature selection aided by the use of the validation set in addition to previous research. All metrics of model performance are computed based on the test set.

3 Defining Pan-Atlantic Compound Extremes and Prediction Models

Atmospheric data are taken from the ERA 5 global reanalysis (Hersbach et al., 2020) with a daily time resolution and a 0.5° horizontal resolution. We consider the period November 1959-January 2022, and the months of November, December, January and February (NDJF). The daily NAO values, are taken from the NOAA online archive (NOAA/National Weather Service, 2022). Cold spells in North America are defined as days with 2m temperature (t2m) anomalies relative to the daily climatology, area-averaged over 30° - 45° N, 100° - 70° W, below the 5th quantile of the distribution. The daily climatology is obtained by applying a 7 days running mean and then averaging over each calendar day over the full time period. The domain of the North American cold spells follows Messori et al. (2016) and is illustrated in Figure 1, together with the t2m anomalies associated with the selected cold spells. To decluster the extremes, we require that at least five days elapse between separate cold spells. Whenever several days within a five-day period meet the criteria for being classified as a cold spell, only the first day is selected. The choice of selecting the first day rather than the coldest aims to prevent the skill of the statistical models from being affected by the duration of the cold spells.
Figure 1. Domain of North American cold spells and mean t2m anomaly during cold spells. Darker shades are associated with larger negative t2m anomalies.

For Western Europe, we focus on daily mean 10m wind speed and daily precipitation over Iberia and Western France: regions that Messori et al. (2016) and Messori and Faranda (2023) highlighted as experiencing large anomalies following the North American cold spells. We test the statistical model predictions on the 95th and 99th quantiles of the local distributions of these two variables. These correspond to return periods of approximately six times and once per winter season, respectively.

Based on previous work, we consider the characteristics of the Polar – or eddy-driven – jet stream over the North Atlantic region as a possible predictor of the European extremes (Messori et al., 2016; Leeding et al., 2023). Jet stream speed is defined as the largest zonally averaged zonal wind anomaly from a seven-day smoothed climatology at 250 hPa over a North Atlantic domain spanning 30° - 75° N, 70° - 5° W. The location of the jet is given by the latitude displaying the largest zonal mean zonal wind anomaly as defined above. The choice of time lag of temperature in North America and zonal wind over the North Atlantic to be included in the models has been aided by cross-validation. The lag is relative to the prediction date for European extremes. Only one lag for each variable is included in the models in order to avoid multicollinearity issues, as both t2m in North America and the above jet indices display a high degree of autocorrelation.

We provide the statistical models with three levels of information for predicting t2m and daily mean 10m wind speed in Western Europe:

- Basic models, making predictions as a function of time, latitude, longitude, and a training-set based seasonal climatology, only.
- Cold spell models, where t2m in North America from two days prior to the prediction date is added to the regressors.
- Cold spell and jet stream models, where the NAO and strength and location of the Polar jet from one day prior are also added to the regressors. The NAO values are included here as a way to control for possible confounders affecting North American surface temperatures and surface weather in Western Europe, which might otherwise lead to biased estimates of the association between the two.

For each information level, we build three models: a QGAM, a linear quantile regression (QREG) and a POT model. Therefore, a total of nine models is estimated for each target variable in Western Europe. The models’ performance on the test data is compared as outlined in Subsection 2.3. Technical details including the exact formulation of each model can be found in Supporting Information text S2.
4 Non-parametric EVT in practice: a QGAM approach to the study of Pan-Atlantic Compound Extremes

This section applies the models presented in Sections 2 and 3 to study Pan-Atlantic compound extremes and their drivers. It aims to support previous analyses of the connection between cold spells in North America and wet or windy extremes in Europe (Messori et al., 2016; De Luca et al., 2020; Leeding et al., 2023; Messori & Faranda, 2023) through robust statistical estimation, and verify whether QGAMs outperform alternative statistical models.

