Follow-up and comparative assessment of SARS-CoV-2 IgA, IgG, neutralizing, and total antibody responses after BNT162b2 or mRNA-1273 heterologous booster vaccination

Salma Younes1, Eleonora Nicolai2, Massimo Pieri2, Sergio Bernardini2, Duaa Al-Sadeq3, Nadin Younes1, Farah Shurrab1, Parveen Nizamuddin4, Fathima Humaira5, Nader Al-Dewik6, Hadi Yassine7, Laith Abu-Raddad8, Ahmed Ismail9, and Gheyath Nasrallah1

1Qatar University College of Health Sciences
2University of Rome Tor Vergata
3Qatar University College of Medicine
4Biomedical Research Center in Network of Epidemiology and Public Health
5Biomedical research center, qatar university, Doha, Qatar
6Department of Pediatrics, Clinical and Metabolic Genetics, Hamad Medical Corporation, Doha, Qatar.
7Qatar University
8Weill Cornell Medical College in Qatar
9Laboratory Section, Medical Commission Department

April 5, 2023

Abstract

Background: Priming with ChAdOx1 followed by heterologous boosting have been considered in several countries. Nevertheless, analyses that provide a comparison of the immunogenicity of heterologous booster in comparison to homologous primary vaccination regimens and natural infection are lacking. In this study, we aimed to conduct a comparative assessment of the immunogenicity between heterologous prime-boost vaccination using BNT162b2 or mRNA-1273 and homologous primary vaccination regimens. Methods: We matched vaccinated naïve individuals (VN; n=673) who had received partial vaccination (n=64), primary vaccination (n=590), or primary series plus one mRNA vaccine heterologous booster (n=19) with individuals with a documented primary SARS-CoV-2 infection and no vaccination record (natural infection; NI cohort; n=206). We measured the levels of neutralizing total antibodies (NTAbs), total antibodies (TAbS), anti-S-RBD IgG, and anti-S1 IgA titers. Results: Homologous primary vaccination with ChAdOx1 not only showed less potent NTAb, TAb, anti-S-RBD IgG, and anti-S1 IgA titers. Results: Homologous primary vaccination with ChAdOx1 not only showed less potent NTAb, TAb, anti-S-RBD IgG, and anti-S1 IgA immune responses compared to primary-BNT162b2 or mRNA-1273 vaccination regimens (P<0.05), but also showed ~3 fold less anti-S1 IgA response compared to infection-induced immunity (P<0.001). Nevertheless, heterologous booster dose resulted in a significant boost of at least ~12 folds in the immune response. Furthermore, correlation analyses revealed that both, anti-S-RBD IgG and anti-S1 IgA significantly contributed to virus neutralization among NI individuals, particularly in symptomatic and pauci-symptomatic individuals, whereas, among VN individuals, anti-S-RBD IgG was the main contributor to virus neutralization (r > 0.90, P < 0.001). Conclusion: The results emphasize the potential benefit of using heterologous mRNA boosters to increase antibody levels and neutralizing capacity.

Hosted file

responses-after-bnt162b2-or-mrna-1273-heterologous-booster-vaccination