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Abstract

With inspiration of the definition of Bernstein basis functions and their recurrence relation, in this paper we give construction of

new concept so-called Bernstein-based words. By classifying these Bernstein-based words as first and second kind, we investigate

their some fundamental properties involving periodicity and symmetricity. Providing schematic algorithms based on tree

diagrams, we also illustrate the construction of the Bernstein-based words. Moreover, we give computational implementations

of Bernstein-based words in the Wol-fram Language. By executing these implementations, we present some tables of Bernstein-

based words and their decimal equivalents. In addition, we present black-white and 4-colored patterns arising from the Bernstein-

based words with their potential applications. We also give some finite sums and generating functions for the lengths of the

Bernstein-based words. We show that these functions are of relationships with the Catalan numbers, the centered m-gonal

numbers, the Laguerre polynomials, certain finite sums, and hypergeometric functions. We also raise some open questions and

provide some comments on our results. Finally, we investigate relations between the slopes of the Bernstein-based words and

the Farey fractions.
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1. Introduction, definitions and preliminaries

The field of combinatorics on words is a quite new field that has been started

to be studied in recent years by the researchers working on multivarious branches

of mathematics such as number theory, group theory, theoretical computer sci-

ence dealing with automata and formal languages. Combinatorics on words

concentrates on the study of formal languages, words and strings formed by let-

ters or symbols. In this aspect, the field of combinatorics on words is in essence

to differ from combinatorics. The main idea behind the field of combinatorics

on words is to make an investigation on words in either algebraic, combinatorial

or algorithmic way. With the emergence of the book of Lothaire [13] providing a

terminological and well-defined theory on combinatorics on words, this field has

started to develop and grow even more. These developments encourage many

researchers to define new word classes and still find their interesting and useful

applications. Based upon the consequence of these developments, the source of

our motivation in this paper is to construct new words, called Bernstein-based

words, and present some their fundamental properties.

We first start with reminding terminology regarding the combinatorics on

words, which can also be found in the books of Lothaire [13, 14, 15].

Let Σ be a nonempty set called the alphabet, each element of which is called

a letter. A finite sequence of letters, in the following form:

w = (a1, a2, . . . , an) , ∀ai ∈ Σ; i = 1, 2, . . . , n,

is called a finite word of length n over the alphabet Σ. If we use Σ∗ to denote

the set of all finite words over the alphabet Σ, then w ∈ Σ∗. Let ϵ denote the

empty word which is a neutral element for concatenation. Then, Σ+ = Σ∗−{ϵ}

denotes the set of all finite nonempty words.
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Let w1 = (a1, a2, . . . , an) ∈ Σ∗ and w2 = (b1, b2, . . . , bm) ∈ Σ∗. Then, the

concatenation ⋊⋉ of two words w1 and w2 is defined by the following function

(binary operation):

⋊⋉: Σ∗ × Σ∗ 7→ Σ∗

such that

w1 ⋊⋉ w2 = (a1, a2, . . . , an, b1, b2, . . . , bm) . (1.1)

It is clear that the concatenation, ⋊⋉, or so-called juxtaposition, of two words,

is well-defined, internal and an associative binary operation which is not com-

mutative. Due to this feature, the algebraic structure (Σ∗,⋊⋉) is a semigroup and

called free semigroup over the alphabet Σ (cf. [8], [13], [14], [15]). Therefore, a

word in the form of

w = (a1, a2, . . . , an)

can be expressed as

w = a1a2 . . . an. (1.2)

We recall the length of the word w which is the number of letters that

forms the word w, and denoted by |w|. Thus, the length of the word w1 =

(a1, a2, . . . , an) ∈ Σ∗ is given by

|w1| = n

(see, for details, [8], [13], [14], [15]).

As for the Bernstein basis functions, Bn
k (x), these functions are given by the

following explicit formula involving the classical binomial coefficient:

Bn
k (x) =

(
n

k

)
xk(1− x)n−k, (1.3)

(k = 0, 1, . . . , n; n ∈ N0) ,

which have relationships with a large number of concepts including the Catalan

numbers, the binomial distribution, the proof of the Weierstrass approximation

theorem, the Poisson distribution, Computer Aided Geometric Design (CAGD)

involving Bezier curves and surfaces, splines and etc. Moreover, these functions
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have found a wide variety of applications to themself in areas of mathematics

(especially in generating functions theory, probability theory, approximation

theory), engineering (especially in automobile engineering, machine learning,

human-computer interaction systems and etc.) and almost all areas in recent

years. For details, see [9, 12, 19, 20, 21] and also the cited references therein.

The recurrence relation for the Bernstein basis functions is given by

Bn
k (x) = (1− x)Bn−1

k (x) + xBn−1
k−1 (x) (1.4)

such that B0
0 (x) = 1 and Bn

k (x) = 0 for k < 0 and k > n (cf. [12, 19, 20, 21]).

The Bernstein basis functions satisfy the following symmetry identity:

Bn
n−k(1− x) = Bn

k (x), (1.5)

(cf. [12, 19, 20, 21]).

As stated in Section 2, the reason why we named our words as Bernstein-

based words is that they are constructed by the inspiration arising from the

combinations of the equations (1.1), (1.2), (1.3), and (1.4).

Before presenting our main results in the next sections, we shall briefly sum-

marize other auxiliary concepts and their definitions needed to obtain the find-

ings of this paper, as follows:

The Catalan numbers are defined by

Cm =
1

m+ 1

(
2m

m

)
=

m∏
k=2

m+ k

k
; (m ∈ N0) (1.6)

which is also given by the following ordinary generating function:

∞∑
m=0

Cmtm =
1−

√
1− 4t

2t
, (1.7)

where 0 < |t| ≤ 1
4 (cf. [5, 24]).

The Catalan numbers arise in the solution of many kinds of combinatorial

and real-world problems such as the Euler’s polygon problem and polygon tri-

angulations, ballot sequences, parenthesizations, and Dyck paths, binary trees,

plane trees and various kinds of enumeration problems. For some applications

in detail, see the book of Koshy [5] and Stanley [24].
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The generalized hypergeometric series kFr (α1, ..., αk;β1, ..., βr; z) is defined

by

kFr (α1, ..., αk;β1, ..., βr; z) =

∞∑
n=0


k∏

j=1

(αj)n

r∏
j=1

(βj)n

 zn

n!
, (1.8)

where the above series converges for all z if k < r+1, and for |z| < 1 if k = r+1.

Assuming that all parameters have general values, real or complex, except for

the βj ; (j = 1, 2, ..., r) none of which is equal to zero or a negative integer such

that (β)v denotes the Pochhammer’s symbol, defined by

(β)v =

v−1∏
j=0

(β + j),

and (β)0 = 1 for β ̸= 1, v ∈ N, and β ∈ C (cf. [23], [26]).

Considering

(
ω

m

)
=

m−1∏
j=0

(ω − j)

m!
and

(
ω

0

)
= 1,

the second author [23] introduced the sum Bv(ω;λ, p), involving higher powers

of inverse binomial coefficients, by the following formula:

Bv(ω;λ, p) =

∞∑
m=0

mvλm(
ω
m

)p , (1.9)

whose generating function is given by the following hypergeometric series:

p+1Fp (1, . . . , 1;−ω, . . . ,−ω; (−1)
p
λez) =

∞∑
v=0

Bv(ω;λ, p)
zv

v!
(1.10)

where v, p ∈ N0, −ω /∈ {0,−1,−2,−3, . . .} and λ ∈ R (or C) with |λ| < 1 (cf.