A first overview of the relation between cold spells in North America and wet or windy extremes in Western Europe can be obtained by means of a composite analysis (Fig. 2). There is a heightened frequency of positive anomalies in 10m wind speed and precipitation in Western Europe in conjunction with cold spells in North America (Fig. 2a, b, c), with the largest effect in Western Europe being observed immediately after the cold spell in North America. This is particularly true for middle-sized to large positive anomalies, pointing to the possibility of near-simultaneous extremes in the two regions. Fig. 2d, e, f corroborate this hypothesis, by showing how the mean, the 95th and the 99th quantiles of daily mean 10m wind speed and daily precipitation in Western Europe are significantly higher than usual in the aftermath of North American cold spells (Fig. 2d-f).

Figure 2. **a-c:** Kernel density estimate of daily mean 10m wind speed (left) and daily precipitation anomalies (right) in Western Europe: climatological distribution (blue) and distribution of events two days before (a), the same day (b), and two days after (c) a cold spell in North America (red). Mean (d-e), 95th quantile (f-g) and 99th quantile of (h-i) of daily mean 10m wind speed (left) and daily precipitation anomalies (right) in Western Europe 15 days before and after a cold spell in North America. The solid black lines are the overall mean/quantile, while the dashed lines mark approximate 95% significance levels, computed by means of a Monte Carlo permutation test with 20000 replications.
We next test whether QGAMs and the other models introduced in Section 2 can leverage this association to make statistical forecasts of extreme events in Europe (95th and 99th quantiles of daily mean 10m wind speed and daily precipitation at locations in Iberia and Western France). We present the results for the three QGAM models described in Section 3 (basic, cold spell and cold spell and jet stream), and compare their performance to the quantile regression and POT models.

QGAMs can identify the relation between t2m in North America and weather extremes in Western Europe. Figure 3 shows the partial effect of t2m in North America on near-surface weather in Western Europe, when holding all other variables included in the model constant. Lower temperatures in North America are significantly associated with higher values of the extreme quantiles and therefore more extreme weather events in Western Europe. This effect is at its strongest for temperature anomalies of two standard deviations below the mean, i.e. cold spells. In the model also including jet stream and NAO information (Fig. 3e-h), the effect of North American temperatures is weaker due to the fact that part of the effect is likely mediated by the jet and/or NAO.

Figure 4 shows the bias associated with the prediction of extreme quantiles of daily mean 10m wind speed in Western Europe through QGAMs. Ideally, the bias of our models should be held under $1-\tau$ for most grid points, since a model with bias greater than $1-\tau$ has a larger bias than a model providing a systematic underprediction. At the same time, zero bias is not an aim itself due to the variance-bias trade-off, and thus some bias is to be expected. Figure 4 suggests that QGAMs mostly have a bias lower than $1-\tau$ when predicting daily mean 10m wind speed for most grid points. The models predicting the 95th quantile may appear to perform better than those predicting the 99th quantile, but
this is mostly a question of scale, since the figure colourscale is always capped at 1-τ, which is lower for the 99th than for the 95th quantile.

Figure 4. Estimated bias of QGAMs in terms of absolute distance between the percentage of overpredictions (PO) and the theoretical quantile (τ). Estimation of 95th quantile of daily mean 10m wind. Basic model (a), model with information on t2m in North America at lag -2 days (b), model with same information as above plus jet stream and NAO information at lag -1 days (c).

d-f: As a-c, but for the 99th quantile of daily mean 10m wind speed. In each row, the colourscale is capped at 1-τ.
Similar conclusions can be drawn for daily precipitation extremes (Figure 5). The bias of the models at most grid points is acceptable, as it is well under the 1-σ threshold.

Figure 5. As Fig. 4 but for daily precipitation.

Figures 6 and 7 show the performance of QGAMs in terms of pseudo R^2. The pseudo R^2 can take any values between one and minus one, where one represents a perfect model and minus one the worst possible model. Here, a pseudo R^2 over zero indicates that the model is better than the seasonal climatology of the quantile of interest at the given grid point, whereas values under zero indicate that it performs worse than the seasonal climatology. Stippling is added to grid points with a pseudo R^2 lower than zero.

