MaQuIs - Mars Quantum Gravity Mission

Lisa Wörner¹, Barend Cornelis Root², Philippe Bouyer³, Claus Braxmaier⁴, Dominic Dirkx⁵, Joao Encarnacão², Ernst Hauber⁶, Hauke Hussmann⁷, Ozgur Karatekin⁸, Alexander Koch⁴, Lee Kumanchik⁴, Federica Migliaccio⁹, Mirko Reguzzoni⁹, Birgit Ritter⁸, Manuel Schilling⁴, Christian Schubert⁴, Cedric Thieulot¹⁰, Wolf von Klitzing¹¹, and Olivier Witasse¹²

¹German Aerospace Center, Institute for Quantum Technologies
²TU Delft
³LP2N
⁴German Aerospace Center
⁵Delft University of Technology
⁶DLR
⁷DLR, Institute for Planetary Research
⁸Royal Observatory of Belgium
⁹Politecnico di Milano
¹⁰Utrecht University
¹¹Foundation for Research and Technology Hellas
¹²ESA

January 17, 2023

Abstract

The aim of this paper is to propose a Mars Quantum Gravity Mission (MaQuIs). The mission is targeted at improving the data on the gravitational field of Mars, enabling studies on planetary dynamics, seasonal changes, and subsurface water reservoirs. MaQuIs follows well known mission scenarios, currently deployed for Earth, and includes state-of-the-art quantum technologies to enhance the gained scientific signal.
MaQuIs - Mars Quantum Gravity Mission

L. Wörner¹, B. C. Root², P. Bouyer³, C. Braxmaier¹⁴, D. Dirkx², J. Encarnação², E. Hauber⁵, H. Hussmann⁵, Ö. Karatekin⁶, A. Koch⁷, L. Kumanchik¹, F. Migliaccio⁸, M. Reguzzoni⁸, B. Ritter⁶, M. Schilling⁷, C. Schubert⁷, C. Thieulot⁹, W. v. Klitzing¹⁰, O. Witasse¹¹

¹German Aerospace Center, Institute for Quantum Technologies, 89081 Ulm, Germany
²Delft University of Technology, Department of Space Engineering, Delft, the Netherlands
³Univ. of Amsterdam, Eindhoven Univ. of Technology, the Netherlands
⁴Universität Ulm University, Institute of Microelectronics, Albert-Einstein-Allee 43, 89081 Ulm, Germany
⁵German Aerospace Center, Institute of Planetary Research, 12489 Berlin, Germany
⁶Royal Observatory of Belgium, Brussels, Belgium
⁷German Aerospace Center, Institute for Satellite Geodesy and Inertial Sensing, Callinstrasse 30b, 30167 Hannover, Germany
⁸Politecnico di Milano, Department of Civil and Environmental Engineering, Milan, Italy
⁹Mantle dynamics group, Utrecht University, The Netherlands
¹⁰Institute for Electronic Structure and Laser, Foundation for Research and Technology Hellas, Heraklion, Greece
¹¹European Space Agency, ESTEC, Noordwijk, The Netherlands

Key Points:

• Mars
• Gravimetry
• Quantum Technologies

Corresponding author: Lisa Wörner, lisa.woerner@dlr.de
Abstract
The aim of this paper is to propose a Mars Quantum Gravity Mission (MaQuIs). The mission is targeted at improving the data on the gravitational field of Mars, enabling studies on planetary dynamics, seasonal changes, and subsurface water reservoirs. MaQuIs follows well known mission scenarios, currently deployed for Earth, and includes state-of-the-art quantum technologies to enhance the gained scientific signal.

Plain Text Summary
MaQuIs is a mission to map the gravity field of Mars to investigate subsurface structures and observe temporal changes. Consequently, MaQuIs yields information on the development of the planet and allows a deeper view into the structure and internal processes than ever before. For this purpose, MaQuIs deploys quantum mechanical systems to measure the gravity field following successful missions such as GRAIL and GRACE on the Moon and Earth respectively.

1 Introduction
The study of planets is interesting for several different reasons, such as planetary composition, evolution, and density, surface properties, prospecting, and comparative planetology (Glassmeier, 2020). One major subject of study is the search for water in planets outside Earth (Nazari-Sharabian et al., 2020; O’Rourke et al., 2020; Peddinti & McNamara, 2019; Bibring et al., 2006). Especially important in this case is the abundance of liquid water, since it could foster life and support a potential landing party.

In addition to static water distribution on a planet, shifts and dynamics in the planets density, are of high importance. The comparison to Earth’s dynamics, allows to deepen the understanding of both the Earth’s and the planets dynamics and consequently study phenomena such as climate change, seismic activity, seasonal variations, or volcanic eruptions. With those data available, inner structures can be modelled and predictions made (Banerdt et al., 2020).

For this purpose different missions, orbiting planets, landing on planets and comets, and samples return missions, have been carried out in the past.

Here, we propose a Mars Quantum Gravity Mission, MaQuIs, which aims at improving the current knowledge of the gravitational field map of Mars and thereby enabling research of seasonal changes, planetary dynamics, and subsurface water occurrences.
Similar to Earth and Lunar satellite gravimetry missions, static occurrences, marked by differences in density as well as dynamical processes are detectable from orbit. Such a dedicated gravity mission would improve the static gravitational field model of Mars, determine its temporal components, and allow to pinpoint the distribution of water with a higher accuracy than current orbital missions. Additionally, a more detailed knowledge of the gravitational field distribution paves the way to improving not only the depth resolution of subsurface lakes and their distribution around the entire planet, but also to identify and characterise other buried mass structures like hidden impact craters (Frey et al., 2002) and magma chambers (Mari et al., 2020; Broquet & Andrews-Hanna, 2022).

Recently, missions have been proposed for low Mars orbit to improve existing geodetic and remote sensing data-sets using current techniques of gravity field determination and orbit determination based on Doppler tracking and inter-satellite radio links (Genova, 2020; Oberst et al., 2022). Landers can support such global missions, as their resolution for a specific area is increased on the expense of being restricted to a limited area.

A dedicated global gravity mission would allow to identify interesting sites for further robotic ground based investigation, including possible drilling sites and to prepare human exploration with identification of potential landing sites with local sources for In-Situ Resource Utilisation (ISRU).

MaQuIs will follow the mission design of GRACE (Tapley et al., 2004), GRICE (Lévêque et al., 2021), CARIOQA (Lévêque et al., 2022), and GRAIL (Zuber et al., 2013). MaQuIs will deploy quantum mechanical systems to enable the gravity field measurement. This increases the resolution of the gravitational field map, as discussed for similar missions for Earth (Carraz et al., 2014; Lévêque et al., 2021, 2022). Additional optomechanical sensors and optical link technologies enable the proposed mission. In the following, the mission is outlined, giving an overview over scientific goals, system level requirements, an envisioned mission design, and orbital considerations.

