SALL4 as an indicator for the diagnosis of Hepatoid Carcinoma of the Ovary: A case report and literature review

Jiana Li¹ and Xiaohua Wu¹

¹Fudan University

March 1, 2023

Abstract

We report a case of a postmenopausal woman presenting with lower abdominal pain and vaginal bleeding. She went through a maximal debulking surgery and the pathological biopsy revealed hepatoid carcinoma of the ovary (HCO). Immunohistochemical assay demonstrates SALL4 as an indicator to differentiate HCO from Hepatocellular carcinoma (HCC).

SALL4 as an indicator for the diagnosis of Hepatoid Carcinoma of the Ovary: A case report and literature review

Jiana Li¹,², Xiaohua Wu¹,²*

¹ Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, PR China
² Department of Gynecologic Oncology, Fudan University Shanghai Cancer Center, Shanghai, 200032, PR China

* Correspondence: Department of Gynecologic Oncology, Fudan University Shanghai Cancer Center, Shanghai, 200032, PR China; wu.xh@fudan.edu.cn (X. Wu)

Abstract

We report a case of a postmenopausal woman presenting with lower abdominal pain and vaginal bleeding. She went through a maximal debulking surgery and the pathological biopsy revealed hepatoid carcinoma of the ovary (HCO). Immunohistochemical assay demonstrates SALL4 as an indicator to differentiate HCO from Hepatocellular carcinoma (HCC).

Key Clinical Message

Primary HCO is a rare, aggressive ovarian malignant tumor, morphologically resembling HCC. SALL4 can be adopted to differentiate HCO from HCC. The serum AFP, CA125 rather than HE4 can be employed as possible biomarkers to track treatment and monitor recurrence.

Keywords: hepatoid carcinoma of the ovary, HCO, SALL4, diagnosis, therapy.

(Main body of the text: 1642 words; 3 figures; 1 table; 1 supplementary table)

Introduction

Hepatoid carcinoma is a rare type of malignant tumor with morphologic characteristics similar to HCC, arising outside the liver, most commonly in the stomach and less in the ovary, uterus, lung, bladder or kidney(1). In 1987, Ishikura and Scully first reported five cases of HCO, mainly in postmenopausal women...
who presented with an ovarian mass and elevated serum AFP(2). The microscopic characteristics of these
tumors are sheets, trabeculae and cords of cells with moderate to large amounts of eosinophilic cytoplasm and
round to oval central nuclei(3). HCO must be distinguished from the HCC metastatic to the ovary(4) and
other ovarian tumors with abundant eosinophilic cytoplasm, including hepatoid yolk sac tumors (HYSTs)(5),
Sertoli–Leydig cell tumors, and oxyphilic clear cell carcinomas. We describe an additional case of a 64-year-
old postmenopausal Chinese woman diagnosed with HCO, featuring with significantly elevated serum AFP
and CA125 level.

Case Presentation

A 64-year-old postmenopausal female was admitted to our hospital with lower abdominal pain for 3 months
and vaginal bleeding for 21 days. Her physical examination revealed the existence of a lower abdominal mass
about the size of 8-9cm in diameter on deep palpation, closely related to the uterus. Obvious tenderness and
rebound pain were complained about. Shifting dullness was positive and a small amount of blood clot was
seen in the vagina. The abdominal computed tomography (CT) showed a cystic and solid mass in the right
annex and a cystic mass in the left annex with a large amount of ascites. The magnetic resonance imaging
(MRI) confirmed the same finding of bilateral masses, with thickened and dense peritoneum and mesentery
(Fig.1). No obviously abnormal imaging performance in the upper digestive tract, liver, pancreas or kidney.
Laboratory tests showed an elevated AFP level of 3630ng/ml (normal <10), CA 125 level of 337.9 U/ml
(normal <35) and HE4 level of 142.7pmol/L (normal <81.9). She had a cesarean section 26 years ago and
had no family history of any malignancy.