All QGAMs predicting extreme quantiles of daily mean 10m wind speed appear to gradually improve their performance as they are provided with more information on the upstream large-scale atmospheric state. Sizeable gains can be observed already when adding information on t2m to the models, so that cold spell models (Figures 6 b and e) are better than the seasonal climatology alone at most grid points. However, the largest gains occur at the last step, after the information on the state of the North Atlantic and the Polar jet is added. Figures 6 c and f show that cold spell and jet stream models are better than the seasonal climatology alone at all grid points apart from on the Pyrenees and some mountainous areas in South-Eastern Spain, where the difference between the two models is in any case small.
Figure 6. As Figure 4 but for pseudo R^2. Stippling indicates that the QGAM performs worse than the seasonal climatology of the quantile of interest.

The overall trend is similar for models predicting extreme quantiles of daily precipitation. All the models in Figure 7 show gradual improvements as more information is added, with the largest improvement occurring as above at the last step. This suggests that information on the state of the North Atlantic atmospheric circulation is key to the predictability of surface extremes in Western Europe following North American cold spells. The basic model is approximately equivalent to the seasonal climatology of the quantile, whereas the cold spell and jet stream models systematically outperform the seasonal quantile (and the base model) for both 10m wind speed and precipitation. Even in the case of precipitation, QGAMs perform poorly in some mountainous areas, suggesting that they may have difficulties in accounting for the effect of local orographic features.
Figure 7. As Figure 5 but for pseudo R\(^2\). Stippling indicates that the QGAM performs worse than the seasonal climatology of the quantile of interest.

Figure 8 and 9 compare the performance of QGAMs to conventional POT models. The same set of variables is used for the two models, and a new Pseudo R\(^2\) is computed using the POT models as baseline. A negative pseudo R\(^2\) at a given grid point is to be interpreted as POT models performing better for that grid point, whereas a positive pseudo R\(^2\) suggests that the QGAMs perform better.

Figure 8. As Figure 6, but using the linear POT model as baseline for the computation of the pseudo R\(^2\). Stippling indicates that the QGAM performs worse than the baseline model.
QGAMs become gradually better than POT models at most grid points as more information is added to the models, both when predicting daily mean 10m wind speed (Figure 8) and daily precipitation (Figure 9). This suggests that QGAMs are better than POT models at modelling the non-linear effects of upstream atmospheric factors on the surface extremes as a whole. However, some regional differences can be observed. In the case of wind, QGAMs are clearly superior for Western and Central Iberia, whereas the difference is smaller in Eastern Iberia and Western France. POT models outperform QGAMs in mountainous areas and in North-Western France. In the case of precipitation, QGAMs outperform POT models almost everywhere, with the exception of North-Western Iberia and the Pyrenees. The fact that the QGAMs struggle in mountainous areas is consistent with what found for the comparison with the seasonal climatology of the quantile (Figures 6 and 7).

Figure 9. As Figure 7, but using the linear POT model as baseline for the computation of the pseudo R^2. Stippling indicates that the QGAM performs worse than the baseline model.
Figures 10 and 11 display a comparison between QGAMs and QREG models. The comparison is performed similarly to the previous case, where in this case the QREG models are used as baseline for the Pseudo R² computation.

![Figure 10.](image)

Figure 10. As Figure 6, but using the quantile regression model as baseline for the computation of the pseudo R²

The difference between the two models is overall smaller in this case, with QREG models generally performing better for simpler models and QGAMs improving their performance relative to QREG models as more information is added (Figures 10 and 11). A difference between the models predicting daily mean 10m wind speed and those predicting daily precipitation is that in the first case QGAMs show significant improvements compared to QREG models only when information on both t2m in North America and the Polar jet stream and NAO are added to the model (Figure 10), whereas in the second case the trend is less clear, as QGAMs outperform QREG models at most locations already when information on t2m is added to the model (Figure 11). In the cold spell and jet stream models, QGAMs outperform QREG models in inland Iberia, perform similarly to QREG models on the coast in North-Western France, and are outperformed in the Pyrenees and other mountainous regions (Figures 10 c,f and 11 c,f). This difference appears to be consistent across output variable and quantile of choice.
Figure 11. As Figure 7, but using the quantile regression as baseline for the computation of the pseudo R^2

An overview of the overall performance of the cold spell and jet stream models in terms of Pseudo R^2 is given in Table 1. As suggested from previous figures, QGAMs perform overall better than conventional alternatives (corresponding to positive Pseudo R^2 values in the table 1) when both t2m and atmospheric circulation information is provided. This holds in all cases bar when estimating the 95th quantile of 10m wind speed, where QREG models perform approximately at the same level.