\section{2 Scientific Goals}

Gravitational data can be used to study the surface and subsurface of the planet leading to improved understanding of the Martian crust and lithosphere (Beuthe et al., 2012). Such data also holds the potential to investigate dynamic surface processes, such as atmospheric seasonal changes, appearance of ice sheets, and large scale erosion of the Martian surface.
While dynamic surface effects can be observed by optical means, such as spectroscopy and imagery, subsurface effects and density distributions require additional instruments. With seismographs and radiography being two deployed possibilities, the study of the gravitational field supported by information on the visible shape of the planet enables the study of static and dynamic processes under the planet’s surface. The accuracy of both information, the imagery and the gravitational field data, determine the accuracy of predictions and the quality of models of the internal structure and planetary composition. Additionally, sufficiently accurate measurements allow the identification of areas of high or low mass density and their dynamics, leading to the identification of interesting regions and determination of future landing sites.

2.1 Gravity Maps of Mars

Over the past decade, Mars has taken more and more of the spotlight. Several missions to investigate local and global properties of the Red Planet have been successfully operated, one of the latest being Perseverance (Jacobstein, 2021). Future planned missions to Mars and its moons include orbiters and landers (Muirhead et al., 2020). Consequently, Mars is already orbited by several different satellites.

Fig. 1: Gravity anomaly of Mars from MRO120F (Konopliv et al., 2020).

From orbits determined by Doppler tracking observations, the current resolution of the gravitational field map of Mars is in the order of 115 km at ground level (Konopliv et al., 2011, 2016; Genova et al., 2016). Figure 1 shows the gravity anomalies on the arcoid, the planetary geoid of Mars, up to degree and
order 120. A large correlation of the field is seen with the small scale topography. The dichotomy observed in the topography of Mars is missing in the gravity anomalies, suggesting some form of local isostasy in the sub-surface. Another global gravity feature stands out, related to the volcanic region, the Tharsis Rise. A large positive gravity anomaly (approximate 300 mGal) situated at the Tharsis Rise is surrounded by a ring of negative gravity anomaly (approximate \(-300\) mGal), seemingly detached from any geologic feature. A feature that also stands out in the degree and order \((d/o)\) 2–3 of the spherical harmonic coefficients that capture the spectral content of the gravitational field.

Figure 2 shows the degree variances (or spectral signatures) of several Martian gravity field models with its uncertainty estimates. We compare here the four most used versions of the Martian gravitational field: GGMRO-95 (Konopliv et al., 2006), GMM-3-120 (Genova et al., 2016), JGMRO-120d (Konopliv et al., 2016), and JGMRO-120F models (Konopliv et al., 2020)). All four fields coincide up to degree and order 60, where the oldest model GGMRO-95 starts to divert. The newer models include more and lower orbital data improving the resolution and accuracy of the model. The dashed lines denote the error estimates of these models. Around degree 100 the error estimates cross the actual model content, which shows that the models can only be thrusted up to degree 100, which stands for a spatial resolution of 115 km.

![Figure 2: Spectral signature of several Mars gravity models found on NASA’s Planetary Data System (GGMRO-95 (Konopliv et al., 2006), GMM-3-120 (Genova et al., 2016), JGMRO-120d (Konopliv et al., 2016), and JGMRO-120F models (Konopliv et al., 2020)).](image)
The observed orbits used to construct these gravitational models need to be corrected for non-conservative accelerations acting on the satellite, like atmospheric drag and solar radiation pressure, prior to or during gravity field recovery (Konopliv et al., 2006). Incorrect modelling of these effects will leak into the gravity field models as clearly shown by the improved consistency in results obtained by Genova et al. (2016) after incorporating a more detailed atmosphere model. A dedicated gravity field mission will not only result in an improved gravity field model of Mars, but also give insights in better atmospheric models of Mars (Doornbos, 2012), which is in turn important for interpreting temporal gravity signatures (Petricca et al., 2022).

2.2 Water on Mars

2.2.1 Liquid Water on Mars

Abundant morphological and mineralogical evidence points to large amounts of liquid water that must have been present at the surface of early Mars (Carr & Head, 2015; Bibring et al., 2006). Large parts of that early reservoir have been lost to space (Jakosky, 2021), and today, the largest known part of the remaining martian water is present in the polar caps (Byrne, 2009), in near-surface ice deposits in high and mid-latitudes (Holt et al., 2008; Dundas et al., 2021), and as water in hydrated minerals (Carter et al., 2023). However, it cannot be excluded that liquid water is present even today in the subsurface in the form of deep groundwater (Grimm et al., 2017) underlying a thickening cryosphere (Clifford et al., 2010). In fact, radar measurements suggest that a briny layer of liquid water may exist beneath a 1.5 km-thick part of the south polar ice cap (Lauro et al., 2021), however, this interpretation of the data is debated (I. B. Smith et al., 2021; Bierson et al., 2021). If there are any aquifers now, the depths to the groundwater table are thought to be 2-7 km in equatorial zone and 11-20 km at the poles (Stamenkovic et al., 2021). The contrast of the lighter density of such aquifers, if present, with respect to the heavier Martian basaltic crust makes the MaQuIs gravity mission ideal for detecting and exploring locations and size of possible present-day aquifers or the permeable structures that host them (porous sediments, fractured basalts). The mission could also detect how seasonal and orbital changes of Mars affect the groundwater level on Mars. High precision gravity observations could explore this subsurface phenomenon, which would have important implications for the current habitability of Mars.
2.2.2 Volatile-rich Subsurface Sediments on Mars

One main objective of the proposed mission is the identification and quantification of volatile-rich sediment reservoirs. Numerous landforms on Mars have been interpreted as mud volcanoes and corresponding mud flows, i.e. the results of subsurface sediment mobilization and subsequent ascent, eruption and surface emplacement of volatile-rich, liquefied sediments (Skinner & Tanaka, 2007; Oehler & Allen, 2010; Komatsu et al., 2016; Brož et al., 2019; Orgel et al., 2019; Čurín et al., 2023). Such deposits are prime targets for geological research, as they bear a record of aqueous processes at depth and are not heavily affected by high-temperature and high-pressure alteration (unlike impact ejecta). As such, they enable access to materials that were formed in the early history of Mars. Moreover, mud volcanoes would be promising sites to search for biosignatures, as mud volcanoes on Earth are known to be habitats for thriving bacterial communities (Fryer et al., 2020) and, by analogy, may have provided suitable conditions for life on Mars (Oehler et al., 2021). However, the interpretation of landforms is typically not un-ambiguous, and at least part of the hypothesized mud volcanoes may also have been formed as 'true', igneous volcanoes. It is therefore essential to test the mud volcano hypothesis by identifying subsurface reservoirs of volatile-rich sediments. On Earth, mud volcanoes are typically associated with density anomalies (Nettleton, 1979; Doo et al., 2015), and gravity surveys are routinely used to characterize sedimentary basins which typically display negative gravity anomalies (Bott, 1960). The contrast between less dense sediments and the denser basaltic and other magmatic rocks that constitute the bulk of the crust will enable MaQuIs to identify sediment subsurface reservoirs and quantify their masses. A comparison of derived gravity maps with the distribution of possible mud volcanoes will inform our search for deep volatiles and possible habitable subsurface niches on Mars ('deep biosphere', e.g. Michalski et al., 2013).