A maximal debulking surgery was arranged under the impression of ovarian cancer on April 20th, 2015.
During the surgery, a right ovarian tumor of 9×7×4 cm and a left one of 3.3×3×1.5 cm were discovered
with direct invasion to the pelvic peritoneum, uterus, rectum and mesentery. Multiple solid nodules of
2-3 cm in diameter were palpable in the omentum. A contracted tumor tissue about 6×6×8 cm in size
was found in the sigmoid colon mesentery. A 10 cm section of colorectum presented significant stiffness,
thickening, edema and flatulence, with fixed adhesion to the uterus posterior wall. Radical surgery was
performed, including a total hysterectomy, bilateral salpingo-oophorectomy, omentectomy, appendectomy
and pelvic floor peritoneum resection. Additionally, a partial colorectal resection and end-to-end anastomosis
were performed and an ileostomy was created. The postoperative pathological results suggested a poorly
differentiated adenocarcinoma displaying a hepatoid pattern without yolk sac tumor-like areas. The omentum
mass, pelvic peritoneum, rectal and appendiceal mesentery were positive for malignancy and malignant cells
were seen in ascites. All the resected pelvic lymph nodes were negative. The final diagnosis was HCO of
stage IIIC.

One month after the surgery, the AFP level of our patient decreased from 3630 ng/ml to 158.5 ng/ml. Then
she was treated with combined chemotherapy of paclitaxel and carboplatin for 9 courses until May 11th,
2016. The response was satisfactory and her serum AFP level returned to within the normal range.

The patient was disease-free for about two years, confirmed by MRI and stable serum AFP level. However,
in March 2017, she onset with the symptoms of intestinal obstruction, and her serum AFP was gradually
raised. Her pelvic MRI revealed pelvic effusion and metastasis in the omentum, peritoneum and mesentery
nodes. Recurrence of ovarian cancer was considered but we applied palliative treatment instead of the
aggressive one due to the high risk of surgery. Chemotherapy was administrated with paclitaxel and carboplatin.
The patient’s AFP level did decrease after the course but the chemotherapy was terminated after the
third course of administration on October 12th, 2017 because of the severe adverse reaction (IV-degree
myelosuppression). On November 26th, 2017, the chest and abdominal CT revealed pleural effusion and a
large amount of peritoneal effusion with multiple small nodules in the peritoneum and swollen retroperito-
neal lymph nodes. In spite of comprehensive supportive treatment, the patient died of cachexia and multiple
organ failure in early 2018, about 3 years after the initial diagnosis.
The patient’s diagnosis, treatment, follow-up, and outcome are presented in chronological order in Table 1. Figure 2 depicts the whole course of disease monitoring using AFP, CA125, and HE4 values.

Pathology

Tumor tissues were formalin-fixed, paraffin-embedded, and stained with hematoxylin and eosin. Immunohistochemistry was performed on a subset of the sections. Gross findings showed that the right ovarian of 9×7×4 cm and the left one of 3.3×3×1.5 cm were both involved with malignancy. Under the microscope, the cords of hepatoid cells are arranged in thick trabecular structures, with abundant eosinophilic cytoplasm and clear boundaries. The structure was similar to that of hepatocellular carcinoma. Mitotic images of tumor cells were occasionally observed. The immunohistochemistry staining of AFP was found positive inside the clear cell components and around the tumor cells (Fig.3A). SALL4, P53, AE1/AE3, EMA, CD10, and villin staining were also found to be extensively positive (Fig.3B, C, D), while Hepa-1, CD10, and HNF1-β were found to be focally positive. CK7, Arg-1, ER, PR, Vimentin, WT1, CK30, and Napsin A were all observed to be negative. No foci of yolk sac tumor, teratoma, or other malignant germ cell tumors were observed grossly or microscopically. The ultimate histological diagnosis was hepatoid carcinoma of the ovary, a poorly differentiated adenocarcinoma with a hepatoid appearance.

Discussion

Primary hepatoid carcinoma of ovary is a poorly differentiated and aggressive ovarian malignant tumor that originates from an extrahepatic part but resembles hepatocellular tumor in histopathological type and immunophenotype. It is an uncommon tumor type that has now been reported in no more than fifty cases in literature since Ishikura and Scully first designated it in 1987(2). Patients range in age from 27 to 79 years old, with a median age of 57.1, more common in postmenopausal women. Most patients have no obvious symptoms in early period and often present with abdominal distention, lower abdominal pain and a pelvic mass. The tumor mainly involves unilateral ovary and rarely bilateral. Elevated serum AFP is often detected, but there are still several cases exhibiting normal AFP level. Due to the high degree of malignancy, most HCO cases are found in advanced stages, and pelvic and lung metastasis is common. The average survival period after initial diagnosis is about 2 years.