Table 1. Overall pseudo R^2 of cold spell and jet stream QGAMs used to forecast the 95th and 99th quantiles of daily mean 10m wind speed and daily precipitation compared to different baseline models.

<table>
<thead>
<tr>
<th>Variable</th>
<th>Baseline model</th>
<th>95th quantile</th>
<th>99th quantile</th>
</tr>
</thead>
<tbody>
<tr>
<td>Daily mean 10m wind speed</td>
<td>Quantile of seasonal climatology</td>
<td>0.0476</td>
<td>0.0495</td>
</tr>
<tr>
<td>Daily mean 10m wind speed</td>
<td>POT</td>
<td>0.0316</td>
<td>0.0353</td>
</tr>
<tr>
<td>Daily mean 10m wind speed</td>
<td>QREG</td>
<td>-0.0036</td>
<td>0.0085</td>
</tr>
<tr>
<td>Daily precipitation</td>
<td>Quantile of seasonal climatology</td>
<td>0.0982</td>
<td>0.0830</td>
</tr>
<tr>
<td>Daily precipitation</td>
<td>POT</td>
<td>0.0713</td>
<td>0.0518</td>
</tr>
<tr>
<td>Daily precipitation</td>
<td>QREG</td>
<td>0.0125</td>
<td>0.0155</td>
</tr>
</tbody>
</table>

In the supporting information (Figures S1-S8), we repeat the same analysis performed in this section while adding the previous lag of the variable of interest to the models. This is done to show how the comparison between models changes when we correct for the autocorrelation in the extremes. This autocorrelation is ignored here since the models do not make use of any information on the outcome variable of interest in Europe, except for the training set-based seasonal climatology. The trends observed in the main analysis largely hold even in the supporting materials, with the key difference being that QGAMs improve further in comparison to other models.
5 Discussion and Conclusions

This paper has introduced QGAMs (Fasiolo et al., 2021) as an alternative to conventional parametric methods for the analysis of spatially compounding climate extremes. Through a case study on pan-Atlantic cold spells in North America and wet or windy extremes in Europe, it has been shown that non-parametric quantile-based methods generally forecast near-surface weather extremes with a short return period more accurately than through a conventional POT approach (Tables 1 and S1). The difference between QGAMs and QREG models is relatively small, with QGAMs generally being superior when introducing information on the state of Polar jet and the North Atlantic atmosphere into the models (Figures 10 and 11 and Tables 1 and S1). This suggests that QGAMs may be recommended over other techniques when a larger number of drivers is explored. The advantage of QGAMs over alternative techniques widens when information on the autocorrelation of the extremes is added to the models (Figures S7 and S8).

Despite the overall superiority of QGAMs, some interesting regional differences could be observed, with QGAMs performing at their best in inland Iberia, and at their worst in the Pyrenees and in other mountainous regions (Figures 6 and 7). The poor performance of QGAMs in those regions is probably to be ascribed to the lack of orographic information in the models and the relatively coarse spatial resolution, which make it hard for QGAMs to reconstruct realistic spatial patterns. The fact that other models seem to suffer less from this may be due to the fact that simpler linear models give greater relative importance to the seasonal climatology compared to spatial features.

Non-parametric quantile methods have additional applications for the analysis of near-surface extremes, which we have touched upon in this paper. First, they may be used to assess the impact of a particular driver on a given quantile of a downstream atmospheric variable of interest. This is particularly useful for spatially compounding extremes, namely extremes that occur (near-)simultaneously in geographically remote regions. In this study, we used QGAMs to show that lower area-averaged 2m temperatures in North America are significantly associated with higher values of the extreme quantiles of daily mean 10m wind speed and daily precipitation in Western Europe (Figures 2 and 3). Second, non-parametric quantile-based methods may be used to provide ranges of uncertainty to deterministic numerical forecasts. In particular, Figures 4 and 5 show that QGAMs overpredict the value of the variable of interest a percentage of times close to τ, thus displaying a good empirical coverage of the upper boundary of uncertainty when used for estimation of the range of uncertainty of the forecast.