2.3 Temporal gravity changes and seasonal behavior of CO₂ ice

The climate of planets are subject to changes in time due to several causes including astronomical forcing (variations of orbital elements), atmospheric escape or out-gassing following natural events. The stability of present day Mars climate and the secular changes are crucial to understand its long term dynamics (Haberle & Kahre, 2010). Analysis has shown that Mars possibly once harboured liquid water on the surface and had a denser atmosphere (Nazari-Sharabian et al., 2020). This combination renders it possible that there once were life forms roaming its surface. Those factors allow to infer a climate collapse taking place in Mars' history. Understanding the processes that led to that event and the still on-
going seasonal changes including the appearance of surface carbon-dioxide ice, render Mars a relevant sub-
ject to predicting Earth’s future. To gain a complete picture of the underlying processes, internal as well
as surface structures and deposition dynamics are important to study.

In addition, the dynamics of the Martian surface, especially with respect to the seasonal sublima-
tion and deposition of Mars atmospheric carbon-dioxide, should be studied intensely as that will give in-
sight in the viscosity structure of the mantle. Mars is continuously subjected to surface loading induced
by seasonal mass changes in the atmosphere and ice caps due to the CO$_2$ sublimation and condensation
process. It results in surface deformations and in time variations of gravity.

Time variations of gravity are not only due to mass variations in surface fluid layers but also to sur-
face loading deformations of the solid component of the planet induced by them (Karatekin et al., 2011).
With about one third of Mars’ atmosphere being deposited and sublimated in those seasonal changes,
the impact on its gravitational field and rotation are immediately recognizable (Karatekin, Van Hoolst,
Tastet, et al., 2006). The deformations of the planet depend on its internal structure, particularly on its
density and elastic parameters. The effect of the internal structure of Mars on its loading deformation
is determined via Mars’ load Love numbers which depend strongly on the mean radial structure. Low de-
gree load Love numbers (inferior to degree 10) depend essentially on the radius of the core and on its rhe-
ological properties (Métrivier et al., 2008). While the effect has been observed (Konopliv et al., 2011), the
dynamics itself and the driving forces are still subject to active research. More precise gravitational field
data can aid in the research of these dynamics.

The carbon-dioxide results in permanent ice sheets of a thickness of approximately 2 km and areas
with a diameter of roughly 1000 km and 400 km on the Northern and Southern polar caps respectively.
The deposited ice sheet is far from smooth and includes steep cliffs and troughs. While some of those pat-
terns can be attributed to rotation, Coriolis forces, and winds, the models currently fall short in explain-
ing all observations. Moreover, precise gravitational field data could shed light on subterranean struc-
tures and density distributions, aiding in building more complete models of the polar ice sheets, explain-
ing the occurring shapes.

The largest signature in the seasonal mass exchange between the Mars polar caps is given by vari-
atations in the zonal coefficient of Mars. Martian degree 2 and 3 time-variable gravity coefficients have been
estimated by different authors using Mars orbiter radio tracking data (e.g. Konopliv et al., 2011; Gen-
ova et al., 2016) as well as numerical genera circulation models (Karatekin et al., 2005). The seasonal time
variations of gravity are expected to be mostly induced by surface fluid dynamics as show by high corre-
lations of these observations with atmospheric models (Karatekin, Van Hoolst, & Dehant, 2006)

Sensitivity studies of the orbital tracking based gravity models show that some seasonal gravity sig-
nature can be absorbed in the drag model if constraint is too loose (Konopliv et al., 2011). This shows
that a dedicated gravity mission would not only result in a more accurate determination of the tempo-
ral gravity field, but would also improve atmospheric models of Mars. The $J_3$ changes are larger and bet-
ter detectable than the $J_2$ temporal variations, on average the odd degrees are about 20 percent higher
than the even degrees (Konopliv et al., 2011). This signal is linked to the seasonal CO$_2$ ice mass exchange
of the northern and southern poles of Mars (Konopliv et al., 2011). This mass exchange between poles
is estimated to be $\pm 4 \times 10^{15}$ kg and consistent between different studies (Konopliv et al., 2006; Smith,
2009; Yoder et al., 2003). More recent, seasonal variation of the $J_2$, $J_3$, $J_4$, and $J_5$ coefficients have been
estimated from orbital tracking (Genova et al., 2016) and show similar trends in the polar mass exchange.
The Mars Orbiter Laser Altimeter (MOLA) on the Mars Global Surveyor (MGS) spacecraft, measured
seasonal changes in the ice thickness up to 1.5 - 2 meters due to the carbon dioxide cycle (D. E. Smith
et al., 2001). The volume of CO$_2$ and water ice variability is estimated to be $9.4 \times 10^{12}$ m$^3$ to $9.6 \times 10^{12}$ m$^3$
for the Southern and Northern polar caps based on MOLA measurements (Xiao, Stark, Schmidt, Hao,

In addition to atmospheric mass transport, tidal deformation of Mars also results in a time-variable
gravity signal. Although this signature is substantially larger than that of the atmospheric mass trans-
port, its behaviour is much more predictable and easily quantified. Typically, its influence is parameter-
ized by the $k_2$ Love number that quantifies time-variability of the degree-two gravity field coefficients.
This Love number is an important independent geodesy constraint (Rivoldini et al., 2011), and helps to
constrain the rigidity structure and core size of Mars (Pou et al., 2022). It has been determined in var-
ious previous Mars gravity field determinations (Konopliv et al., 2011, 2016; Genova et al., 2016), where
(Genova et al., 2016) shows the strong need for proper modelling of the atmospheric properties to prop-
erly extract the signature of the Love number. For the Moon, separate values of $k_{20}$, $k_{21}$ and $k_{22}$ have
been determined using GRAIL data, providing further interior constraints (Williams et al., 2014). Al-
though these values of $k_{2m}$ at different orders $m$ proved to be almost equal to one another, their small
differences may be relevant in processing of high-accuracy data proposed here. Past attempts to mea-
sure these separate coefficients using Doppler tracking proved unsuccessful for Mars. In addition to the
nominal value of the Love number(s), the phase lag of the tidal deformation, often quantified by the $k_2/Q$ value provides constraints on the Martian interior (Pou et al., 2022), and is a crucial parameter for the long-term orbital evolution of the Martian moons (Efroimsky & Lainey, 2007). At present, the Martian $k_2/Q$ at Phobos’ forcing frequency is best constraint by the secular acceleration of Phobos’ orbit, as determined in its ephemeris (Lainey et al., 2021). Determining the frequency-dependence of $k_2/Q$ could provide further constraints on both Mars interior and system evolution, provided their signature in the data could be decoupled (Dirkx et al., 2014).