[23]).

In [22], the second author also introduced the combinatorial numbers y6(n, k;λ, p),

involving higher powers of inverse binomial coefficients, by the following formula,

for n,m, p ∈ N0:

y6(m,n;λ, p) =
1

n!

n∑
k=0

(
n

k

)p

kmλk, (1.11)
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and constructed the following generating functions for these numbers in terms

of the hypergeometric series:

1

n!
pFp−1 (−n, . . . ,−n; 1, . . . , 1; (−1)

p
λez) =

∞∑
m=0

y6(m,n;λ, p)
zm

m!
, (1.12)

where n, p ∈ N and λ ∈ R (or C).

Now we briefly summarize our results in the next sections as follows:

In Section 2, we introduce Bernstein-based words and investigate their funda-

mental properties with examples and tables. We also give schematic algorithms

of these words. In Section 3, we provide computational implementations for

evaluating the Bernstein-based words in the Wolfram language. In Section 4,

we construct some finite sums and generating functions for the lengths of the

Bernstein-based words. We also derive some relations and results pertaining to

the length of the Bernstein-based words. In the final section, we give relations

between the slopes of the Bernstein-based words and the Farey fractions.

2. Bernstein-based words

In this section, inspired by the explicit formula (1.3) and the recurrence rela-

tion (1.4) of the Bernstein basis functions, we introduce two kinds of Bernstein-

based words over the alphabet Σ = {0, 1}.

2.1. Bernstein words of the first kind

Here, by the following definition, inspired by the explicit formula (1.3) of the

Bernstein basis functions, we first define so-called Bernstein words of the first

kind as in the following definition:

Definition 2.1. Let n, k ∈ N0. Let x ∈ Σ = {0, 1}. Let ⋊⋉ denote a binary

operation as the concatenation of two words, based on the definition given in

equations (1.1) and (1.2). Then, Bernstein words of the first kind wB (x;n, k)

over the alphabet Σ = {0, 1} are defined by

wB (0;n, k) = ⋊⋉k
i=1 0 ⋊⋉n−k

i=1 1︸ ︷︷ ︸
(nk)−times

(2.1)
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and

wB (1;n, k) = ⋊⋉k
i=1 1 ⋊⋉n−k

i=1 0︸ ︷︷ ︸
(nk)−times

(2.2)

with wB (x; 0, 0) = ϵ and wB (x;n, k) = ϵ when k < 0 or k > n.

Using (2.1) and (2.2), some properties of the wB (x;n, k) are given as follows:

Periodicity property:

It is known that a periodic word can be expressed a positive power of a

shorter word (cf. [6], [7], and see also cited references therein). The definitions,

given by (2.1) and (2.2), mean that we first juxtapose k-times 0’s (or 1’s) with

(n − k)-times 1’s (or 0’s). Then, the string obtained from the first process is

brought side by side
(
n
k

)
times to obtain the word wB (x;n, k). Here,

(
n
k

)
times

juxtaposition means that the words wB (x;n, k) can be expressed a positive

power of a shorter word. That is, the words wB (x;n, k) are all periodic.

Symmetry property with respect to vertical reflection:

Let a1, . . . , an be letters of an alphabet Σ. Then, the reversal of a word w =

a1a2 . . . an is the word reversal(w) = anan−1 . . . a1 (cf. [15, p. 4]). Consequently,

by the aid of (2.1) and (2.2), the words wB (x;n, k) satify the following symmetry

properties:

reversal (wB (0;n, n− k)) = wB (1;n, k)

and

reversal (wB (1;n, n− k)) = wB (0;n, k) .

Note that the above symmetry properties are analogues of (1.5).

These symmetry properties also mean that a concatenation of the words

wB (0;n, n− k) and wB (1;n, k)

or

wB (1;n, n− k) and wB (0;n, k)

generates a palindrome word. For some applications of palindrome words, see

also [4].
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For instance, let us consider the following words, which are reversal of each

other:

wB (0; 3, 2) = 001001001 and wB (1; 3, 1) = 100100100.

The spelling or pronunciation of any of the above forwards is the same as the

spelling or pronunciation of the other backwards. The concatenation of them is

given as

wB (0; 3, 2) ⋊⋉ wB (1; 3, 1) = 001001001100100100.

which is a member of palindrome words, spelling the same backward as forward.

Remark 2.2. There are many other applications of (2.1) and (2.2). For instance,

Ruskey et al. [16] used word analogues associated with (2.1) and (2.2) as factors

of gray codes while investigating the binary bubble languages and cool-lex order.

2.2. Bernstein words of the second kind

Here, inspired by the recurrence relation (1.4) of the Bernstein basis func-

tions, secondly we define Bernstein words of the second kind as in the following

definition:

Definition 2.3. Let n, k ∈ N0. Let x ∈ Σ = {0, 1}. Let ⋊⋉ denote a binary

operation as the concatenation of two words, based on the definition given in

equations (1.1) and (1.2). Then, Bernstein words of the second kindWB (x;n, k)

over the alphabet Σ = {0, 1} are defined by the following recurrence relations:

WB (0;n, k) = 1 ⋊⋉ WB (0;n− 1, k) ⋊⋉ 0 ⋊⋉ WB (0;n− 1, k − 1) (2.3)

and

WB (1;n, k) = 0 ⋊⋉ WB (1;n− 1, k) ⋊⋉ 1 ⋊⋉ WB (1;n− 1, k − 1) . (2.4)

with WB (x; 0, 0) = 1 and WB (x;n, k) = 0 when k < 0 or k > n.

For example, substituting x = 0, k = 1 and n = 1 into (2.3), we get

WB (0; 1, 1) = 1 ⋊⋉ WB (0; 1, 1) ⋊⋉ 0 ⋊⋉ WB (0; 0, 0)

= 1001.

8



Substituting x = 1, k = 1 and n = 1 into (2.4), we get

WB (1; 1, 1) = 0 ⋊⋉ WB (1; 0, 1) ⋊⋉ 1 ⋊⋉ WB (1; 0, 0)

= 0011.

Using (2.3) and (2.4), some properties of theWB (x;n, k) are given as follows:

As can be seen from the two examples above, the Bernstein words of the

second kind are not periodic.

Observe that unlike the Bernstein words of the first kind, the Bernstein

words of the second kind do not satisfy the symmetry property with respect

to vertical reflection. However, in this study it is given as an open problem,

which subclasses of the set of all Bernstein words of the second kind will satisfy

property that of.

Open Question 1: When we consider the set of all Bernstein words of

the second kind, which subclasses of this set can be symmetric with respect to

vertical reflection or periodic, or none?

2.3. Tree diagram for construction of the Bernstein words of the second kind

To illustrate the construction of the Bernstein words of the second kind in a

schematic way, in Figure 1, we give tree diagram which shows the construction

of the associated Bernstein words of the second kind by considering the con-

catenation based on the definition given in equations (1.1) and (1.2). In Figure

1, blue edges (left) of the tree correspond to the concatenation by 1 from left

(namely, juxtapose with the prefix 1) and red edges (right) of the tree corre-

spond to the concatenation by 0 from left (namely, juxtapose with the prefix

0). Let the letter 1 be the root of the tree. In order to generate words in any

next level of the trees, we concatenate two new words derived from the rule on

the edges out of the previous nodes connecting to the corresponding node.
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Figure 1: Tree diagram which shows the construction of the Bernstein words

WB (0;n, k) of the second kind.