Histopathological characteristics of hepatoid carcinoma of the ovary include microscopically tumor cells arranged in flakes, nests, or trabecular structures; rich in blood sinus, similar to the arrangement of liver cancer cells; containing abundant eosinophilic cytoplasm; uniformity of cell size; occasionally with giant bizarre cells and multinucleated tumor cells; and positive hyaline globules inside and outside the cytoplasm. The unique pathologic appearance of HCO must be distinguished from HCC and HYST. Currently, there is no reliable way of laboratory tests to completely rule out HCC unless combined with clinical and radiographical data. HYSTs are more common in a younger age group, mostly accompanied with gonadal dysgenesis, and pathologically characterized by uniform cells lacking giant bizarre cells with abundant cytoplasm, which is totally different from HCO. Immunohistochemical staining of AFP was broadly applied to diagnose HCO. However, negative AFP staining cannot exclude the diagnosis of HCO according to previous examples. More accurate diagnostic method should be established. In our case, immunohistochemical studies revealed SALL4 positivity. SALL4 is an important marker of germ-cell tumors, but it is not expressed in hepatocellular tumors, and there have also been reports of other hepatoid adenocarcinomas expressing SALL4. Therefore, SALL4 may be a potential indicator to differentiate HCO from metastatic HCC.

The histogenesis of this tumor is mostly recognized as surface epithelial ovarian tumors. There is abundant evidence to support this opinion. The onset age of HCO is similar to that of epithelial ovarian cancer. In some cases, the tumor tissue was mixed with serous or mucinous carcinoma, also suggesting epithelial origin on the ovarian surface. The fact that most patients have high levels of serum CA125 and CA125 antigen expression by immunohistochemistry is another crucial clue. Moreover, like high-grade serous car-
cinoma, most HCOs have an aggressive clinical history with rapid progression, extensive intraperitoneal dissemination, and poor treatment response (14). In spite of this, it is important to remember that the hepatoid phenotype is nonspecific, necessitating the integration of pathologic and clinical information to make a definite diagnosis.

There is still insufficient data to determine the optimal treatment of HCO patients. Although there is no standard regimen, most patients are treated with surgery (optimal or maximal cytoreduction) and adjuvant chemotherapy the same as epithelial ovarian cancer. According to the serological AFP level monitoring of our patient before and after chemotherapy, we can draw a conclusion that adjuvant chemotherapy can lower AFP in certain patients and lengthen their lives. Pandey et al. used Sorafenib, a hepatocellular carcinoma medication, as adjuvant treatment for postoperative HCO patients, however the outcomes were disappointing (13).

Conclusion

The histogenesis and immunohistochemical profile of HCO have yet to be determined. AFP staining has been shown routinely positive but still with several exceptions. SALL4 may be regarded as a good indicator of HCO despite its low positive rate (22). Both AFP and CA125, rather than HE4, can be employed as prognostic biomarkers and may be used to track therapy response and screen for recurrence. Treatment approaches are not unified, but a cytoreductive surgery followed by a platinum and taxane-based chemotherapy has shown similar results to other ovarian carcinomas. The second-line therapy after platinum resistance requires further exploration.

List of Abbreviations

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>AE1/3</td>
<td>monoclonal anti-cytokeratin</td>
</tr>
<tr>
<td>AFP</td>
<td>alpha-fetoprotein</td>
</tr>
<tr>
<td>CA125</td>
<td>carbohydrate antigen 125</td>
</tr>
<tr>
<td>CT</td>
<td>computed tomography</td>
</tr>
<tr>
<td>HCC</td>
<td>hepatocellular carcinoma</td>
</tr>
<tr>
<td>HCO</td>
<td>hepatoid carcinoma of the ovary</td>
</tr>
<tr>
<td>HYST</td>
<td>hepatoid yolk sac tumor</td>
</tr>
<tr>
<td>MRI</td>
<td>magnetic resonance imaging</td>
</tr>
<tr>
<td>P53</td>
<td>tumor protein 53</td>
</tr>
<tr>
<td>SALL4</td>
<td>spalt-like transcription factor 4</td>
</tr>
</tbody>
</table>

Declarations

Ethics approval and consent to participate

Not applicable.

Consent for publication

Authors declare that a written informed consent was obtained from the patient for the publication of this case report.

Availability of data and materials

Not applicable.
Competing interests

Authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Funding

Not applicable.

Authors’ contributions

XW was in charge of the diagnosis and treatment of the patient and offered the article’s principal idea. JL reviewed relevant literature and was a major contributor in writing the manuscript. Both authors read and approved the final manuscript.

Acknowledgements

Not applicable.