Studying the formation of the Tharsis Rise will reveal more information about the planet’s interior and its thermal evolution. One big question to solve is if the mantle underneath the Tharsis Rise is still active and taking part in dynamically upholding the volcanic dome. The Insight mission is placed near Elysium Mons, which is in the seismographic shadow zone of the Tharsis Rise and therefore receives less information from that area. However, a dedicated gravimetry mission that would be capable of measuring gravity-rate data could observe if there are changes in the gravity field due to mantle flow. A similar phenomenon on Earth, yet due to another physical process, is observed by GRACE: mantle flow due to Glacial Isostatic Adjustment (Steffen et al., 2009; Root et al., 2016). A prominent feature in the free-air anomaly and in the isostatic anomaly of Mars is a huge gravity signal at the Tharsis Rise with an extreme high at the center of the dome, surrounded by a negative ring around the region (Zhong & Roberts, 2003). Because it is also visible in the isostatic anomaly it could be interpreted as still active readjustment (Root et al., 2015), meaning mantle plume movement underneath the Tharsis Dome. A preliminary study (Root et al., 2022) of a mantle anomaly underneath the volcanic region, suggests 12 µGal/yr gravity change for the very long wavelength gravity signal. This will require accurate observations of the secular change of the gravity field, decoupled from any atmospheric interactions.

2.4 Internal Structure and Composition of Mars

The internal structure of any planetary body, including tectonic lithosphere, core size, mass distribution, and material composition, are an intensely studied field to understand the formation of planets and their current dynamics. This includes phenomena such as volcanic and seismologic activities. To study those on Mars, a seismograph was deployed on Mars’ surface (Lognonné et al., 2019) with the Insight mission. By studying the seismographic data from the Insight mission, new insights were obtained into the inner composition and structure of the planet and they have given new constraints in lithospheric and
mantle dynamic modelling. Based on determination of the polar moment of inertia, the tidal varying po-
tential and seismic data from the Insight mission the Martian core radius was determined as 1830±40 km
(Stähler et al., 2021). The corresponding core density ranges between 5800 kg/m³ to 6200 kg/m³ show-
ing substantial amounts of volatiles contained in the core when compared to a pure iron density of about
8000 kg/m³. From the lack of S-waves in the seismic record a fluid state of the core is derived. At the
Insight landing site a crustal thickness of 39±8 km was derived from seismic data (Knapmeyer-Endrum
et al., 2021) which fits to global estimates of crustal thickness from gravity and topography data of 27 km
to 89 km (Neumann et al., 2004). The expected crustal thickness variations depend on the assumed struc-
ture with possibilities of (a) a homogeneous crustal density, (b) an upper porous layer and more compact
material in the lower part of the crust and (c) a possible dichotomy between northern and southern part
of the crust (Wieczorek et al., 2022). Complementary to seismic data, the gravitational field distribution
can be used to improve our understanding of the inner structure. With the current gravity field models
obtained by tracking the orbital spacecraft, the global resolution of the Martian gravity fields is known
up to wavelengths of approximately 115 km (90 d/o) (Konopliv et al., 2011; Genova et al., 2016). Due
to the elliptical orbits of the tracked spacecraft there remain asymmetries in the resolution of the gravity
field with respect to northern and southern latitudes.

The gravitational field distribution can be used to derive better understanding of the inner struc-
ture. With the current gravity field models obtained by tracking the orbital spacecraft, the global res-
solution of the Martian gravity fields is known up to wavelengths of approximately 115 km (90 d/o) (Konopliv
et al., 2011).

On Mars two global surface features stand out that are a result of the internal dynamics of Mars:
the crustal dichotomy and the Tharsis Rise, a huge volcanic province harbouring the largest volcano in
the Solar system. Both structures are heavily debated about the time of formation, but the mechanism
of formation is usually described by mantle plume volcanism (Zhong et al., 2007). A huge up welling pen-
etrated the primarily crust during the Early Noachian depositing the rock mass that are now the south-
ern highlands. Then, in the Late Noachian another plume eruption is responsible for the creation of the
Tharsis Rise. This early creation of the Tharsis Rise is now debated (Bouley et al., 2016), because a later
formation could have caused sufficient polar wander to explain the orientation of Noachian/Early Hes-
perian valley networks around the equator, suggesting a different orientation of Mars in more humid cli-
mate. Even the northern planes in this model lacks the heavily cratered landscape that would prove its
old age. The northern planes are quite smooth and show less signs of heavy cratering. However, the old
surface could have been overprinted as a number of buried impact basins, called Quasi-Circular Depressions (QCD), were discovered that indicate the old age of the northern region (Frey et al., 2002). These QCDs are visible in the Mars Orbiter Laser Altimeter data, but do not have an imagery signature. High-resolution gravity observations could confirm the presence of buried impact structures.

Combining topographic (Klimczak et al., 2018) and gravity data (Zuber et al., 2000; Beuthe et al., 2012; Goossens et al., 2017) it is possible to study the structure of the martian lithosphere. Flexure theory (Watts & Burov, 2003) is able to compute characteristics of the lithosphere by studying the spectral interplay between topography and gravity. For example, Phillips et al. (2001) show that flexural lithosphere loading is the main support of Tharsis for example, following the initial studies by Turcotte et al. (1981). A long standing research has been performed to estimate the elastic thickness on Mars, which controls the amount of support of which the lithosphere is capable, which is extreme on Mars. The Tharsis region, one of the largest volcanic complexes in the Solar system, has been thoroughly studied (Belleguic et al., 2005; Beuthe et al., 2012; Lowry & Zhong, 2003; McKenzie et al., 2002). One drawback of this theory is buried mass anomalies that do not have any topographical signature (McKenzie et al., 2002). Inspection of the Bouguer anomaly of the Northern Hemisphere of Mars shows clear evidence of numerous sub-surface mass structures (Zuber et al., 2000). These structures are not only subsurface aquifers, but the northern hemisphere has many buried impact craters (QCD) that are indications of an Early-Noachian age, maybe going back to the primordial crust, now overprinted by southern erosion deposits (Frey et al., 2002). A recent flexure study by Root and Qin (2022) shows higher global density, confirming high basaltic crust. Thin shell flexure is able to explain part of the long-wavelength features, but dynamic flow is needed, and high lateral densities are present in the martian crust, as homogeneous models cannot represent the gravity field completely. The need for lateral varying crustal density observations is needed to better understand the geological past of Mars and its current state.