In Figure 2, red edges (left) of the tree correspond to the concatenation by

0 from left (namely, juxtapose with the prefix 0) and blue edges (right) of the

tree correspond to the concatenation by 1 from left (namely, juxtapose with the

prefix 1). Similarly, let the letter 1 be the root of the tree. To generate words in

any next level of the trees, we concatenate two new words derived from the rule

on the edges out of the previous nodes connecting to the corresponding node.

10



Figure 2: Tree diagram which shows the construction of the Bernstein words

WB (1;n, k) of the second kind.

In Figure 3, we give the lengths of the Bernstein words of the second kind,

appeared in the Figure 1 and Figure 2, in the same geometric pattern. The

sequences arising from these lengths will be discussed later in Section 4.

Figure 3: Lengths of the Bernstein words of the second kind, appeared in the

Figure 1 and Figure 2, in the same geometric pattern.
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Remark 2.4. The tree diagrams, given in Figure 1 and Figure 2, helps to re-

searchers for making some constructions and algorithmic applications in fields

of graph theory, automata theory and cryptology.

3. Computational implementations of Bernstein-based words

In this section, we provide a procedure BernsteinWordsType1 (see: Imple-

mentation 1) by implementing (2.1) and (2.2), and also we provide another

procedure BernsteinWordsType2 (see: Implementation 2) by implementing the

recurrence relations (2.3) and (2.4) in the Wolfram Language. By executing the

procedures BernsteinWordsType1 and BernsteinWordsType2 in the Wolfram

Mathematica version 12.0, and using the command TableForm, we present ta-

bles of the Bernstein words of the first kind wB (x;n, k) and Bernstein words

of the second kind WB (x;n, k) obtained just for a few special cases (among

others).

3.1. Computational implementations for the Bernstein words of the first kind

Here, we provide computational implementations for the Bernstein words of

the first kind in the Wolfram language.

Implementation 1: The following code, involving the procedure

BernsteinWordsType1 written in the Wolfram Language, returns the

words wB (x;n, k) for x ∈ Σ = {0, 1}. Here, Epsilon denotes the empty word

ϵ.

BernsteinWordsType1 [ x , n , k ] / ; k < 0 | | k > n := ”

\ [ Epsilon ]”

BernsteinWordsType1 [ x , 0 , 0 ] := ”\ [ Epsilon ]”

BernsteinWordsType1 [ x ?StringQ , n , k ] :=First [{

Factor1CaseZero=”” <>Table [”0” ,{ j , 1 ,k } ] ;

Factor2CaseZero=”” <>Table [”1” ,{ j , 1 ,n=k } ] ;

Factor1CaseOne=”” <>Table [”1” ,{ j , 1 ,k } ] ;

Factor2CaseOne=”” <>Table [”0” ,{ j , 1 ,n=k } ] ;

12



Which [x==”0” , result=Factor1CaseZero<>

Factor2CaseZero ,

x ==”1” , result=Factor1CaseOne<>Factor2CaseOne

] ;

result=””<>Table [””<>result ,{ j , 1 ,Binomial [n ,k

] } ] } ]

By using Implementation 1 and the auxiliary commands of Wolfram lan-

guage, we provide the following code written in Wolfram language:

TableForm [Evaluate [Table [BernsteinWordsType1 [”0” , n , k

] , {n , 0 , 5} , {k , 0 , 2 } ] ] , TableHeadings =>{{”n=0”

, ”n=1” , ”n=2” , ”n=3” , ”n=4” , ”n=5”} , {”k=0” , ”k=1

” , ”k=2”}} ]

which returns Table 1, whose entries are the Bernstein words of the first kind

wB (x;n, k), in the case when x = 0, n = {0, 1, 2, 3, 4, 5} and k = {0, 1, 2}.

k=0 k=1 k=2

n=0 ϵ ϵ ϵ

n=1 1 0 ϵ

n=2 11 0101 00

n=3 111 011011011 001001001

n=4 1111 0111011101110111 001100110011001100110011

n=5 11111 0111101111011110111101111 00111001110011100111001110011100111001110011100111

Table 1: The Bernstein words of the first kind wB (x;n, k) in the case when

x = 0, n = {0, 1, 2, 3, 4, 5} and k = {0, 1, 2}

In addition, by the following code written in Wolfram language:

TableForm [Evaluate [Table [BernsteinWordsType1 [”1” , n , k

] , {n , 0 , 5} , {k , 0 , 2 } ] ] , TableHeadings =>{{”n=0”

, ”n=1” , ”n=2” , ”n=3” , ”n=4” , ”n=5”} , {”k=0” , ”k=1

” , ”k=2”}} ]

we get Table 2, whose entries are the Bernstein words of the first kind wB (x;n, k),

in the case when x = 1, n ∈ {0, 1, 2, 3, 4, 5} and k ∈ {0, 1, 2}.

13



k=0 k=1 k=2

n=0 ϵ ϵ ϵ

n=1 0 1 ϵ

n=2 00 1010 11

n=3 000 100100100 110110110

n=4 0000 1000100010001000 110011001100110011001100

n=5 00000 1000010000100001000010000 11000110001100011000110001100011000110001100011000

Table 2: The Bernstein words of the first kind wB (x;n, k) in the case when

x = 1, n ∈ {0, 1, 2, 3, 4, 5} and k ∈ {0, 1, 2}.

Note that the entries ϵ of Table 1 and Table 2 denote the empty word.

3.2. Computational implementations for the Bernstein words of the second kind

Here, we provide computational implementations for the Bernstein words of

the second kind in the Wolfram language.

Implementation 2: The following code, involving the procedure

BernsteinWordsType2 written in the Wolfram Language, returns the

words WB (x;n, k) for x ∈ Σ = {0, 1}.

BernsteinWordsType2 [ x , n , k ] / ; k < 0 | | k > n := ”

0”

BernsteinWordsType2 [ x , 0 , 0 ] := ”1”

BernsteinWordsType2 [ x ?StringQ , n , k ] :=

Which [x ==”0” , ”1” <> BernsteinWordsType2 [x , n=1, k ]

<> ”0” <> BernsteinWordsType2 [x , n=1, k=1] ,

x == ”1” , ”0” <> BernsteinWordsType2 [x , n=1, k ] <> ”1”

<> BernsteinWordsType2 [x , n=1, k=1] ]

By using Implementation 2 and the auxiliary commands of Wolfram lan-

guage, we also provide the following code written in Wolfram language:

TableForm [Evaluate [Table [BernsteinWordsType2 [”0” , n , k

] , {n , 0 , 4} , {k , 0 , 2 } ] ] , TableHeadings =>{{”n=0”

, ”n=1” , ”n=2” , ”n=3” , ”n=4”} , {”k=0” , ”k=1” , ”k=2

”}} ]

14



which returns Table 3, whose entries are the Bernstein words of the second kind

WB (x;n, k) in the case when x = 0, n ∈ {0, 1, 2, 3, 4} and k ∈ {0, 1, 2}.

k=0 k=1 k=2

n=0 1 0 0

n=1 1100 1001 0

n=2 1110000 1100101100 1001001

n=3 1111000000 1110010110001110000 1100100101100101100

n=4 1111100000000 1111001011000111000001111000000 1110010010110010110001110010110001110000

Table 3: The Bernstein words of the second kind WB (x;n, k) in the case when

x = 0, n ∈ {0, 1, 2, 3, 4} and k ∈ {0, 1, 2}

In addition, by the following code written in Wolfram language:

TableForm [Evaluate [Table [BernsteinWordsType2 [”1” , n , k

] , {n , 0 , 4} , {k , 0 , 2 } ] ] , TableHeadings =>{{”n=0”

, ”n=1” , ”n=2” , ”n=3” , ”n=4”} , {”k=0” , ”k=1” , ”k=2

”}} ]

we get Table 4, whose entries are the Bernstein words of the second kind

WB (x;n, k) in the case when x = 1, n ∈ {0, 1, 2, 3, 4} and k ∈ {0, 1, 2}.

k=0 k=1 k=2

n=0 1 0 0

n=1 0110 0011 0

n=2 0011010 0001110110 0010011

n=3 0001101010 0000111011010011010 0001001110001110110

n=4 0000110101010 0000011101101001101010001101010 0000100111000111011010000111011010011010

Table 4: The Bernstein words of the second kind WB (x;n, k) in the case when

x = 1, n ∈ {0, 1, 2, 3, 4} and k ∈ {0, 1, 2}

In Table 5, we present a decimal equivalents of the Bernstein words of the

first kind wB (x;n, k) for the case when x = 0, n ∈ {0, 1, . . . , 15} and k = 1.
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k=1

n=0 0

n=1 0

n=2 5

n=3 219

n=4 30583

n=5 16236015

n=6 33814345695

n=7 279 258638311359

n=8 9187201950435737471

n=9 1206560015662350056947 455

n=10 633 205725040689368 685058981375

n=11 1328578641610130862706 980579058908159

n=12 11147649675 553647270017976875240829304698879

n=13 374 098741654677608 890559610263248398282433696 362495

n=14 50213748704 928086076131552136232920089648434055403681079 295

n=15 26959123889 762805978944041759736479343619943057007489178 619980267519

Table 5: Integers obtained by converting the Bernstein words of the first kind

wB (x;n, k) to decimal in the case when x = 0, n ∈ {0, 1, . . . , 15} and k = 1.

In Table 6, we present a decimal equivalents of the Bernstein words of the

first kind wB (x;n, k) for the case when x = 1, n = {0, 1, . . . , 15} and k = 1.

k=1

n=0 0

n=1 1

n=2 10

n=3 292

n=4 34952

n=5 17318416

n=6 34905131040

n=7 283 691315109952

n=8 9259542123273814144

n=9 1211291623566908292464 896

n=10 634 444875187540032 811644224000

n=11 1329877349959700883100 633541501780992

n=12 11153095522 976975871517741397407532201281536

n=13 374 190096658744685 229727024087488507781403765 641216

n=14 50219879061 258806145241078635089742567989253056020871127 040

n=15 26960769444 538473610389988414302782003654345788073655783 587240230912

Table 6: Integers obtained by converting the Bernstein words of the first kind

wB (x;n, k) to decimal in the case when x = 1, n ∈ {0, 1, . . . , 15} and k = 1.

In Table 7, we present a decimal equivalents of the Bernstein words of the

second kind WB (x;n, k) for the case when x = 0, n = {0, 1, . . . , 15} and k = 1.
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k=1

n=0 0

n=1 9

n=2 812

n=3 470128

n=4 2036564928

n=5 68551451877120

n=6 18208547937292712960

n=7 38435859475728710580563968

n=8 646941911943400394188959571230 720

n=9 86971679750389756074485227 918487065657344

n=10 93460617420352574081684338 890047069228652 262326272

n=11 803144806349129759355741991213 423752868260161 293451476860928

n=12 55202830804936378945685118 505712696807874 544602082019437 294806072557568

n=13 30351139309558186954230650 981997648463698 028347652318857 320105397792195154374819840

n=14 133492456046745365861711369659 735238250384205 909743384530671069002481127412194852729127289487360

n=15 4696966705074203326538999460271928244237556412863889593327541289556977680853840716057160471539176957687103488

Table 7: Integers obtained by converting the Bernstein words of the second

kind WB (x;n, k) to decimal in the case when x = 0, n = {0, 1, . . . , 15} and

k = 1.

In Table 7, we present a decimal equivalents of the Bernstein words of the

second kind WB (x;n, k) for the case when x = 1, n = {0, 1, . . . , 15} and k = 1.

k=1

n=0 0

n=1 3

n=2 118

n=3 30362

n=4 62182506

n=5 1018798186922

n=6 133535915956307626

n=7 140022556609801225771690

n=8 1174594338557431440918209129130

n=9 78825691721420622757904131 570377271978

n=10 42319221003509939675643946 324756438191169 776298

n=11 181759670202271492117823597205 208297196519585 185695181482

n=12 6245214714004014108473393029547573098615200827168375131936985361066

n=13 1716671549001294963751412451075916040622186908234260446536258384551127655557802

n=14 3775000658398322345452452839003268816749619334587136883005228154804677079317460160176892586

n=15 66410513900336178032575689 795589704929428 406528004237618 310484467320886573094049340385997758146397 514410

Table 8: Integers obtained by converting the Bernstein words of the second

kind WB (x;n, k) to decimal in the case when x = 1, n = {0, 1, . . . , 15} and

k = 1.

3.3. Patterns arising from the Bernstein-based words

Here, by representing each successive letter of the Bernstein-based words as

a square block with 1s colored black and 0s colored white. Then, by placing

corresponding square blocks side-by-side to be an row of colored squares, we

present some patterns of the Bernstein-based words (see Figure 4).

17



Figure 4: The row of square blocks corresponding to the Bernstein word of the

second kind WB (1; 3, 2) = 0001001110001110110.

By stacking up the row of square block representation of the first few Bernstein-

based words, we obtain some patterns which are given in Figure 5-Figure 8.

Figure 5: Pattern obtained by the Bernstein words of the first kind wB (x;n, k)

in the case when x = 0, n = {1, 2, . . . , 8} and k = 1

Figure 6: Pattern obtained by the Bernstein words of the first kind wB (x;n, k)

in the case when x = 1, n = {1, 2, . . . , 8} and k = 1

Remark 3.1. It is well-known that the logical complement ¬w (namely, so-called

ones’ complement or the Boolean complement in Boolean algebra) of a binary

word w is obtained by changing each 0 in w to 1 and vice versa. Observe that

Figure 5 and Figure 6 are logical complement of each other since we draw them

by representing zeros in the words with the white square blocks and ones in the

words with the black square blocks.
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Figure 7: Pattern obtained by the Bernstein words of the second kind

WB (x;n, k) in the case when x = 0, n = {0, 1, . . . , 8} and k = 1

Figure 8: Pattern obtained by the Bernstein words of the second kind

WB (x;n, k) in the case when x = 1, n = {0, 1, . . . , 8} and k = 1

Remark 3.2. Observe that Figure 7 and Figure 8 are not logical complement of

each other as opposed to the Figures arising from the Bernstein words of the

first kind.