References

Supplementary Material

Supplementary Table 1. Clinical features, biological markers, surgery, postoperative treatment, and outcomes of HCO cases

Figure 1. (A, B) T2-weighed MRI of the pelvis. MRI showed a cystic and solid mass in the right annex (arrow) and a cystic mass in the left annex with thickened and dense peritoneum and mesentery, and a large amount of ascites.

Figure 2. The whole course of disease monitoring using AFP, CA125, and HE4 values.
Figure 3. (A) (100×) H&E staining revealed eosinophilic cytoplasm, round to oval central nuclei resembling hepatocytes, and distinct cell boundaries resembling hepatocellular carcinoma in neoplastic cells. (B, C, D) (200×) Positive immunohistochemical stains of AFP, SALL4, and P53.

Table 1. Timeline of diagnosis, treatment, follow-up and outcome of the patient

<table>
<thead>
<tr>
<th>Date</th>
<th>Event</th>
</tr>
</thead>
<tbody>
<tr>
<td>01/04/2015</td>
<td>Initial presentation with lower abdominal pain and vaginal bleeding</td>
</tr>
<tr>
<td>02/04/2015</td>
<td>Abdominal CT and MRI revealed bilateral annexal masses and pelvic effusion</td>
</tr>
<tr>
<td>03/04/2015</td>
<td>Laboratory tests showed AFP 3630ng/ml, CA125 337.9 U/ml, HE4 142.7pmol/L</td>
</tr>
<tr>
<td>20/04/2015</td>
<td>Maximal debulking surgery</td>
</tr>
<tr>
<td>29/04/2015</td>
<td>Discharge from hospital</td>
</tr>
<tr>
<td>11/05/2015</td>
<td>Administration of the first course of chemotherapy (paclitaxel and carboplatin)</td>
</tr>
<tr>
<td>11/05/2016</td>
<td>Administration of the ninth course of chemotherapy (paclitaxel and carboplatin)</td>
</tr>
<tr>
<td>19/08/2016</td>
<td>MRI showed no sign of recurrence, with serum AFP and CA125 in normal range</td>
</tr>
<tr>
<td>01/12/2016</td>
<td>MRI showed no sign of recurrence, with serum AFP and CA125 in normal range</td>
</tr>
<tr>
<td>31/03/2017</td>
<td>PET/CT showed no abnormal increase in FDG metabolism through systemic imaging</td>
</tr>
<tr>
<td>April to May/2017</td>
<td>Laboratory tests showed rapidly elevated serum CA125 and AFP</td>
</tr>
<tr>
<td>07/05/2017</td>
<td>Complaint of abdominal pain, distension and stop defecating</td>
</tr>
<tr>
<td>08/05/2017</td>
<td>MRI revealed pelvic effusion and metastasis in omentum, peritoneum and mesenteric nodules</td>
</tr>
<tr>
<td>19/05/2017</td>
<td>Start chemotherapy (paclitaxel and carboplatin)</td>
</tr>
<tr>
<td>12/10/2017</td>
<td>Stop chemotherapy due to severe adverse events</td>
</tr>
<tr>
<td>20/11/2017</td>
<td>CT revealed pleural effusion and a large amount of peritoneal effusion with multiple small nodules in</td>
</tr>
<tr>
<td>In Early 2018</td>
<td>Our patient passed away due to cachexia and multiple organ failure</td>
</tr>
</tbody>
</table>

(A) Initial presentation with lower abdominal pain and vaginal bleeding. (B) Abdominal CT and MRI revealed bilateral annexal masses and pelvic effusion. (C) Laboratory tests showed AFP 3630ng/ml, CA125 337.9 U/ml, HE4 142.7pmol/L. (D) Maximal debulking surgery. (E) Discharge from hospital. (F) Administration of the first course of chemotherapy (paclitaxel and carboplatin). (G) Administration of the ninth course of chemotherapy (paclitaxel and carboplatin). (H) MRI showed no sign of recurrence, with serum AFP and CA125 in normal range. (I) MRI showed no sign of recurrence, with serum AFP and CA125 in normal range. (J) PET/CT showed no abnormal increase in FDG metabolism through systemic imaging. (K) Laboratory tests showed rapidly elevated serum CA125 and AFP. (L) Complaint of abdominal pain, distension and stop defecating. (M) MRI revealed pelvic effusion and metastasis in omentum, peritoneum and mesenteric nodules. (N) Start chemotherapy (paclitaxel and carboplatin). (O) Stop chemotherapy due to severe adverse events. (P) CT revealed pleural effusion and a large amount of peritoneal effusion with multiple small nodules in. (Q) Our patient passed away due to cachexia and multiple organ failure.