With gravity alone, it is difficult to determine the depth of these structures, whether they are present in the crust of upper mantle. Earth-based gravimetric studies (Bouman et al., 2013; Root et al., 2021) show that gravity gradients are more sensitive to crustal mass anomalies and are better capable of decoupling them from any upper mantle mass anomalies. Global inversion modelling together with state-of-the-art flexural modelling show promising results in determining crustal and upper mantle mass anomalies, when using gravity gradient data (van Brummen, 2022). Global coverage of the gravitational field measurement allows for modelling of the entire planet and enable the study of large scale dynamics and
high mass erosion or deposition. Additionally, global data supplemented by local data and imagery can improve models and allow more precise predictions of local static and dynamical behavior. The latter is especially important to identify specific regions that show distinct different variations in the density structures of the crust.

Image and topography (MOLA) data has to be combined with the gravitational field data to complete the picture of Mars surface and subsurface composition. With the abundance of images taken of Mars, MaQuIs will supply the necessary gravitational field data, leading to a global estimation of density profiles and ground composition of Mars.

2.5 Scientific Requirements

For this scientific overview we identified the following requirements for a dedicated gravity field mission to Mars.

• Spatial resolution: The resolution of the gravitational field shall be improved above the spherical harmonic (SH) degree 90 (approximately 115 km) for better flexural modelling of the Martian lithosphere.

• Minimum size aquifers: Mapping the crater size aquifers requires a resolution of 2880 degree and order spherical harmonic coefficients to detect. The Lunar gravity field’s best resolution is in the order of 1200 d/o (Lemoine et al., 2013). As it is discussed, the Martian system already greatly benefits from an improvement of the current resolution which is up to the order of 90 - 100 degree and order. Larger aquifer volumes, such as that which created the Valley Marineris, can be mapped with a gravity field up to 360 degree and order.

• Quasi-Circular Depression (QCD) determination: MaQuIs shall improve the understanding of the formation of the dichotomy of Mars by determining the age of the northern hemisphere (Frey et al., 2002). If the QCD are identified as craters, this could change the age determination (by crater counting) of the northern hemisphere significantly.

• Global Coverage: Polar regions (ice sheets) are situated poleward above 80° latitude north and below 80° latitude south. MaQuIs shall cover that range to support glacial isostatic adjustment and Martian climate studies. This results in a requirement for a nearly polar orbit.
• Temporal frequency seasonal: The sub-yearly signal in $C_{30} = \pm 5 \times 10^{-9}$ and $C_{50} = \pm 3 \times 10^{-9}$ (Smith, 2009). The corresponding mass changes are in the north pole $2 \pm 2 \times 10^{15}$ kg, south pole $3 \pm 4 \times 10^{15}$ kg, atmosphere $-4 \pm 2 \times 10^{15}$ kg respectively. MaQuIs shall be able to address these changes.

• Temporal secular: Based on preliminary modeling mantle convection underneath the Tharsis region could come up to $12 \mu\text{Gal/yr}$ (Root et al., 2022). As such, the secular drift in the Odyssey $\bar{J}_3$ data is limited to $0.9 \pm 0.9 \times 10^{-11} / \text{yr}$ (Konopliv et al., 2011). The gravitational data contains this convection. MaQuIs aims at measuring its effects.

2.6 Proposed Mission

Figure 3, outlines the overall scheme of the measurement principle. The MaQuIs mission consists of two satellites chasing one another along the orbit to map the gravitational field of Mars.
MaQuIs follows missions such as the Gravity field and steady-state Ocean Circulation Explorer (GOCE, Rummel et al., 2011), the Gravity Recovery And Climate Experiment and its Follow-On mission (GRACE and GRACE-FO, Tapley et al., 2004; Kayali et al., 2017), designed to detect static and dynamical processes on Earth, as well as the Gravity Recovery and Interior Laboratory (GRAIL, Zuber et al., 2013)), a GRACE like mission orbiting the Moon. Those missions, have successfully demonstrated that the outlined scientific goals are achievable by deploying gravity missions in orbit.

The requirements towards MaQuIs to fulfill the outlined scientific goals are discussed in this paper. The following sections will give reasons and context for achievable sensitivities and involved challenges.
2.7 Pathfinder

In addition to the mapping of Mars, MaQuIs can serve as a pathfinder mission for future quantum-based gravity field missions. With the technology from MaQuIs, miniaturizing systems and preparing them for reliable operation in deep space, missions to map the gravitational field of different planetary bodies become more and more available. Especially the possibility to measure dynamics of subterranean oceans renders such experiments interesting for future mission to the moons of the gas giants. With appropriate correction of drag, this could also be envisaged to measure the gravitational field of the gas giants themselves.

Other areas of interest, for which MaQuIs could be a pathfinder, are comparative planetology and the study of climate change on other planets and on Earth. For the latter, systems are currently developed, which share a lot of synergy with MaQuIs.

As the name suggests, MaQuIs will make use of quantum technologies to achieve the planned accuracy. In this case, especially cold atom sensors are foreseen in combination with optomechanical inertial sensors and stabilized laser links. With those technologies in place, MaQuIs can act both as a pathfinder for future quantum technologies deployed in space and as a technology driver to develop the necessary setups. The recently developed cold atom roadmap (Alonso et al., 2022) and the summary of quantum physics in space (Belenchia et al., 2022) detail current and planned activities in the area of quantum technologies in space.

2.8 Summary of the Scientific Goals

The scientific goals of the mission can be summarized as follows. MaQuIs shall:

- Improve the gravitational field map of Mars
- Detect subsurface structures, especially water occurrences and buried impact craters
- Improve the knowledge of the internal structure of the planet, both crustal and mantle structures
- Determine if current mantle convective processes can be observed
- Monitor seasonal changes on the surface
- Aid in understanding the climate collapse and its comparison to dynamics on Earth
- Measure planetary dynamics and subsurface changes
- Identify areas of increased and decreased density
• Inform future landing sites
• Act as a pathfinder for future quantum-based missions, especially to other celestial bodies

3 Detection Requirements

3.1 Expected Signals

The static gravity field (gravity anomaly: gravity minus gravity of reference ellipsoid) of Mars ranges from $-695 \text{ mGal}$ to $3135 \text{ mGal}$ (Konopliv et al., 2016). The majority of the gravity anomalies do not exceed $\pm 500 \text{ mGal}$ and only the major volcanic regions result in higher gravity anomalies (see also Fig. 1). The order of magnitude, excluding these volcanic areas, is comparable to the Earth’s gravity field of about $-300 \text{ mGal}$ to $470 \text{ mGal}$ (Zingerle et al., 2020).

