COST-EFFECTIVENESS OF OMALIZUMAB FOR THE TREATMENT OF SEVERE PEDIATRIC ALLERGIC ASTHMA—RESULTS OF A REAL-LIFE STUDY IN SPAIN

Antonio Nieto1, María Nieto-Cid1, Teresa Garriga-Baraut1, Ana Plaza2, Miguel Tortajada3, Javier Torres-Borrego4, Lozana Jaime2, Laura Moreno-Galarraga5, Mar Folque6, Montserrat Bosque6, Mirella Gaboli7, Alejandro López Neyra8, Cristina Rivas-Juesas9, María Araceli Caballero-Rabasco10, Andrea Freixa11, Laura Valdesorio Navarrete6, Esther Ballestor Asensio3, María Penín Antón12, Raquel Romero13, Juan Navarro Morón14, Alfredo Valenzuela-Soria15, Mercedes Sánchez Mateos16, José Batlles Garrido17, Verónica Sanz Santiago18, Álvaro Gimeno Díaz de Atauri19, Anselmo Andrés Martín20, Elena Campos Alonso21, David Gómez-Pastrana22, Elena Vázquez Rodríguez23, Luz Martínez-Pardo24, Genoveva del Río Camacho25, and Angel Mazón Ramos1

1Hospital Universitari i Politecnic La Fe
2Hospital Sant Joan de Deu Servei d’Allergia i Immunologia Clinica
3Hospital Universitario Doctor Peset
4Hospital Universitario Reina Sofia
5Complejo Hospitalario de Navarra IdiSNA Health Research Institute
6Hospital de Sabadell
7Hospital Universitario Virgen del Rocio
8Hospital Universitario Ramon y Cajal
9Hospital de Sagunto
10Hospital del Mar
11Hospital Infantil i l’Hospital de la Dona de Vall d’Hebron
12Hospital Universitario Principe de Asturias
13Hospital Universitario San Cecilio
14Hospital Costa del Sol
15Hospital Universitario Virgen de las Nieves
16Hospital Universitario Puerta de Hierro Majadahonda
17Complejo Hospitalario Torrecardenas
18Hospital Infantil Universitario Nino Jesus
19Hospital Universitario 12 de Octubre
20Hospital Universitario Virgen Macarena
21Hospital Comarcal Virgen de la Merced
22Hospital Universitario de Jerez de la Frontera
23Hospital Universitario de Valme
24Complejo Hospitalario de Jaen
25Hospital Universitario Fundacion Jimenez Diaz
January 24, 2023

Abstract

BACKGROUND Severe Pediatric Allergic Asthma (SPAA) induces a huge economic burden in terms of direct, indirect and intangible costs. The use of omalizumab for the treatment of these patients has produced a significant improvement in several clinical outcomes, but at the same time, the cost for the management of the disease has also increased. The aim of this report was to evaluate whether the use of omalizumab is cost-effective. METHODS A sample of 426 children with SPAA from the ANCHORS study was used to calculate the Incremental Cost Effectiveness Ratio (ICER) for the avoidance of Moderate to Severe Exacerbations (MSE), and also for the improvement in childhood Asthma Control Test (c-ACT) or the Asthma Control Questionnaire (ACQ5). We retrospectively collected data of health encounters and drug consumption before and up to six years after the beginning of the treatment with omalizumab. RESULTS The ICER per avoided MSE was €2,107 after one year, and it consistently decreased to €656 in those followed up to six years. Similarly, the ICER for the Minimally Important Difference in control tests showed a decrease from €2,059 to €380 per each 0.5 points of improvement in ACQ5, and from €3,141 to €2,322 per each 3 points improvement in c-ACT, at years 1 and 6 respectively. CONCLUSION The use of OMZ is a cost-effective option for most children with uncontrolled SPAA, mainly those who have frequent exacerbations, showing progressively reduced costs in successive years of treatment.