Remark 3.3. The DNA (deoxyribonucleic acid) is a nucleic acid that contains the

genetic instructions and information used in the development and functioning of

all known living organisms. The DNA is a strand composed of four nucleotides

or bases called Adenine, Cytosine, Guanine and Thymine, abbreviated by A,

C, G and T, respectively (cf. [11]). Considering that the obtained words are

binary numbers, their 4-ary representations as well as their patterns may find

application in pharmaceutical technologies, biotechnology, and DNA sequenc-

ing. For example; after associating 4-ary representations of the Bernstein-based

words by the following morphism mapping letters 0, 1, 2 and 3 respectively to

A, C, G and T:

0 7→ A, 1 7→ C, 2 7→ G, 3 7→ T,

it is also possible to determine of which cell gives the nucleotide base (nucle-

obase) sequence in the DNA molecule and which biological information this

sequence encodes, this type studies also reveals an area of potential applica-
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tion of the Bernstein-based words. For nucleotide base (nucleobase) sequences

corresponding to the Bernstein-based words, see Table 9-Table 12.

k=1

n=1 A

n=2 CC

n=3 TCGT

n=4 CTCTCTCT

n=5 TTCTGTTCTGTT

n=6 CTTCTTCTTCTTCTTCTT

n=7 TTTCTTGTTTCTTGTTTCTTGTTT

n=8 CTTTCTTTCTTTCTTTCTTTCTTTCTTTCTTT

Table 9: The nucleotide base (nucleobase) sequence corresponding to the Bern-

stein words of the first kind wB (x;n, k) in the case when x = 0, n = {0, 1, . . . , 8}

and k = 1

k=1

n=1 C

n=2 GG

n=3 CAGCA

n=4 GAGAGAGA

n=5 CAAGACAAGACAA

n=6 GAAGAAGAAGAAGAAGAA

n=7 CAAAGAACAAAGAACAAAGAACAAA

n=8 GAAAGAAAGAAAGAAAGAAAGAAAGAAAGAAA

Table 10: The nucleotide base (nucleobase) sequence corresponding to the Bern-

stein words of the first kind wB (x;n, k) in the case when x = 1, n = {0, 1, . . . , 8}

and k = 1

k=1

n=1 GC

n=2 TAGTA

n=3 CTAGTACTAA

n=4 CTGCCGATGAATTAAA

n=5 TTGCCGATGAATTAAACTTAAAA

n=6 TTTAGTACTAACTGAAATTGAAAATTTAAAAA

n=7 CTTTAGTACTAACTGAAATTGAAAATTTAAAAACTTTAAAAAA

n=8 CTTTGCCGATGAATTAAACTTAAAACTTGAAAAATTTGAAAAAATTTTAAAAAAA

Table 11: The nucleotide base (nucleobase) sequence corresponding to the

Bernstein words of the second kind WB (x;n, k) in the case when x = 0,

n = {0, 1, . . . , 8} and k = 1
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k=1

n=1 T

n=2 CTCG

n=3 CTCGGCGG

n=4 TGTCATCCACGGG

n=5 TGTCATCCACGGGGACGGGG

n=6 CTCGGCGGGATCCCAATCCCCAACGGGGG

n=7 CTCGGCGGGATCCCAATCCCCAACGGGGGGAACGGGGGG

n=8 TGTCATCCACGGGGACGGGGGAATCCCCCAAATCCCCCCAAACGGGGGGG

Table 12: The nucleotide base (nucleobase) sequence corresponding to the

Bernstein words of the second kind WB (x;n, k) in the case when x = 1,

n = {0, 1, . . . , 8} and k = 1

Moreover, after associating 4-ary representations of the Bernstein-based words

by the following morphism mapping letters 0, 1, 2 and 3 respectively to Red,

Green, Blue and Yellow colored square blocks:

0 7→ Red colored square block,

1 7→ Green colored square block,

2 7→ Blue colored square block,

3 7→ Yellow colored square block,

we get a row of square blocks for the first few Bernstein-based words and then

by stacking up these rows, we also obtain some patterns which are given in

Figure 9-Figure 12.

Figure 9: Pattern obtained by 4-ary representations of the Bernstein words of

the first kind wB (x;n, k) in the case when x = 0, n = {1, . . . , 8} and k = 1.
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Figure 10: Pattern obtained by 4-ary representations of the Bernstein words of

the second kind wB (x;n, k) in the case when x = 1, n = {1, . . . , 8} and k = 1.

Figure 11: Pattern obtained by 4-ary representations of the Bernstein words of

the second kind WB (x;n, k) in the case when x = 0, n = {1, . . . , 8} and k = 1.

Figure 12: Pattern obtained by 4-ary representations of the Bernstein words of

the second kind WB (x;n, k) in the case when x = 1, n = {1, . . . , 8} and k = 1.

4. Relations arising from finite sums and generating functions for the

lengths of the Bernstein-based words

In this section, we give some finite sums and generating functions for the

lengths of the Bernstein-based words. Moreover, we give some relations and

results derived from the length of the Bernstein words of the first and the second

kind.
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4.1. Generating functions for the lengths of the Bernstein words of the first kind

Here, we give some formulas, finite sums, and generating functions for the

lengths |wB (x;n, k) | of the Bernstein words of the first kind.

The definitions, given by (2.1) and (2.2), mean that we first juxtapose k-

times 0’s or 1’s with (n−k)-times 0’s or 1’s. Then, the words obtained from the

first process is brought side by side
(
n
k

)
times to obtain the word wB (x;n, k).

Therefore, the length of the word wB (x;n, k) is equal to the product of (k+n−k)

and
(
n
k

)
which yields the assertion of the following theorem:

Theorem 4.1. Let x ∈ Σ = {0, 1} and n, k ∈ N0. Then, the length of the

Bernstein words of the first kind wB (x;n, k) is given by

|wB (x;n, k) | = n

(
n

k

)
. (4.1)

Using (4.1), we get Table 13 and Table 14 involving the lengths of the Bern-

stein words of the first kind wB (x;n, k) are provided as tables for the cases of

x ∈ Σ = {0, 1}, n ∈ {0, 1, 2, . . . , 15} and k ∈ {0, 1, 2, . . . , 10}.

k=0 k=1 k=2 k=3 k=4 k=5 k=6 k=7 k=8 k=9 k=10

n=0 0 0 0 0 0 0 0 0 0 0 0

n=1 1 1 0 0 0 0 0 0 0 0 0

n=2 2 4 2 0 0 0 0 0 0 0 0

n=3 3 9 9 3 0 0 0 0 0 0 0

n=4 4 16 24 16 4 0 0 0 0 0 0

n=5 5 25 50 50 25 5 0 0 0 0 0

n=6 6 36 90 120 90 36 6 0 0 0 0

n=7 7 49 147 245 245 147 49 7 0 0 0

n=8 8 64 224 448 560 448 224 64 8 0 0

n=9 9 81 324 756 1134 1134 756 324 81 9 0

n=10 10 100 450 1200 2100 2520 2100 1200 450 100 10

n=11 11 121 605 1815 3630 5082 5082 3630 1815 605 121

n=12 12 144 792 2640 5940 9504 11088 9504 5940 2640 792

n=13 13 169 1014 3718 9295 16731 22308 22308 16731 9295 3718

n=14 14 196 1274 5096 14014 28028 42042 48048 42042 28028 14014

n=15 15 225 1575 6825 20475 45045 75075 96525 96525 75075 45045

Table 13: For x ∈ Σ = {0, 1}, n ∈ {0, 1, 2, . . . , 15} and k ∈ {0, 1, 2, . . . , 10}, the

lengths of the words wB (x;n, k), i.e. |wB (x;n, k) |.
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k
{
|wB (x;n, k) |

}∞
n=k

Corresponding Sequence Also, see OEIS

k = 0 {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, . . . }
{
n
}∞
n=0

A001477

k = 1 {1, 4, 9, 16, 25, 36, 49, 64, 81, 100, . . . }
{
n2

}∞
n=1

A000290

k = 2 {2, 9, 24, 50, 90, 147, 224, 324, 450, . . . }
{ (n−1)n2

2

}∞
n=2

A006002

k = 3 {3, 16, 50, 120, 245, 448, 756, 1200, . . . }
{ (n−2)(n−1)n2

6

}∞
n=3

A004320

k = 4 {4, 25, 90, 245, 560, 1134, 2100, . . . }
{
n
(
n
4

)}∞
n=4

A027764

k = 5 {5, 36, 147, 448, 1134, 2520, 5082, . . . }
{
n
(
n
5

)}∞
n=5

A027765

Table 14: Table of the lengths of the words wB (x;n, k), i.e. |wB (x;n, k) |.