The temporal gravity field variations seem to be dominated by CO$_2$ exchange between the northern and southern hemisphere and the tidal potential from the Martian moons, Phobos and Deimos. For the mass changes at the poles between Summer and Winter given in section 2.3 the gravity signal at an orbit height of 150 km to 200 km is in the order of 230 $\mu$Gal using a disc shaped mass distribution and a spherical approximation of Mars.

3.2 Noise Sources

For the mission under consideration, the atmospheric drag will be the main disturbing force. It depends strongly on the spacecraft geometry, the velocity of the spacecraft and the atmospheric density, which increases with decreasing orbital altitude. It is difficult to numerically assess it with a high precision. General Circulation Models (GCMs) and ionosphere-thermosphere models are commonly used to model the atmosphere on large scales, as for example the longitudinal dependence of the atmospheric density and its annual changes. But they fail to capture the short term variations in the Martian upper atmosphere, as has been confirmed during operational aerobreaking maneuvers by many previous space missions from ESA and NASA (e.g. Castellini et al., 2018).

Typically, mismodelling of atmospheric density is accounted for in the determination of planetary gravity fields from Doppler data by the estimation of correction terms, such as drag scale factors and empirical accelerations (Genova et al., 2016). For spacecraft equipped with high-accuracy accelerometers, such as the ESA missions BepiColombo to Mercury and the Jupiter Icy Moons Explorer (JUICE), these
effects can be directly measured, significantly reducing the potential noise on the gravity field solution
induced by these effects (Cappuccio et al., 2020).

Recently, accelerometers on board the Mars Atmosphere and Volatile Evolution (MAVEN) space-
craft have monitored the neutral density in Mars thermosphere (above approximately 120 km). This re-

gion affected by radiation and energy deposition from the Sun and by energy and momentum from the
lower atmosphere orbit-to-orbit variability is found to be still significant (Zurek et al., 2017).

For a lower flying mission like MaQuIs atmospheric drag will be significant it is the case for the MAVEN.
Onboard precise accelerometers and inertial measurement units (IMU), similar to those onboard MAVEN,
can measure directly the net acceleration, determine its effect on the orbit and correct for. In addition,
these measurements allow for a better determination of Martian atmospheric properties, which will im-
prove the tracking data analysis of other missions. Atmospheric density measurements along the orbiter
path would yield hydrostatic density and temperature profiles, along track and altitudinal density waves,
and latitudinal and longitudinal density variations (Zurek et al., 2017). Moreover, the surface loading vari-
ability due to atmospheric mass transport will have a measurable influence on the Martian gravity field,
making knowledge of the Martian atmospheric dynamics directly relevant for interpreting measured tem-
poral gravity change.

In addition to non-gravitational noise sources the gravitational effects of Phobos and Deimos with
seminajor axes of the respective orbits of 9376 km and 23 463 km have to be taken into account having
a major influence on a spacecraft. For a mission like Mars Global Surveyor, with an orbital height around
400 km, the gravitational effect is larger than atmospheric drag (Konopliv et al., 2006). The masses and
orbits of Phobos and Deimos are therefore estimated in the gravity field recovery process. Unlike atmo-
spheric density, the dynamics of the Martian moons is well constrained and its evolution is predictable
(Lainey et al., 2021), and with proper model consideration, this influence will not pollute the gravity re-
covery.

The determination of the Martian gravity field is typically done concurrently with the determina-
tion of its rotational parameters. The relationship between rotation (i.e mainly Length-of-Day but also
Polar motion) and time-variable low degree gravity coefficients has been well established ((Karatekin, Van
Hoolst, Tastet, et al., 2006; Karatekin et al., 2011)). Their determination from single orbiter tracking can
be challenging, partly due to the sensitivity of zonal harmonics to orbiter geometry but also because of
the low-degree zonals obtained from a single orbiter tracking analysis are contaminated by higher-degree
harmonics with non-negligible seasonal variations. For the proposed mission, insufficiently accurate determination of the Mars Orientation Parameters (MOPs) could lead to unmodelled rotational variations being interpreted as temporal gravity field variations at the same frequency. For terrestrial and lunar gravity field determination, this is mitigated by geodetic techniques and LLR, respectively. For Mars, the use of lander tracking data (such as InSight) will be important (Kuchynka et al., 2014; Folkner et al., 2018), since these data are sensitive only to rotational variations and not temporal gravity changes.

3.3 Link Pointing Requirements

The Laser Ranging Interferometer (LRI) on-board GRACE-FO requires a pointing accuracy of the laser beams with respect to each other of less than 100 µrad (Abich et al., 2019). This requirement is driven by the amount of received laser power and by the required level of angular overlap of the beams in order to produce a detectable interferometric beat note signal. This has two consequences: 1) A beam steering mechanism is required to maintain proper beam pointing between the satellites. This is necessary due to larger orbital variations than 100 µrad and performance limits of state-of-the-art spacecraft attitude and orbit control systems. The mechanism developed for GRACE-FO has demonstrated a pointing error below 10 µrad on ground (Schütze et al., 2014). 2) A link acquisition procedure, potentially including the use of dedicated hardware (see Sec. 4.5.1), needs to be foreseen that ensures the sufficient pointing of the laser beams on the two spacecraft prior to the instrument’s transition into science mode (Koch et al., 2018; Koch, 2020).

4 Proposed Mission Scenario

4.1 Mission Summary

MaQuIs is proposed as a gravity field mission. It follows the configuration of GRAIL (Zuber et al., 2013), GRACE (Tapley et al., 2004) and GRACE-FO (Abich et al., 2019) and consequently consists of two satellites trailing each other, as shown in Figures 3 and 5. The two satellites are connected by an optical link.

If one is subjected to an increased gravitational field, e.g. caused by a denser material on or below the Martian surface, it is accelerated. The acceleration then leads to a variation of the distance between the two satellites which can be translated into a gravitational signal. This process is sketched in figure 4.
The accuracy of the ensuing measurement depends on the stability of the optical link, the correction for drag and other non-gravitational accelerations acting on the satellites, the orbital velocity, and the distance to the target body.