COST-EFFECTIVENESS OF OMALIZUMAB FOR THE TREATMENT OF SEVERE PEDIATRIC ALLERGIC ASTHMA- RESULTS OF A REAL-LIFE STUDY IN SPAIN

María Nieto-Cid 1,2 ORCID # 0000-0003-3968-510X
Teresa Garriga-Baraut3 ORCID # 0000-0003-1892-9750
Ana Mª Plaza-Martín4
Miguel Tortajada-Girbés,5,6 ORCID # 0000-0002-5134-778X
Javier Torres-Borrego7 ORCID # 0000-0003-2393-081X
Jaime Lozano-Blasco4
Laura Moreno-Galarraga8 ORCID # 0000-0003-0293-0749
Mª del Mar Folqué-Giménez4
Montserrat Bosque-García9 ORCID # 0000-0001-5426-4034
Mirella Gaboli10 ORCID # 0000-0002-1600-0916
Alejandro López-Neyra11 ORCID # 0000-0002-4032-1429
Cristina Rivas-Juesas12 ORCID # 0000-0001-5396-7424
Mª Araceli Caballero-Rabasco13 ORCID # 0000-0002-1080-2192
Andrea Freixa-Benavente9 ORCID # 0000-0001-9235-1788
Laura Valdesoiro-Navarrete9 ORCID # 0000-0003-1610-5168
Esther Ballester-Asensio5
María Penín-Antón14
Raquel Romero-García15
Juan Navarro-Morón16
Alfredo Valenzuela-Soria17 ORCID # 0000-0001-7992-9194
Mercedes Sánchez-Mateos18 ORCID # 0000-0003-0387-8321
José Batllés-Garrido19
Verónica Sanz-Santiago20 ORCID # 0000-0003-3368-8393
Álvaro Gimeno-Díaz de Atauri21 ORCID # 0000-0003-4775-892X
Anselmo Andrés-Martín22 ORCID # 0000-0003-4698-9312
Elena Campos-Alonso23
David Gómez-Pastrana24 ORCID # 0000-0002-6326-4076
Elena Vázquez-Rodríguez25
Luz Martínez-Pardo26
Genoveva del Río-Camacho27 ORCID # 0000-0002-9401-1864
Ángel Mazón-Ramos 1 ORCID # 0000-0001-5639-1037
Antonio Nieto-García 1 ORCID # 0000-0002-6302-6115
1 Pediatric Pulmonology and Allergy Unit, Hospital Universitari i Politècnic La Fe, Health Research Institute La Fe, Valencia, Spain
2 Now with Allergy Service, Hospital Universitario de La Plana, Villarreal, Spain
3 Pediatric Allergy Unit, Hospital Universitari Vall d’Hebron. Grup d’Investigació “Creixement i Desenvolupament”, Institut de Recerca de l’Hospital Universitari Vall d’Hebron (VHIR), Barcelona, Spain
4 Allergy and Clinical Immunology Department, Hospital Materno-Infantil Sant Joan de Deu, Barcelona, Spain
5 Pediatric Allergy and Pneumology Unit, Hospital Universitari Dr. Peset, Valencia, Spain. Department of Pediatrics, Obstetrics and Gynecology, University of Valencia, Valencia, Spain
6 Now with Pediatric Pulmonology and Allergy Unit, Hospital Universitari i Politècnic La Fe, Valencia, Spain
7 Pediatric Allergy and Pulmonology Unit, Hospital Universitario Reina Sofia, Cordoba, Spain
8 Pediatric Pulmonology Unit, Complejo Hospitalario de Navarra. IdiSNA Health Research Institute, Pamplona, Spain
9 Pediatric Allergy and Pulmonology Unit, Hospital de Sabadell – Corporacio Universitaria Parc Taulí, Sabadell, Spain
10 Pediatric Pulmonology and Allergy Unit, Hospital Universitario Virgen del Rocio, Sevilla, Spain
11 Pediatric Pulmonology Unit, Hospital Universitario Ramon y Cajal, Madrid, Spain
12 Pediatric Pulmonology and Allergy Unit, Hospital de Sagunto, Sagunto, Spain
13 Pediatric Pulmonology and Allergy Unit, Hospital del Mar, Barcelona, Spain
14 Pediatrics Service, Hospital Universitario Principe de Asturias, Alcala de Henares, Spain
15 Pediatric Pulmonology and Allergy Unit, Hospital Universitario Clínico San Cecilio, Granada, Spain
16 Pediatrics Service, Hospital Costa del Sol, Marbella, Spain
17 Pediatric Pulmonology Unit, Hospital Universitario Virgen de las Nieves, Granada, Spain
18 Pediatric Pulmonology Unit, Hospital Universitario Puerta de Hierro, Majadahonda, Spain
19 Pediatric Pulmonology and Allergy Unit, Hospital Universitario Torrecardenas, Almeria, Spain
20 Pediatric Pulmonology Unit, Hospital Universitario Infantil Nino Jesus, Madrid, Spain
21 Pediatric Pulmonology and Allergy Unit, Hospital Universitario 12 de Octubre, Madrid, Spain
22 Pediatric Pulmonology Unit, Hospital Universitario Virgen Macarena, Sevilla, Spain
23 Pediatrics Service, Hospital Comarcal Virgen de la Merced, Osnua, Spain
24 Pediatrics Service, Hospital Universitario de Jerez de la Frontera, Jerez de la Frontera, Spain
25 Pediatric Pulmonology Unit, Hospital Universitario Nuestra Senora de Valme, Sevilla, Spain
26 Pediatric Pulmonology Unit, Complejo Hospitalario de Jaen, Jaen, Spain
27 Pediatrics Service, Hospital Universitario Fundacion Jimenez Diaz, Madrid, Spain

