HURRICANE HINDCASTS ARE MISSING THE PEAKS

Clarence O. Collins III

1Affiliation not available

March 9, 2023
1. ABSTRACT

Hurricanes produce the most intense wind speeds over Earth's oceans, resulting in extreme sea states. Understanding ocean wave development under hurricane conditions is important for safety and operations offshore, yet operational hindcasts tend to under-predict the highest sea states [1–3].


Comparing to the hindcast from the Institut français de recherche pour l’exploitation de la mer (Ifremer), which was forced by the Climate Forecast System Reanalysis (CFSR) produced by the U.S. National Oceanic and Atmospheric Administration (NOAA) National Center for Environmental Prediction (NCEP)[16], ref. [2] showed a pattern of bias in the estimated wave heights under hurricane conditions. Figure 1 a) reproduces the wave height bias map along with contours of wave height as observed by altimeter. Fig. 1 a) shows that although wave heights tend to be overestimated in the right sector, the highest wave heights are underestimated near the hurricane eye. This is the spatial analog to missing the peak of a time series [1].

Here we extend the work of ref. [2] by looking directly at wind speeds that drove the hindcast. altWIZ1, a system for pairing altimeter measurements with models, point observations, and storm tracks [17], was updated to include wind speed. Fig. 1 b) shows percent bias of model wind speed with contours of observed wind speed overlaid. Wind speed is overestimated except for an area of severe underestimation within 2R. The low winds around the eye explain the under-generation of peak swell waves that dominate dominate the eye region and left and rear sectors. Ongoing work extends this analysis to extra-tropical cyclones[18].

---

1 Corresponding author: Clarence.O.Collins@usace.army.mil

1https://github.com/Tripphysicist/altWIZ.git
ACKNOWLEDGMENTS

Author COC is supported by the USACE CODS program under program manager Dr. Spicer Bak and the Office of Naval Research under program manager Dr. Reggie Beach. COC expresses tremendous gratitude to Prof. Alex Babanin for his help and encouragement. This contribution is in honor of Professor Ian Young.

REFERENCES