In Table 14, the second and third columns respectively shows the first terms

of the sequences
{
|wB (x;n, k) |

}∞
n=k

for k ∈ {0, . . . , 5} and the symbolic nota-

tions of the corresponding sequences. As for the last column, it provides the IDs

of the corresponding sequences in the Sloane’s On-Line Encyclopedia of Integer

Sequences (OEIS).

Some applications of (4.1) are give as follows:

Substituting n = 2m and k = m into (4.1), we get

|wB (x; 2m,m) | = 2m

(
2m

m

)
. (4.2)

Combining (1.6) with (4.2) gives a relation, between the length of the words

wB (x; 2m,m) and the Catalan numbers Cm, given the following theorem:

Theorem 4.2. Let x ∈ Σ = {0, 1} and n ∈ N0. Then, we have

|wB (x; 2m,m) | = 2m (m+ 1)Cm (4.3)

or, equivalently

|wB (x; 2m,m) | = 2m (m+ 1)

m∏
k=2

m+ k

k
. (4.4)
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The combination of (4.3) with (1.7) also yields the following corollary:

Corollary 4.3. Let x ∈ Σ = {0, 1} and 0 < |t| ≤ 1
4 . Then we have

∞∑
m=0

|wB (x; 2m,m) |
m (m+ 1)

tm =
4

1 +
√
1− 4t

. (4.5)

Summing the equation (4.1) over all 0 ≤ k ≤ n, we get

n∑
k=0

|wB (x;n, k) | =
n∑

k=0

n

(
n

k

)
(4.6)

by which and by the well-known formula of the sum of the binomial coefficients,

we have
n∑

k=0

|wB (x;n, k) | = 1

2

n∑
j=0

j

(
n

j

)
. (4.7)

Combining the above equation with the Eq.(1) of [22, p. 1329], we deduce to

the following corollary:

Corollary 4.4. Let x ∈ Σ = {0, 1} and n ∈ N0. Then, we have

n∑
k=0

|wB (x;n, k) | = n2n. (4.8)

Combining (4.8) and (1.11), we obtain a relation, between the numbers

y6(m,n;λ, p) and the finite sums of the lengths |wB (x;n, k) |, as in the following

corollary:

Corollary 4.5. Let x ∈ Σ = {0, 1} and n ∈ N0. Then, we have

n∑
k=0

|wB (x;n, k) | = nn!y6(0, n; 1, 1). (4.9)

Using (4.1), we get the ordinary generating functions for the lengths |wB (x;n, k) |,

given in the following theorem:

Theorem 4.6. Let x ∈ Σ = {0, 1} and n ∈ N0. Then we have

∞∑
k=0

|wB (x;n, k) |tk = (1 + t)
d

dt
{(1 + t)

n}. (4.10)
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By combining (4.1) with the following well-known formula of the Laguerre

polynomials Ln (t):

Ln (t) =

n∑
k=0

(−1)k
(
n

k

)
tk

k!
,

and after some elementary calculations, we get the exponential generating func-

tion for the lengths |wB (x;n, k) |, given in the following theorem:

Theorem 4.7. Let x ∈ Σ = {0, 1} and n ∈ N0. Then, we have

nLn (−t) =

∞∑
k=0

|wB (x;n, k) | t
k

k!
(4.11)

Remark 4.8. By combining (1.8) with (4.11), we also write the exponential

generating function for the lengths |wB (x;n, k) | in terms of the hypergeometric

series as follows:

1F1(−n; 1;−t) =
1

n

∞∑
k=0

|wB (x;n, k) | t
k

k!
.

Summing the reciprocals of the equation (4.1) over all 0 ≤ k ≤ n, we get

n∑
k=0

1

|wB (x;n, k) |
=

n∑
k=0

1

n
(
n
k

) . (4.12)

Since the following well-known equality holds true (cf. [18]; and see also the

references cited therein):

n∑
k=0

1(
n
k

) =
n+ 1

2n+1

n+1∑
k=0

2k

k
, (4.13)

combining (4.12) with the above equation we arrive at the following theorem:

Theorem 4.9. Let x ∈ Σ = {0, 1} and n ∈ N0. Then, we have

n∑
k=0

1

|wB (x;n, k) |
=

n+ 1

n2n+1

n+1∑
k=0

2k

k
. (4.14)

By combining (1.8) and (1.10) with (4.1), we get the following theorem,

which gives the ordinary generating functions for the reciprocal of the lengths

|wB (x;n, k) |:
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Theorem 4.10. Let x ∈ Σ = {0, 1} and n ∈ N0. Then we have

2F1 (1, 1;−n;−t)

n
=

∞∑
k=0

tk

|wB (x;n, k) |
. (4.15)

By combining (1.8) and (1.10) with (4.1), we get the following theorem,

which gives the exponential generating functions for the reciprocal of the lengths

|wB (x;n, k) |:

Theorem 4.11. Let x ∈ Σ = {0, 1} and n ∈ N0. Then we have

1F1 (1;−n;−t)

n
=

∞∑
k=0

1

|wB (x;n, k) |
tk

k!
. (4.16)

Remark 4.12. By using linear differential equations, the generating function

equation (4.15) and (4.16) may be represented by another special functions.

4.2. Generating functions for the lengths of the Bernstein words of the second

kind

Here, we provide some tables involving the lengths of the Bernstein words of

the second kind. We also give some observations and open questions regarding

generating functions for these length.

By Table 15 and Table 16, the lengths of the Bernstein words of the second

kind WB (x;n, k) are provided as tables for the cases of x ∈ Σ = {0, 1}, n ∈

{0, 1, 2, . . . , 15} and k ∈ {0, 1, 2, . . . , 10}.

k=0 k=1 k=2 k=3 k=4 k=5 k=6 k=7 k=8 k=9 k=10

n=0 1 1 1 1 1 1 1 1 1 1 1

n=1 4 4 1 1 1 1 1 1 1 1 1

n=2 7 10 7 1 1 1 1 1 1 1 1

n=3 10 19 19 10 1 1 1 1 1 1 1

n=4 13 31 40 31 13 1 1 1 1 1 1

n=5 16 46 73 73 46 16 1 1 1 1 1

n=6 19 64 121 148 121 64 19 1 1 1 1

n=7 22 85 187 271 271 187 85 22 1 1 1

n=8 25 109 274 460 544 460 274 109 25 1 1

n=9 28 136 385 736 1006 1006 736 385 136 28 1

n=10 31 166 523 1123 1744 2014 1744 1123 523 166 31

n=11 34 199 691 1648 2869 3760 3760 2869 1648 691 199

n=12 37 235 892 2341 4519 6631 7522 6631 4519 2341 892

n=13 40 274 1129 3235 6862 11152 14155 14155 11152 6862 3235

n=14 43 316 1405 4366 10099 18016 25309 28312 25309 18016 10099

n=15 46 361 1723 5773 14467 28117 43327 53623 53623 43327 28117

Table 15: For x ∈ Σ = {0, 1}, n ∈ {0, 1, 2, . . . , 15} and k ∈ {0, 1, 2, . . . , 10}, the

lengths of the words WB (x;n, k), i.e. |WB (x;n, k) |.
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By comparing Table 15 with the trees in Figure 1 and Figure 2, we come

up with some novel sequences of words with their lengths derived from the

tree diagrams. Some of these given in the rows of Table 16. For example, the

sequence in the first row of Table 16 is obtained from the lengths of the words

encountered on the nodes while traveling the first left branches of the trees in

Figure 1 and Figure 2.