Email addresses
María Nieto-Cid mnietocid@gmail.com
Teresa Garriga-Baraut teresagarriga@hotmail.com
Ana Mª Plaza-Martín anamaria.plaza@sjd.es
Miguel Tortajada-Girbés tortajadamig@gmail.com
Javier Torres-Borrego jtorbo@yahoo.es
Jaime Lozano-Blasco jaime.lozano@sjd.es
Laura Moreno-Gallaraga lmgallaraga@unav.es
Mª del Mar Folqué-Giménez mfolque@sjdhospitalbarcelona.org
Montse Bosque-García mbosque@tauli.cat
Mirella Gaboli mgaboli@hotmail.com
Alejandro López-Neyra alopezn@hotmail.com
Cristina Rivas-Juesas crisrijue@hotmail.com
Mª Araceli Caballero-Rabasco macaballerorabasco@parcdesalutmar.cat
Andrea Freixa-Benavente afreixbe11@gmail.com
Laura Valdesoiro-Navarrete lvaldesoiro@gmail.com
Esther Ballests-asensio estihhhher@hotmail.com - esther@conv.es
María Penín-Antón mariapenin@yahoo.es
Raquel Romero-García rakelina20@hotmail.com
Juan Navarro-Morón dealmargen@yahoo.es
Alfredo Valenzuela-Soria valenzuelilla@gmail.com
Mercedes Sánchez-Mateos dramsmateos@yahoo.es
José Batles-Garrido batlesgarrido@gmail.com
Verónica Sanz-Santiago veross81@yahoo.es
Álvaro Gimeno-Díaz de Atauri agimenodatauri@gmail.com
Anselmo Andrés-Martín anselmo.andres@gmail.com
Elena Campos-Alonso ealonsoxz@gmail.com
David Gómez-Pastrana dgpastranad@gmail.com
Elena Vázquez-Rodríguez elenavazquezrodriguez@gmail.com
Luz Martínez-Pardo laluzmi82@gmail.com
Genoveva del Río-Camacho gcamacho@fjd.es
Ángel Mazón-Ramos mazon_ang@gva.es - amazon@comv.es
Antonio Nieto-García antonio.nieto@me.com

Corresponding Author
Ángel Mazón Ramos

Pediatric Pulmonology and Allergy Unit.
Hospital Universitari I Politecnic La Fe
Av. Fernando Abril Martorell, 25 – 46026 – Valencia – Spain
mazon_ang@gva.es

