Multi-spacecraft Observations of Gradual Solar Energetic Particle Events with Enhanced 3He Abundance

Radoslav Bucik1,1, Glenn Mason2,2, Raúl Gómez-Herrero3,3, Maher Dayeh1,1, Mihir Desai1,1, Christina Cohen4,4, David Lario5,5, Laura Balmaceda6,6, Vratislav Krupar5,5, Mark Wiedenbeck7,7, Robert Wimmer-Schweingruber8,8, George Ho2,2, Javier Rodríguez-Pacheco3,3, Nariaki Nitta9,9, Patrick Küh8,8, Zigong Xu8,8, and Tilaye Asfaw10,10

1Southwest Research Institute
2Johns Hopkins University Applied Physics Laboratory
3University of Alcalá
4California Institute of Technology
5NASA Goddard Space Flight Center
6George Mason University Fairfax
7Jet Propulsion Laboratory, California Institute of Technology
8University of Kiel
9Lockheed Martin Advanced Technology Center
10NASA JSC/Leidos

January 20, 2023

Abstract

Flare suprathermal ions with enhanced 3He and heavy-ion abundances are an essential component of the seed population accelerated by CME-driven shocks in gradual solar energetic particle (GSEP) events. However, the mechanisms through which CME-driven shocks gain access to flare suprathermals and produce spectral and abundance variations in GSEP events remain largely unexplored. We report two recent GSEP events: one observed by Solar Orbiter on 2020 Nov 24 (the first GSEP event on Solar Orbiter) and the other by ACE on 2021 May 29 (the most intense GOES proton event in the present solar cycle). The events were preceded by impulsive SEP (ISEP) events. Abundances and energy spectra are markedly different in the examined events at < 1 MeV/nucleon. For example, in the May event, Fe/O is typical of ISEP events, a factor of 100 to 10 higher than Fe/O in the November event. 3He abundance in the November event is high, typical of ISEP events, while in the May event, it is much lower, though finite. The May event shows a hard 4He spectrum with a power-law index of -1.6, and the November event a soft spectrum with an index of -3.5. The events were associated with halo CMEs with speeds around 900 km/s. The November event was also measured by Parker Solar Probe and the May event by STEREO-A and Solar Orbiter. This paper discusses the origin of vastly different abundances and spectral shapes in terms of variable remnant population from preceding ISEP events. Furthermore, we discuss a possible direct contribution from parent flares.
Multi-spacecraft Observations of Gradual Solar Energetic Particle Events with Enhanced ³He Abundance

Motivation. The ³He enhancement is commonly detected in gradual CME-driven shock SEP events. The origin of the enhancement remains largely unexplored. Two mechanisms have been suggested - remnant flare material or concomitant activity in the corona, e.g., parent active region (AR).

We examine the 2020 Nov 24, 1st gradual SEP (GSEP) event on Solar Orbiter (SO). The event shows enhanced ³He abundance. It was detected marginally on Parker Solar Probe (PSP) & only at < 200 keV/n (shown are H count rates in 1/s in panel b).

The event was not measured by STEREO-A or near Earth. The event ³He/³He on SO is ~24× higher than the coronal value.

The event shows unusually soft spectra compared to typical low-energy GSEP event spectra with index y ≈ 1.5. The energy dependence of ³He/H, ³He/O, Fe/O is consistent with diffusive shock acceleration.

The event is coincident with a coronal mass ejection (CME), coronal shock, and high-speed solar wind (HSS).

PFSS model coronal open field lines that intersect ecliptic. SO could be connected to the CME parent AR. The SO & PSP magnetic foot-points are determined for 350 km/s.

Conclusions. Possible origins of enhanced ³He abundance:
- Probable – (1) parent AR showing open field lines where SO was connected augmented by unusually soft spectra of GSEP event (2) remnant ³He from preceding ³He injections on Nov 17-20 (see SH25B-2084)
- Less probable – the jet without measured type III followed the CME
- Improbable – magnetically closed type III storm sites

AGU Fall Meeting 2021
Supported by NASA LWS grant 80NSSC21K1316