Fig. 4: A sketch to show the measurement principle: Two satellites chasing one-another to measure changes in the gravitational field due to the change in the distance between the satellites. In this sketch it is shown how satellite 2 chases satellite 1 (tabloid a)). If the underground is denser, here represented by the blue rectangle, the first satellite is accelerated by the resulting increased gravitational force (tabloid b)). Once satellite 1 passes that dense portion, it is decelerated, while satellite 2 feels the attractive force. The distance between the two satellites is reduced (c)). With the deceleration of satellite 2 passing (d)), the original distance is re-established (e)). From the variation in distance, the gravitational field is determined.
4.2 Terrestrial and Lunar Experiments

Global gravity missions, mapping the field distribution have been deployed to observe and investigate Earth (Rummel et al., 2011; Tapley et al., 2004). These missions were determined to study, among other goals, the effects of climate change by monitoring sea level rise and oceanic dynamics through gravity field observation (Tapley et al., 2019).

Fig. 5: Artist’s impression of the two GRACE-FO spacecraft in orbit around the Earth (credit DLR-SI)

The results of these missions combined with images of the Earth allow for determination of density distribution on Earth and foster understanding of our planet and its inner structure (Mandea et al., 2020).

Additionally, future missions to map the gravity field of the Earth are investigated (Haagmans et al., 2020) to meet the end user demands of gravity field products (Pail et al., 2015). The next generation of gravity measurements from orbit is set to include quantum sensors as inertial measurement units.
Several such missions have been proposed. The next steps in quantum sensor development for setups based on cold atoms is, for instance, outlined by Alonso et al. (2022).

Similarly, GRAIL (Zuber et al., 2013), was deployed to understand the inner structure and density distribution of the Moon (Goossens et al., 2020). While GRAIL did not deploy quantum sensors in its design, it successfully demonstrated that a gravimeter mission is the desired tool to investigate celestial bodies in greater detail and higher precision.

4.3 Flight Configuration & Orbital Considerations

MaQuIS will be composed of two satellites trailing each other at a distance of at least 200 km. The distance will be monitored by a bi-directional optical link between the satellites. Star tracker and communication to Earth will ensure tracking of the orbital parameter and thruster on board both satellites will enable corrections.

MaQuIS will be in an areocentric orbit altering the relative inclination due to the rotation of the planet, scanning the entire planet over time. If, however, it becomes apparent, that a specific region or that the dynamics of a specific region, such as the polar ice caps during sublimation of the CO$_2$, are of increased interest, this plan could be changed in favour of an uni-planar orbit.

The achievable accuracy of the measurement is determined by several factors, two of which are linked to orbital considerations:

1. Orbital Height

The orbital height impacts the measurement directly, as the closer to the surface the two satellites fly, the more pronounced is the effect of the gravity field variations, which can be observed by the instruments on board the spacecrafts. For comparison, GRAIL orbited the Moon in a lowest altitude of 30 km, while GRACE orbited Earth in an altitude of $\approx$450 km.

2. Atmospheric Density

In general, the atmospheric density, and thereby the drag is lower the further an orbiting satellite is dispatched from the planet. With increasing atmospheric density, two effects have to be considered:

- vibrational noise due to residual accelerations and
- limitations on the mission life time due to deceleration of the satellites.
In order to achieve the targeted sensitivity a trade-off has to be made between the orbital height and the acceptable atmospheric drag. On ground level Mars’ atmospheric density is only 6 hPa, about 0.6% of Earth’s atmospheric density. However, the density does not decrease with altitude as rapidly as is the case for Earth. Hence, an orbit higher than that of GRAIL above the Moon but lower than that of GRACE above the Earth can be chosen for MaQuIs with respect to Mars. Flying at a lower altitude allows for a better determination of the gravity field, both in terms of degree strength and uncertainty. However, the influence of atmospheric drag increases with lower altitude, which requires a more propellant and/or a different orbit control system (such as continuous low thrust) to maintain the orbit for a sufficient amount of time. At an altitude of 170 km, the mean atmospheric density is roughly similar to that experienced by the GOCE spacecraft at Earth, on the order of $10^{-11}$ kg/m$^3$. At 200 km and 250 km, it is on average one and two orders of magnitude smaller, respectively, while at 100 km it is three orders of magnitude larger than for GOCE. This trade off will depend on the ballistic coefficient of the satellites, the mass and power budget available for the propulsion system, requirements on static and temporal gravity field determination quality, variability of the Martian atmospheric density, risk trade-offs, etc. A comprehensive system study should be performed to trade off these various aspects.

Other contributing noise factors, also those stemming from orbital choices, are summarized in the following chapters as well as the targeted sensitivity.

### 4.4 Target Sensitivity

As it is discussed above, the subsurface lakes are in the order of 10 km in diameter. The surface ice sheets have been measured to be in the order of several hundreds to thousand kilometers in diameter with thickness in the order of several kilometer.

While other scientific goals have been determined, the detection of the subsurface water reservoirs is the central scientific goal. It simultaneously is the most challenging. The detection of the subsurface water reservoirs does not only depend on their diameter, but mainly on their volume. To resolve the currently discussed occurrences, a spatial resolution for static measurements on ground in the order of several tens of kilometers is targeted by MaQuIs. In case of static measurements, averaging over several measurements and orbits, and thereby periods of time, is possible and increases sensitivity. The resolution for dynamical processes can be relaxed, since those target primarily the sublimation and deposition of large amounts of CO$_2$ on the poles.
4.5 Payload Design

4.5.1 Primary Instrument

As was the case for both the GRACE and GRACE-FO missions, the two satellites are equipped with the same systems. Figure 6 outlines the primary instrument design, without any redundancy measures. The figure schematically illustrates the combination of a laser interferometer ((a)-(e)) and a hybrid quantum sensor ((g) and (f)). Thereby, the laser interferometer is sketched as an off-axis design, building on the layout of the successful LRI. At a later stage it will have to be evaluated whether an off-axis or an on-axis design (where the received and transmitted laser beams share a common optical path) is advantageous in the context of the overall mission. For this, the required level of redundancy, the inter-satellite distance and other parameters will have to be taken into account. The optical link is received at entry point (c) from which it travels to the optical bench at (d). There the interference signal between the received beam and the locally generated beam (e) is obtained. The link then proceeds to the beam routing optics at (a), which are surveyed by a combination of the optomechanical inertial measurement unit (f) and the atom interferometer (g). Eventually, the light is transmitted to the other spacecraft via the exit pupil at (b). The other satellite includes the same setup and is mirrored with respect to the first satellite. In the following, the systems are explained individually.