This paper focused on a specific case study of previously studied spatially compounding extremes. We considered a limited range of conventional models for comparison to QGAMs, and only tested a small number of possible large-scale dynamical drivers of the extremes. Our work should be viewed as a proof-of-concept to show the potential of QGAMs compared to conventional parametric models for the study and understanding of spatially compounding extremes, rather than an attempt to build a statistical forecast model or to investigate novel extreme occurrences and the related large-scale atmospheric drivers. We also note that, even though QGAMs perform better than linear POT models in forecasting near-surface extremes with short return periods, it does not mean that they are equally effective for extremes with longer return periods. More research may be needed to verify the robustness of QGAMs when analysing extremes of this nature.

The statistical analysis in this paper should also be contextualised relative to previous research on Pan-Atlantic compound extremes (Messori et al., 2016; De Luca et al., 2020; Leeding et al., 2023; Messori & Faranda, 2023). Our results strengthen the hypothesis of a connection between wintertime North American cold spells and wet or windy extremes in Western Europe, by showing that introducing information on surface temperature in North America has a clear effect in the model and significantly improves the prediction of extreme quantiles of 10m wind and precipitation in Iberia and Western France (Figures 3, 6, 7). The fact that the effect of temperature in North America is weakened but still significant when adding information on the Polar jet and the state of the North Atlantic atmosphere to the models, points to the presence of teleconnections which can-
not be fully explained by a simple causal flow in which cold spells influence the behaviour of the Polar jet, which in turn affects surface weather in Europe. This might suggest the presence of more complex or multiple pathways through which Pan-Atlantic compound extremes may be engendered.

6 Open Research

The ERA 5 data used in this study is freely available from the Copernicus Climate Change service at https://doi.org/10.24381/cds.aedb2d47 (Hersbach et al., 2020) and https://doi.org/10.24381/cds.bd0915c6 (Hersbach et al., 2020). The daily NAO index is available through the NOAA online archive at https://www.cpc.ncep.noaa.gov/products/precip/CWlink/pna/nao.shtml (NOAA/ National Weather Service, 2022). The models have been built and tested with the help of open-source R Statistical Software (R Core Team, 2021). All software is freely available through CRAN at https://cran.r-project.org/. More details can be obtained by contacting the corresponding author L.Olivetti, leonardo.olivetti@geo.uu.se.

Acknowledgments

L. Olivetti and G. Messori thankfully acknowledge the support of the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (project CENÆ: compound Climate Extremes in North America and Europe: from dynamics to predictability, Grant Agreement No. 948309). The authors also acknowledge valuable discussions with R. Leeding, J. Riboldi and A. Segalini.

7 Conflict of interest

The authors declare no conflicts of interest relevant to this study.

References

Supporting Information for ”A Quantile Generalised Additive Approach for Compound Climate Extremes: Pan-Atlantic Extremes as a Case Study”

Leonardo Olivetti1,2, Gabriele Messori1,2,3,4, Shaobo Jin5,6

1Department of Earth Sciences, Uppsala University
2Centre of Natural Hazards and Disaster Science, Uppsala University
3Department of Meteorology, Stockholm University
4Bolin Centre for Climate Research, Stockholm University
5Department of Statistics, Uppsala University
6Department of Mathematics, Uppsala University

Contents of this file

1. Text S1 to S2
2. Figures S1 to S8
3. Table S1

Introduction

In this supporting information, we provide a brief introduction to classic parametric extreme value theory (text S1), some details on the formulation of our models (text

Corresponding author: L.Olivetti, leonardo.olivetti@geo.uu.se

April 6, 2023, 12:49pm
Text S1. Parametric EVT

Block Maxima approach

BM follow the GEV family of distributions, which has the following density function (Coles, 2001):

$$f(x) = \frac{1}{\sigma} \left(1 + \frac{x - \mu}{\sigma}\right)^{-\frac{1}{\xi}} \left(1 + \frac{x - \mu}{\sigma}\right)^{-\frac{1}{\xi}} e^{-(1+\xi \frac{x - \mu}{\sigma})^{-\frac{1}{\xi}}}$$

where μ is the location parameter, σ is the scale parameter and ξ is the shape parameter.