Antonio Nieto-Garcia: Conceptualization (lead); Funding acquisition (lead); Investigation (lead); Methodology (lead); Project administration (lead); Resources (lead); Supervision (lead); Validation (lead); Writing-review & editing (lead); Bibliographic review (lead)

Ángel Mazon Ramos: Investigation (lead); Methodology (lead); Resources (lead); Validation (lead); Writing-review & editing (lead); Bibliographic review (lead)

Maria Nieto-Cid: Investigation (equal); Methodology (equal); Resources (equal); Writing-review & editing (equal); Bibliographic review (equal)

Teresa Garriga-Baraut: Investigation (equal); Methodology (equal); Resources (equal); Validation (equal); Writing-review & editing (equal); Bibliographic review (equal)

Ana Maria Plaza-Martin: Investigation (equal); Methodology (equal); Resources (equal); Validation (equal); Writing-review & editing (equal)

Miguel Tortajada-Girbes: Investigation (equal); Methodology (equal); Resources (equal); Writing-review & editing (equal)

Javier Torres-Borrego: Investigation (equal); Methodology (equal); Resources (equal); Validation (equal); Writing-review & editing (equal); Bibliographic review (equal)

Jaime Lozano-Blasco: Investigation (equal); Resources (equal); Writing-review & editing (equal)

Laura Moreno-Galarraga: Investigation (equal); Methodology (equal); Resources (equal); Validation (equal); Writing-review & editing (equal); Bibliographic review (equal)

Maria del Mar Folque-Gimenez: Investigation (equal); Resources (equal); Writing-review & editing (equal)

Montserrat Bosque-Garcia: Investigation (equal); Methodology (equal); Resources (equal); Writing-review & editing (equal)

Mirella Gaboli: Investigation (equal); Resources (equal); Validation (equal); Writing-review & editing (equal); Bibliographic review (equal)
Alejandro Lopez-Neyra: Investigation (equal); Methodology (equal); Resources (equal); Validation (equal); Writing-review & editing (equal); Bibliographic review (equal)

Cristina Rivas-Juesas: Investigation (equal); Methodology (equal); Resources (equal); Validation (equal); Writing-review & editing (equal); Bibliographic review (equal)

Maria Araceli Caballero-Rabasco: Investigation (equal); Resources (equal); Validation (equal); Writing-review & editing (equal)

Andrea Freixa-Benavente: Investigation (equal); Resources (equal); Writing-review & editing (equal)

Laura Valdesorio-Navarrete: Investigation (equal); Resources (equal); Writing-review & editing (equal)

Esther Ballester-Asensio: Investigation (equal); Resources (equal); Writing-review & editing (equal)

Maria Penin-Anton: Investigation (equal); Methodology (equal); Resources (equal); Validation (equal); Writing-review & editing (equal)

Raquel Romero-Garcia: Investigation (equal); Resources (equal); Writing-review & editing (equal)

Juan Navarro Moron: Investigation (equal); Methodology (equal); Resources (equal); Validation (equal); Writing-review & editing (equal)

Alfredo Valenzuela-Soria: Investigation (equal); Resources (equal); Writing-review & editing (equal)

Mercedes Sanchez-Mateos: Investigation (equal); Resources (equal); Writing-review & editing (equal)

Jose Batilles-Garrido: Investigation (equal); Resources (equal); Writing-review & editing (equal)

Veronica Sanz-Santiago: Investigation (equal); Resources (equal); Validation (equal); Writing-review & editing (equal)

Alvaro Gimeno-Diaz de Atauri: Investigation (equal); Resources (equal)

Anselmo Andres-Martin: Investigation (equal); Resources (equal); Writing-review & editing (equal)

Elena Campos-Alonso: Investigation (equal); Resources (equal); Writing-review & editing (equal)

David Gómez-Pastrana: Investigation (equal); Resources (equal); Writing-review & editing (equal)