k
{
|WB (x;n, k) |

}∞
n=k

Corresponding Sequence Also, see OEIS

k = 0 {1, 4, 7, 10, 13, 16, 19, 22, 25, 28, 31, . . . }
{
3n+ 1

}∞
n=0

A016777

k = 1 {4, 10, 19, 31, 46, 64, 85, 109, 136, 166, . . . }
{ 3n(n−1)

2 + 1
}∞
n=0

A005448

k = 2 {7, 19, 40, 73, 121, 187, 274, 385, 523, . . . } New Sequence Does Not Exist

k = 3 {10, 31, 73, 148, 271, 460, 736, 1123, . . . } New Sequence Does Not Exist

k = 4 {13, 46, 121, 271, 544, 1006, 1744, . . . } New Sequence Does Not Exist

k = 5 {16, 64, 187, 460, 1006, 2014, 3760 . . . } New Sequence Does Not Exist

Table 16: Table of the lengths of the words WB (x;n, k), i.e. |WB (x;n, k) |.

In Table 16, the second and third columns respectively shows the first terms

of the sequences
{
|WB (x;n, k) |

}∞
n=k

for k ∈ {0, . . . , 5} and the symbolic no-

tations of the corresponding sequences (if exist). As for the last column, it

provides the IDs (if exist) of the corresponding sequences in the Sloane’s On-

Line Encyclopedia of Integer Sequences (OEIS).

Remark 4.13. Observe from the second column of the Table 15 that the length

of the words WB (x;n, 1) gives the following sequence, for n ∈ N0:

{1, 4, 10, 19, 31, 46, 64, 85, 109, 136, 166, 199, 235, 274, 316, 361, . . . }

which is overlapping with the (n+ 1)-th centered 3-gonal numbers or so-called

centered triangular numbers, originate from a centered polygonal number con-

28



sisting of a central dot with three dots around it, and then additional dots in

the gaps between adjacent dots, see Figure 13 (cf. [3], [25, OEIS: A005448]).

Figure 13: The geometric origin of the centered triangular numbers (cf. [3, p.

48]).

The n-th centeredm-gonal number CSm (n) is given by the following explicit

formulas:

CSm (n) = 1 +m

(
n

2

)
(4.17)

=
mn2 −mn+ 2

2

which have the following generating function:

t
(
1 + (m− 2)t+ t2

)
(1− t)

3 =

∞∑
n=1

CS3 (n) t
n

where |t| < 1 (cf. [3, p. 51]; see also [25, sequence A005448 in the OEIS]).

Thus, from the Remark 4.13, we deduce that we have the following relation,

for n ∈ N0:

CS3 (n+ 1) = |WB (x;n, 1) |, (4.18)

and we thus conclude that the generating function for |WB (x;n, 1) | is given by

t2 + t+ 1

(1− t)
3 =

∞∑
n=0

|WB (x;n, 1) |tn; |t| < 1 (4.19)

which is also related to the sequence A005448 in the OEIS [25], and [3, p. 51].

At this stage, the following questions come to mind for the case k ̸= 1:
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What is the explicit formula for the lengths |WB (x;n, k) |? How can we con-

struct ordinary or exponential function for the lengths |WB (x;n, k) |? Namely,

we have the following open questions:

Open Question 2: Is there an explicit formula for the following generating

functions:

G3 (t; k) =

∞∑
n=0

|WB (x;n, k) | t
n

n!
=? (4.20)

and

G4 (t;n) =

∞∑
k=0

|WB (x;n, k) | t
k

k!
=? (4.21)

5. Slopes of the Bernstein-based words and their relations with Farey

fractions

In this section, we give relations between slopes of the Bernstein-based words

and the Farey fractions. It is known form the book of Lothaire [14], the slope

of a nonempty w is defined by

slope (w) =
height (w)

|w|
(5.1)

where height (w) denotes the height of the word w which corresponds to the

number of letters equal to 1 in the word w (cf. [14, pp. 42-45]; see also [2]). For

instance, the height of the word wB (1; 3, 2) = 110110110 is 6, and the length

of the word wB (1; 3, 2) is 9. Therefore, the slope of the word wB (1; 3, 2) is 6
9 ,

namely 1
3 . The word wB (1; 3, 2) can be drawn on a grid by representing a 0

(resp. a 1) as horizontal (resp. a diagonal) unit segment. This gives a polygonal

line from the origin to the point (|w|, slope (w)), and the line from the origin to

this point has the slope slope (w). See Figure 14.
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1 1 0 1 1 10 1 0

(6,9)

(0,0)

Figure 14: Slope diagram the word wB (1; 3, 2) = 110110110.

In order to present some relations between the slopes of the Bernstein-based

words and the Farey fractions, we briefly recall the definition of the set of

consecutive Farey fractions of order n, denoted by Fn, as follows:

Fn is a set of reduced fractions in the closed interval [0, 1] with denominators

≤ n.

The first ten set of consecutive Farey fractions are given as follows:

F1 :

{
0

1
,
1

1

}
F2 :

{
0

1
,
1

2
,
1

1

}
F3 :

{
0

1
,
1

3
,
1

2
,
2

3
,
1

1

}
F4 :

{
0

1
,
1

4
,
1

3
,
1

2
,
2

3
,
3

4
,
1

1

}
F5 :

{
0

1
,
1

5
,
1

4
,
1

3
,
2

5
,
1

2
,
3

5
,
2

3
,
3

4
,
4

5
,
1

1

}
F6 :

{
0

1
,
1

6
,
1

5
,
1

4
,
1

3
,
2

5
,
1

2
,
3

5
,
2

3
,
3

4
,
4

5
,
5

6
,
1

1

}
F7 :

{
0

1
,
1

7
,
1

6
,
1

5
,
1

4
,
2

7
,
1

3
,
2

5
,
3

7
,
1

2
,
4

7
,
3

5
,
2

3
,
5

7
,
3

4
,
4

5
,
5

6
,
6

7
,
1

1

}
F8 :

{
0

1
,
1

8
,
1

7
,
1

6
,
1

5
,
1

4
,
2

7
,
1

3
,
3

8
,
2

5
,
3

7
,
1

2
,
4

7
,
3

5
,
5

8
,
2

3
,
5

7
,
3

4
,
4

5
,
5

6
,
6

7
,
7

8
,
1

1

}
F9 :

{
0

1
,
1

9
,
1

8
,
1

7
,
1

6
,
1

5
,
2

9
,
1

4
,
2

7
,
1

3
,
3

8
,
2

5
,
3

7
,
4

9
,
1

2
,
5

9
,
4

7
,
3

5
,
5

8
,
2

3
,
5

7
,
3

4
,
7

9
,
4

5
,
5

6
,
6

7
,
7

8
,
8

9
,
1

1

}
F10 :

{
0

1
,
1

10
,
1

9
,
1

8
,
1

7
,
1

6
,
1

5
,
2

9
,
1

4
,
2

7
,
3

10
,
1

3
,
3

8
,
2

5
,
3

7
,
4

9
,
1

2
,
5

9
,
4

7
,
3

5
,
5

8
,
2

3
,
7

10
,
5

7
,
3

4
,
7

9
,
4

5
,
5

6
,
6

7
,
7

8
,
8

9
,
9

10
,
1

1

}

and so on.
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Some properties of Farey fractions are given as follows:

It is easy to see that Fn ⊂ Fn+1 with n ∈ N.