The BM approach aims to reliably estimate the shape parameter ξ. This is because ξ can be used to infer how often a certain value of the distribution is likely to occur (return level), and obtain information on the thickness of the tail of the distribution. Based on the value of ξ, the GEV family may be subdivided into three subfamilies of distributions:

- $\xi < 0$ corresponds to the Weibull family. Distributions within this family have a well-defined upper bound and light tails.
- $\xi = 0$ corresponds to the Gumbel family. Distributions within this family have no theoretical upper bound, but a fast decaying exponential tail, which makes extreme events above a certain threshold very unlikely to occur.
- $\xi > 0$ corresponds to the Fréchet family. Distributions within this family have heavy, slowly decaying tails and no upper bound, which makes it impossible to draw conclusions on the maximum magnitude of the extremes.
Peak-Over-Threshold approach

The excesses, defined as the difference between the selected maxima M_i and the threshold u, given independence, belong asymptotically to the generalised Pareto distribution (GPD), in accordance with Pickands’ theorem (Pickands, 1975).

The probability density function of the GPD is defined as follows (Coles, 2001):

$$f(x) = \frac{1}{\sigma} \left(1 + \xi \frac{x - \mu}{\sigma}\right)^{-\frac{1}{\xi} - 1},$$

where μ is the location parameter, σ is the scale parameter and ξ is the shape parameter. The shape parameter can be interpreted in relation to the tails of the distribution similar to the BM approach, where a larger value of ξ is associated with heavier tails. Given the same underlying distribution, the shape parameter estimated through the BM and the POT approach is approximately the same (Coles, 2001).

S2. Model Formulation

Below, we describe the statistical models used in the main text and Figures in the supporting materials. The same models are used for the prediction of daily mean 10m wind speed and daily precipitation.

QGAM models presented in the Main Text

Base model:

$$Q_{Y|X}(\tau) = s(lat, lon, k = 20, d = 2) + s(time, k = 5) + \text{seasonal quantile climatology} + \text{month},$$

(1)
where k is the basis dimension, s is a smooth, and d the dimension of the product smooth. Month is treated as a categorical variable.

Cold spell model:

$$Q_{Y|X}(\tau) = s(lat, lon, k = 20, d = 2) + s(time, k = 5) + \text{month}$$

$$+ \text{seasonal quantile climatology} + s(US\text{ temp lag2}, k = 5)$$

$$+ s(Jet\text{ strength lag1}, k = 10) + s(NAO\text{ lag1}, k = 10)$$

$$+ s(lat_jet_lag1, k = 10) + s(jet_proximity, k = 10),$$

where jet proximity is given by the distance in degrees between the latitude of the maximum zonally averaged jet and the latitude of the grid point of interest.

QREG models presented in the Main Text

Base model:

$$Q_{Y|X}(\tau) = \text{lat} + \text{lon} + \text{lat} \cdot \text{lon} + \text{seasonal quantile climatology} + \text{year} + \text{month}$$

Cold spell model:
\[Q_{Y|X}(\tau) = lat + lon + lat \cdot lon + \text{seasonal quantile climatology} \]
\[+ \text{year} + \text{month} + US_temp_lag2 \] \hspace{1cm} (5)

Cold spell and jet stream model:

\[Q_{Y|X}(\tau) = Q_{Y|X}(\tau) = lat + lon + lat \cdot lon + \text{seasonal quantile climatology} \]
\[+ \text{year} + \text{month} + US_temp_lag2 + Jet_strength_lag1 + NAO_lag1 \]
\[+ lat_jet_lag1 + jet_proximity \] \hspace{1cm} (6)

POT models presented in the Main Text

Since information on previous lags of the outcome in Europe apart from seasonal quantile climatology is not available to the model, declustering is based on the lag -1 of the jet speed, which is the variable most closely correlated to the extremes in 10m wind speed and precipitation.