Elena Vazquez-Rodriguez: Investigation (equal); Resources (equal); Writing-review & editing (equal)

Luz Martinez-Pardo: Investigation (equal); Resources (equal); Writing-review & editing (equal)

Genoveva del Rio-Camacho: Investigation (equal); Resources (equal); Writing-review & editing (equal)

FINANCIAL SOURCES

This article has received a partial grant from NOVARTIS for pharmacoeconomic analysis by AXENTIVA SOLUTIONS (https://www.axentiva.com)

ABSTRACT

BACKGROUND

Severe Pediatric Allergic Asthma (SPAA) induces a huge economic burden in terms of direct, indirect and intangible costs. The use of omalizumab for the treatment of these patients has produced a significant improvement in several clinical outcomes, but at the same time, the cost for the management of the disease has also increased.

The aim of this report was to evaluate whether the use of omalizumab is cost-effective.

METHODS
A sample of 426 children with SPAA from the ANCHORS study was used to calculate the Incremental Cost Effectiveness Ratio (ICER) for the avoidance of Moderate to Severe Exacerbations (MSE), and also for the improvement in childhood Asthma Control Test (c-ACT) or the Asthma Control Questionnaire (ACQ5). We retrospectively collected data of health encounters and drug consumption before and up to six years after the beginning of the treatment with omalizumab.

RESULTS

The ICER per avoided MSE was €2,107 after one year, and it consistently decreased to €656 in those followed up to six years. Similarly, the ICER for the Minimally Important Difference in control tests showed a decrease from €2,059 to €380 per each 0.5 points of improvement in ACQ5, and from €3,141 to €2,322 per each 3 points improvement in c-ACT, at years 1 and 6 respectively.

CONCLUSION

The use of OMZ is a cost-effective option for most children with uncontrolled SPAA, mainly those who have frequent exacerbations, showing progressively reduced costs in successive years of treatment.

Number of words of Abstract: 239

KEYWORDS

Severe Pediatric Allergic Asthma, Biologics, Omalizumab, Pharmacoeconomics, ICER, Cost

INTRODUCTION

Asthma is one of the most common chronic diseases in children;(1) prevalence in Europe ranges from 2.2% to 11.9%.(2) Asthma in children accounts for approximately half of asthma-related hospitalizations in Canada, (3) and so it is accountable for huge costs, which are comprehensively very difficult to estimate as they include:

- Direct costs (spent resources) incurred by the health system, society, family and individual patient: healthcare and non-healthcare costs.(4,5)
- Indirect costs (unearned resources) because of productivity losses due to morbidity and mortality, borne by the individual, family, society, or the employer.(4,5)
- Intangible costs, related to impairment of quality of life (QoL), limitation of physical and school activities, with consequences such as depression, fear, grief, stress, anxiety, etc.(5)

In the US, the total direct costs of pediatric asthma in 2013 accounted for $5.9 billion, mainly due to hospitalizations and emergency department visits.(6) In this context, severe asthma accounts for the majority of asthma costs. Most of the proposed definitions for severity include poor symptom control and use of high doses of medication, and many also include frequent exacerbations.(7) Despite its low prevalence (up to 5% of cases), severe forms account for a considerable proportion of the disease-related costs.(7,8) Poor symptom control, in addition, is associated with lower QoL of asthmatic children and their caregivers.(9,10)

Children aged [?] 6 years with severe persistent allergic asthma (SPAA) not controlled with high-dose inhaled corticosteroids (ICS) plus long-acting beta-agonists (LABA) have the option to receive targeted therapy with omalizumab (OMZ).(1) This monoclonal antibody prevents IgE from binding to the FceRI receptors, avoids the activation and triggering of the allergic cascade, and downregulates the production of IgE.(11) Clinical trials (12–14) and real life studies (15–18) have demonstrated the safety, efficacy and effectiveness of OMZ in pediatric patients, showing a reduction of symptoms, exacerbations, use of rescue medication, medical visits and hospitalizations, and an improvement in QoL.