Let a
b < c

d be consecutive Farey fractions. Then, their mediant a+b
c+d which

satisfies
a

b
<

a+ b

c+ d
<

c

d
.

If a
b and c

d are consecutive Farey fractions, then the following equality holds

true:

ad− bc = −1

(cf. [1, p. 98]).

Fractions that appear as neighbors in a set of consecutive Farey fractions

have closely associated with the concept of the continued fraction expansions

and every fraction has two continued fraction expansions. For further properties

on the Farey fractions and continued fractions, the interested reader may refer

to the book of Apostol [1].

By choosing the penultimate element of each set of consecutive Farey frac-

tions {F1, F2, . . . , Fn−1, Fn}, we obtain the following new set of Farey fractions:

F0,n :=

{
0

1
,
1

2
,
2

3
,
3

4
,
4

5
,
5

6
,
6

7
, . . . ,

n

n+ 1
,
n+ 1

n+ 2
, . . .

}
(5.2)

so that n ∈ N0.

On the other hand, by choosing the second element of each set of consecutive

Farey fractions {F1, F2, . . . , Fn−1, Fn}, we obtain the following another new set

of Farey fractions:

F1,n :=

{
1

1
,
1

2
,
1

3
,
1

4
,
1

5
,
1

6
,
1

7
, . . . ,

1

n
,

1

n+ 1
, . . .

}
(5.3)

so that n ∈ N0.

By implementing the equation (5.1) in the Wolfram Language, we write the

following procedure, CalculateWordSlope:

CalculateWordSlope[w ?StringQ]

:=StringCount[w, "1"] / StringLength[w]
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for calculating the slope of the word w.

By executing the procedure CalculateWordSlope with the input words

wB (x;n, 1) for x ∈ Σ = {0, 1}, we obtain the same list respectively given in

(5.2) and (5.3). Therefore, we arrive at the assertion of the following theorem:

Theorem 5.1. Let n ∈ N0. Then, we have

F0,n =
{
slope (wB (0;n, 1))

}∞
n=1

. (5.4)

Theorem 5.2. Let n ∈ N0. Then, we have

F1,n =
{
slope (wB (1;n, 1))

}∞
n=1

. (5.5)

k
{
slope (wB (0;n, k))

}∞
n=k

k = 2 { 0
1 ,

1
3 ,

1
2 ,

3
5 ,

2
3 ,

5
7 ,

3
4 ,

7
9 ,

4
5 ,

9
11 ,

5
6 ,

11
13 ,

6
7 ,

13
15 , . . . }

k = 3 { 0
1 ,

1
4 ,

2
5 ,

1
2 ,

4
7 ,

5
8 ,

2
3 ,

7
10 ,

8
11 ,

3
4 ,

10
13 ,

11
14 ,

4
5 ,

13
16 , . . . }

k = 4 { 0
1 ,

1
5 ,

1
3 ,

3
7 ,

1
2 ,

5
9 ,

3
5 ,

7
11 ,

2
3 ,

9
13 ,

5
7 ,

11
15 ,

3
4 ,

13
17 , . . . }

k = 5 { 0
1 ,

1
6 ,

2
7 ,

3
8 ,

4
9 ,

1
2 ,

6
11 ,

7
12 ,

8
13 ,

9
14 ,

2
3 ,

11
16 ,

12
17 ,

13
18 , . . . }

Table 17: Table of the slope of the words wB (0;n, k), i.e. slope (wB (0;n, k)),

for the cases when k ∈ {2, 3, 4, 5}.
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k
{
slope (wB (1;n, k))

}∞
n=k

k = 2 { 1
1 ,

2
3 ,

1
2 ,

2
5 ,

1
3 ,

2
7 ,

1
4 ,

2
9 ,

1
5 ,

2
11 ,

1
6 ,

2
13 ,

1
7 ,

2
15 ,

1
8 , . . . }

k = 3 { 1
1 ,

3
4 ,

3
5 ,

1
2 ,

3
7 ,

3
8 ,

1
3 ,

3
10 ,

3
11 ,

1
4 ,

3
13 ,

3
14 ,

1
5 ,

3
16 , . . . }

k = 4 { 1
1 ,

4
5 ,

2
3 ,

4
7 ,

1
2 ,

4
9 ,

2
5 ,

4
11 ,

1
3 ,

4
13 ,

2
7 ,

4
15 ,

1
4 ,

4
17 ,

2
9 , . . . }

k = 5 { 1
1 ,

5
6 ,

5
7 ,

5
8 ,

5
9 ,

1
2 ,

5
11 ,

5
12 ,

5
13 ,

5
14 ,

1
3 ,

5
16 ,

5
17 ,

5
18 , . . . }

Table 18: Table of the slope of the words wB (1;n, k), i.e. slope (wB (1;n, k)),

for the cases when k ∈ {2, 3, 4, 5}.

Remark 5.3. Observe from Table 17 and Table 18 that each sequence in the

tables is a sequence of Farey fractions. However, in case k > 1, it is an open

problem how the sequence of the slopes of the words to be chosen and from

which set of Farey fractions similar to the above methods.

Remark 5.4. Let a
b be a rational number whose numerator and denominator are

co-primes, i.e. (a, b) = 1. Then, the Ford circle C (a, b) belonging to the fraction

a
b is defined as the circle in the complex plane with radius 1

2b2 and center at the

point a
b + i

2b2 so that i2 = −1 (cf. [1, p. 99]).

At this stage, the following another question comes to mind:

If so, what are the relations between the Ford circles and the geometry

arising from the sets F0,n and F1,n, respectively?

Remark 5.5. Observe that the sets F0,n and F1,n forms a convergent subse-

quences derived from the sequence of consecutive Farey fractions although each

of F1, F2, . . . , Fn−1, Fn, . . . is not convergent.

Since every convergent sequence is a Cauchy sequence, we also conclude that

each of the sets F0,n and F1,n forms a Cauchy sequence.
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k
{
slope (WB (x;n, k))

}∞
n=0

Corresponding Sequence

k = 0
{

1
1 ,

2
4 ,

3
7 ,

4
10 ,

5
13 ,

6
16 ,

7
19 ,

8
22 ,

9
25 ,

10
28 ,

11
31 , . . .

} {
n+1
3n+1

}∞
n=0

k = 1
{

0
1 ,

2
4 ,

5
10 ,

9
19 ,

14
31 ,

20
46 ,

27
64 ,

35
85 ,

44
109 ,

54
136 ,

65
166 , . . .

} { n(n+3)
3n2+3n+1

}∞
n=0

k = 2
{

0
1 ,

0
1 ,

3
7 ,

9
19 ,

19
40 ,

34
73 ,

55
121 ,

83
187 ,

119
274 ,

164
385 ,

219
523 , . . .

}
New Sequence

Table 19: Table of the slopes of the words WB (x;n, k), i.e. slope (WB (x;n, k)).

In Table 19, the second and third columns respectively shows the first terms

of the sequences
{
slope (WB (x;n, k))

}∞
n=0

for k ∈ {0, 1, 2} and the symbolic

notations of the corresponding sequences (if exist).
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