A threshold is set at the 90th quantile of the outcome of interest, and values above that are considered extreme. Then declustering is performed, by requiring that at least five days elapse between days with lag -1 of the jet speed over the 90th quantile of the seasonal climatology. Whenever several days within 5 days of each other meet the criteria for being classified as extreme, only the first day to meet the criteria is selected.
Otherwise, the same regressors as QREG models are used, but predicting the location parameter of the GPD. The shape parameter is held fixed. The estimated parameters are then used to generate the predictions, assuming that extremes follow a GPD.

QGAMs presented in the Supporting Information

As the QGAMs in the main paper, but adding \(s(y_{ij, \text{lag} - 1}, k = 5) \) as a regressor to all the models, where \(y_{ij} \) is the outcome variable of interest at the grid point of interest, i.e. lag -1 of 10m wind speed for the wind speed models, and lag -1 of precipitation for the precipitation models.

QREG models presented in the Supporting Information

As the QREG models in the main paper, but adding \(y_{ij, \text{lag} - 1} \) as a regressor to all the models.

POT models presented in the Supporting Information

Declustering is based on lag -1 of the outcome of interested instead of on the speed of the jet, following the same declustering technique described for the models in the main paper.

Otherwise, as the POT models in the main paper, but adding \(y_{ij, \text{lag} - 1} \) as a regressor to all the models.
Results of the autoregressive models

The figures below, differently from those in the main paper, make use of the last lag of the outcome variable of interest among the regressors (AR 1 models) in addition to all other information, and in the case of the POT models also use information of previous lags for declustering purposes (see above for details).

Figure S1. Estimated bias of QGAMs in terms of absolute distance between the percentage of overpredictions (\hat{PO}) and the theoretical quantile (τ). **a-c**: Estimation of 95th quantile of daily mean 10m wind speed. Basic model with no information on the state of the North Atlantic atmosphere (**a**), model with information on surface temperature in North America at lag -2 days (**b**), model with same information as above plus speed and location of the Polar jet stream at lag -1 days (**c**). **d-f**: As a-c, but for the 99th quantile of daily mean 10m wind speed.
Figure S2. As Fig. S1 but for daily precipitation.

Figure S3. As Figure S1 but for pseudo R^2
Figure S4. As Figure S2 but for pseudo R^2

Figure S5. As Figure S3, but using the linear POT model as baseline for the computation of the pseudo R^2
Figure S6. As Figure S4, but using the linear POT model as baseline for the computation of the pseudo R²

Figure S7. As Figure S3, but using the quantile regression model as baseline for the computation of the pseudo R²
Figure S8. As Figure S4, but using the quantile regression as baseline for the computation of the pseudo R^2

Table S1. Overall pseudo R^2 of cold spell and jet stream QGAMs used to forecast the 95th and 99th quantiles of daily mean 10m wind speed and daily precipitation compared to different baseline models.

<table>
<thead>
<tr>
<th>Variable</th>
<th>Baseline model</th>
<th>95th quantile</th>
<th>99th quantile</th>
</tr>
</thead>
<tbody>
<tr>
<td>Daily mean 10m wind speed</td>
<td>Quantile of the climatology</td>
<td>0.2210</td>
<td>0.2118</td>
</tr>
<tr>
<td>Daily mean 10m wind speed</td>
<td>POT</td>
<td>0.1733</td>
<td>0.1302</td>
</tr>
<tr>
<td>Daily mean 10m wind speed</td>
<td>QREG</td>
<td>0.0047</td>
<td>0.0209</td>
</tr>
<tr>
<td>Daily precipitation</td>
<td>Quantile of the seasonal climatology</td>
<td>0.2171</td>
<td>0.2005</td>
</tr>
<tr>
<td>Daily precipitation</td>
<td>POT</td>
<td>0.1850</td>
<td>0.1574</td>
</tr>
<tr>
<td>Daily precipitation</td>
<td>QREG</td>
<td>0.0295</td>
<td>0.0443</td>
</tr>
</tbody>
</table>