Although there are some studies analyzing the costs in pediatric asthma,(2,5,8,19,20) the majority of pharmacoeconomic studies involve general population. The specific evaluation in severe pediatric asthma is needed as the use of biologic treatments in children has significantly increased the direct medical costs.
The aim of our study was to evaluate the evolution of direct medical costs related to healthcare resources and medication in a large cohort of children with SPAA treated with OMZ, followed up to 6 years since the beginning of the treatment.

METHODS

We performed the ANCHORS (Asthma iN CHildren: Omalizumab in Real-life in Spain) study, a retrospective, observational, multicenter study, in real life conditions, designed to evaluate the use OMZ in children with SPAA. Demographic and clinical results of the ANCHORS study have been published elsewhere. Briefly, it included 484 patients aged <18 years with SPAA from 25 Pediatric Allergy and Pulmonology units in Spain, who had been started on OMZ between 2006 and 2018 because of uncontrolled symptoms despite treatment with ICS+LABA and sometimes chronic oral corticosteroids (OCS). Some patients received OMZ as an off-label indication because they did not fulfil the accepted criteria either of age or of levels of serum total IgE, but were judged as lacking other alternatives of treatment.

The primary outcome of the ANCHORS study was the evolution of the annual number of moderate-to-severe exacerbations (MSE), defined as those requiring systemic corticosteroids, emergency visits, and/or hospitalizations, compared to baseline. A secondary outcome was the improvement in asthma control assessed by the validated Childhood Asthma Control Test (c-ACT) or the Asthma Control Questionnaire (ACQ5). Other clinical data, available in the previous publication, were not used for the present report.

The aim of this report was to assess cost-effectiveness of the use of OMZ measuring the costs from the perspective of the National Health System. We calculated the ICER (formula displayed in the figure 1) to avoid an MSE and for significant improvements in results of asthma control tests. The c-ACT values range from 0 to 25, with higher scores associated to better asthma control; conversely, the ACQ5, ranging from 0 to 6, shows better control with lower values. The cut-off points to consider asthma as well controlled are above 20 points in c-ACT, and below 1 point in ACQ5. We evaluated the cost for the clinical Minimally Important Difference (MID) in the control tests, estimated as 3 points for c-ACT and 0.5 points for ACQ5.

We collected the number of asthma-related healthcare encounters: unscheduled visits to primary care pediatricians and to specialists, emergency room visits, ward hospitalizations and Pediatric Intensive Care Unit (PICU) admissions. The official cost of each of these encounters differed across centers, so the mean values were used for all of them.

The use of medication was also recorded. It included montelukast, prolonged OCS, bursts of rescue OCS, ICS alone, and ICS+LABA. The daily doses of montelukast were calculated according to age (4 mg for children <6 years, 5 mg for those 6-14 years, 10 mg for those >14 years). The dose of chronic OCS was estimated as 1 mg/kg/day of prednisone for children >6 years and 1 mg/kg/day of prednisolone for those younger. The dose of bursts of OCS was calculated, as per guidelines, at 2 mg/kg/day of prednisone or prednisolone (according to the same age) for three days plus 1 mg/kg/day for three more days. We used the mean weight of boys and girls for age according to the reference by the Faustino Orbegozo Foundation. The actual doses of ICS or ICS+LABA received by each patient were transformed to equivalent doses of budesonide or budesonide+formoterol, used for a harmonized calculation of costs. We used the laboratory sale price (LSP) for drugs, obtained from the Spanish General Council of Official Associations of Pharmacists website. Other drugs, as theophylline, azithromycin or ipratropium bromide, were not included in the analysis due to the limited impact on costs, because of the small number of patients using these drugs, as well as their low price.

The dose of OMZ was that recommended by the manufacturer. Its cost was calculated considering the number of 150 or 75 mg syringes needed by each patient and the frequency of administration. A reduction of 7.5% was applied according to Royal Decree-Law 8/2010.

The unit cost of each health encounter and drug is shown in Table 1. The cost for each patient was calculated multiplying the number of units of used health encounters and drugs by their corresponding cost. We calculated cost in euros of 2018, regardless of the year when it occurred.
Data were retrospectively collected reviewing the electronic medical records of the hospitals and primary care centers. The basal data were those of the year before initiating OMZ treatment; thereafter data were referred to each complete year. The time horizon was the duration of follow-up since the start of treatment in each patient until closure of database.

Results are shown as means and 95% confidence intervals, and medians and interquartile range. As variables had a non-normal distribution, for paired samples, Wilcoxon sign-ranked test for two and Friedman test for three or more groups were used. SPSS 15.0 software program (Chicago, Ill, USA) was used for calculations.

The study was approved by a Central Ethics Committee (Hospital Universitari i Politènic La Fe, Valencia-Spain), which granted a waiver for informed consent.

RESULTS

We included 484 patients who started treatment, but 58 did not complete the first year of treatment, leaving 426 (263 males/163 females; mean age 11.1 ± 2.9 years) available for assessment. The results shown are those of patients with actual data. As these were retrospectively collected, missing results were frequent and some patients were excluded from some results.

The number of MSE showed an 86% decrease in year 1 of treatment with OMZ (from 7.86 to 1.08), and there was a further gradual decrease up to 96% in year 6 (0.33) (Table 2). A marked improvement in the values of control tests exceeding the MIDs appeared in the first year and increased thereafter (Table 2).

The cost of health encounters is shown in Figure 2 and Table E1. There was a decrease of more than 93% in the cost of health encounters since the first year (Figure 3), especially for hospitalizations and even more for PICU admissions (only one in year 1 and none thereafter).

There was a decrease in all types of drugs of pharmacologic treatment (other than OMZ) since year 1, except for ICS (Figure 4 and Table E2). For these there were increases some of the years as some patients receiving ICS+LABA were switched to ICS alone.

There were quite a few missing values in some variables, as shown in Tables E1 and E2, especially in unscheduled visits to the primary care pediatrician. Tables E3 and E4 display the same results as above for only the patients with complete data in all variables of health encounters and drugs; the results show the same decreasing tendency.

Figure 4 and Table 2 show the costs of health encounters plus medication per patient, and the increase of costs, compared to baseline, due to OMZ. There was an increase of €9,823 in costs in the first year when OMZ was added; that amount gradually decreased to €4,715 in year 6 even though there was further clinical improvement. The mean ICER per avoided MSE was €2,107 (95%CI 1,652 to 2,562) (median 1,472) (median €369) in year 6. Likewise, the ICER for MIDs in control tests showed a decrease from year 1 (€2,059) to year 6 (€380) per each 0.5 points of improvement in ACQ5, less marked for c-ACT (€3,141 and €2,322 per each 3 points improvement in years 1 and 6 respectively).

DISCUSSION

Several published clinical trials demonstrate that OMZ is able to improve the clinical condition and QoL of many children with SPAA uncontrolled with conventional treatment.(12–14) It has also proved to be effective in real-life studies,(15–18) including ours,(21) which is used for the present report.

OMZ is recommended in guidelines as an add-on therapy in the last step of treatment, mainly due to its higher cost compared to other drugs.(1) In patients with good response to OMZ, the rest of treatments are usually tapered or even withdrawn, either on medical recommendation or, quite often, by the patients themselves when they consider they do not need it. The improved clinical status is also reflected in the reduction of health encounters and the improvement of control tests scores.

The use of OMZ causes a substantial increase in direct costs in the first year. Thus, the mean ICER to avoid an MSE (main objective of this report) was €2,107 euros (median €998). We have not data
in children for comparison, but in two studies in adult patients in our country, the ICER varied from €1,488 to €1,712 euros per avoided MSE with the same criteria we used. When these studies included indirect costs, not available in our patients, the figures decreased to €1,130 and €1,607 euros, reductions of 24% and 6% respectively. In two studies in adults, the figures per avoided exacerbation were €1,789 and €2,244 euros, including indirect costs. Importantly, our ICER cost of €2,107 euros was progressively reduced to €657 euros (median €369) in year six of treatment.

In other studies, the ICER for improvement in asthma control tests was higher than that for avoided exacerbations. This also happened in our case, where the ICER to achieve the MID ranged from €3,141 in year 1 to €2,321 in year 6 for the c-ACT, and from €2,059 in year 1 to €380 in year 6 for the ACQ5. Cost in the first year for c-ACT were higher (€3,555 to €4,569, even including indirect costs) in the studies of adults available for comparisons. There are studies evaluating the costs for Quality Adjusted Life Years (QALY), in adults and adolescents, and only one in children. The costs for studies in the USA show very high figures, from US$25,319 to US$821,000 per QALY, whereas in the study in children, in China, that cost was calculated also as high as US$211,217. The cost was much lower in Europe, €56,847 in Italy and that a cost of €30,000 to €45,000 per QALY would be an affordable price in Spain. We have no data about quality of life in our patients, so we can only speculate that at least the cost for QALY would decrease in successive years, given the reduction of costs in the variables we evaluated.

There are several limitations in our study. We collected data retrospectively and there were missing data for some variables, especially regarding health encounters. When calculating the sum of variables (health encounters and medication) patients with missing data could not be included, leading to a lower number for analyses. As this was a multi-center study, the asthma control tests were not performed uniformly, and the number of available patients was even lower.

In addition, it should be noted that in order to harmonize costs, considering the variability between researchers, centers and patients, budesonide and formoterol were used as the gold standard, obtaining an approximate cost when calculating the equivalence to budesonide and formoterol in cases in which another ICS and/or LABA were taken. There may also be different budesonide products with different prices, depending on the inhalation mechanism. Furthermore, the cost of spacer chambers, possible treatment adherence failures, and inflation were not considered.

The cost of personnel for administering OMZ was not included either, nor were expenses for transportation. Although at the time of our study the home administration of OMZ was not yet authorized, it is foreseeable that nowadays these costs would diminish. The number of adverse effects of OMZ were low and mainly mild, as shown in the previous publication. We were not able to calculate costs associated to them, a common situation in other studies, and this can be another limitation of our report.

This is the first study in a pediatric population in Europe to estimate these costs. One strength of our report is that it was a real-life study, with a long duration, a large sample of patients, and actual data, not extrapolated from theoretical evaluations. We found decreasing costs for OMZ, due to increasing intervals between administrations, an approach not based on clinical studies, but common practice across different hospitals, with no previous agreement, based on clinical individual assessment by attending physicians. The improvement was found since year 1 and the costs further decreased along the following years. The decrease in costs may be also partly due to withdrawal of OMZ in non-responders.

Indirect costs could not be collected. As health encounters diminished 95-99% from the basal ones, all the associated expenses for transportation, missing school days, missing workdays of the family or expenses for caregivers would be saved, reducing ICER to a greater extent.

CONCLUSION

The use of OMZ is a cost-effective option for most children with uncontrolled SPAA, mainly those who have frequent exacerbations, showing progressively reduced costs in successive years of treatment.
ACKNOWLEDGMENTS

Our thanks to Suzan Serip from Axentiva Solutions for her invaluable help in writing and proofreading this paper.

LEGEND OF FIGURES

Figure 1
Formula for the calculation of the Incremental Cost-Effectiveness Ratio (ICER)

Figure 2
Cost of health encounters per patient from Baseline to year 6 (in

Figure 3
Cost of anti-asthmatic drugs per patient from Baseline to year 6 (in agonists; OC: oral corticosteroids; OMZ: Omalizumab.

Figure 4
Left axis: Costs of health encounters plus medication per patient from Baseline to year 6 (in \euro of 2018). Right axis (red): Number of MSE per patient from Baseline to year 6. ACQ5: Asthma Control Questionnaire; c-ACT: Childhood Asthma Control Test; CI: confidence interval; MSE: moderate/severe exacerbations

REFERENCES

Hosted file