The sketch also shows the acceleration of the satellite $\vec{a}$ along the shown axis. Accelerations along other axes, as well as rotation, have to be treated equivalently.
Fig. 6: This sketch outlines the primary instrument. It consists of the laser link between the two satellites, which comes in at point (c), is then combined with the signal of the stabilized internal laser (e) on an optical bench (d), where the beat between the two signals is measured. The laser beam is then guided towards the exit aperture (b) via the beam routing optics at (a), which are situated as close to the center of mass of the spacecraft as possible to reduce residual accelerations. The beam routing optics are surveyed by a combination of quantum accelerometers (optomechanical inertial measurement unit, OMIS (f) and the cold atom interferometer (g)). Finally, the laser signal is send to the other satellite through (b), where the system is mirrored.

The vector $\vec{a}$ shows the acceleration of the satellite due to, for instance, atmospheric noise.

The sketch shows one dimension, the other dimensions have to be treated separately.

The following paragraphs describe the components that make up the primary instrument:

**Laser Ranging:** Both spacecrafts share an interferometric bidirectional laser link to measure relative changes in the distance between the two satellites. This distance measurement depends on the chosen laser wavelength. For this mission, a wavelength in the infrared (1064 nm to 1550 nm) is envisioned due to flight heritage and the availability of well-suited components, e.g. optics, lasers and resonators.

As stated previously, both spacecrafts host identical hardware. For the purpose of laser ranging this includes: lasers (Bachman et al., 2017), optical benches (Abich et al., 2019; Dahl et al., 2016), potentially retroreflectors (Dahl et al., 2016), instrument control (Bachman et al., 2017) and laser frequency reference units (Thompson et al., 2011; Sanjuan et al., 2019).
Space proven interferometric link technologies and laser modules exist and have been developed for several different applications, including deep space missions such as LISA (Antonucci et al., 2012). The Laser Ranging Interferometer of the satellite gravimetry mission GRACE-FO, successfully operating since 2018, reaches a noise level of about $10 \text{ nm}/\sqrt{\text{Hz}}$ at 40 mHz and about $300 \text{ pm}/\sqrt{\text{Hz}}$ at 1 Hz (Abich et al., 2019). For frequencies below 30 mHz gravity dominates the ranging signal and it is not possible to directly evaluate the interferometer noise floor. However, thorough modeling of the LRI and comparison with GRACE-FO microwave ranging data suggests that the well-understood tilt-to-length coupling effect, which can be subtracted in post-processing, and laser frequency noise remain the LRI’s limiting noise sources in the $\mu$Hz–mHz frequency range (Müller et al., 2022).

As laser frequency noise is the dominant noise source for a laser interferometer with such unequal arm lengths as is proposed here, the laser frequency must be actively stabilized. Thereby, two distinct timescales are of importance: short timescales between 10 s to 1000 s, on which the local gravity field underneath the spacecraft is sampled, and timescales of months and years which are important for the tracking of long-term changes of the local gravity field. For the stability requirement on the shorter timescales an optical cavity with optional thermal shielding appears to be the prime candidate (Sanjuan et al., 2019). The longer timescales requirement could be met by minimally invasive measures to the experimental setup to further enhance the stability of these optical cavities. Applicable techniques are currently under investigation in the context of the next generation of Earth gravity field missions (Rees et al., 2021, 2022).

One of the most critical steps in the commissioning phase of an intersatellite laser interferometer is the initial establishment of the laser link (Koch et al., 2018). In order for the interferometer to function properly the laser beams that are transmitted by both spacecraft have to be aligned to each other with a maximum error on the order of about $\pm 100 \mu \text{rad}$. Additionally, the frequencies of the involved lasers must match to within the photoreceiver bandwidth of $\leq 37 \text{ MHz}$ (Fernández Barranco et al., 2018). Ground-to-orbit effects, bias angles between interferometer sub-units and other systems on the platform (e.g. star trackers) caused by mechanical tolerances during integration of the units as well as thermally-induced deformations of the spacecraft are the main drivers for a knowledge error regarding the true line of sight between two spacecraft. Hence, an alignment of the laser beams by means of dead reckoning will most probably not be successful. In the absence of absolute laser frequency references also the laser frequency difference of the involved lasers would not match to within the required level due to temperature differences of the different spacecraft and corresponding effects on the lasers and cavities. An appropriate procedure to calibrate this 5-dimensional uncertainty space (two angles per spacecraft and the laser differ-
ence frequency) should foresee a dedicated link acquisition system (LAS) on each spacecraft (Koch, 2020). These may include dedicated acquisition light sources that are specifically tuned to the needs of this critical mission phase and sensors that are designed to perform an incoherent detection of any incoming signal. A LAS thus drastically reduces the complexity of the associated link acquisition procedure and can provide a major positive impact to the risk reduction scheme. Especially for a remote mission which orbits another celestial body the latter point is quite significant.

While the components briefly described above define a baseline laser interferometer configuration, different technology options should be considered:

In addition to the stability of the laser frequency, which can be realized by using optical cavities, its absolute value is also of interest as the ranging measurement directly scales with it. Hence, an additional absolute frequency reference, e.g. an iodine cell, could be incorporated (Döringshoff et al., 2017).

In the absence of sophisticated GNSS navigation, a measurement of the intersatellite distance by using the interferometric laser link seems beneficial. In the context of the LISA mission this technique was developed and tested on ground (Sutton et al., 2010; Heinzel et al., 2011). With only minor additional hardware absolute distance measurements between two spacecrafts below 0.4 m were achieved with an update rate on the order of a few Hertz (Sutton et al., 2010; Heinzel et al., 2011).

Using the same additional hardware, rudimentary communication protocols can be implemented using the interferometric laser link. On-ground experiments showed the functionality with data rates of up to 20 kbps (Sutton et al., 2010; Heinzel et al., 2011). This technique seems especially compelling as it can be used to transfer data between the spacecraft and only have one of the satellites communicate with Earth. This measure saves energy and underscores the inherent redundancy scheme that is realized by implementing two identical spacecraft.

**Inertial Measurement Unit:** Non-gravitational acceleration, e.g. due to atmospheric drag or radiative pressure, can obscure the results obtained by the laser link (Kornfeld et al., 2019; Tapley et al., 2004). Additional accelerometers onboard of the satellites enable the reduction of spurious accelerations (Kornfeld et al., 2019; Christophe et al., 2015; Tapley et al., 2004). Current approaches rely on electrostatic accelerometers, that suffer from drifts at low frequencies (Zahzam et al., 2022; Klinger & Mayer-Gürr, 2016; Carraz et al., 2014; Touboul et al., 2012). In this context, atom interferometers (AI) were proposed to replace (Léveque et al., 2021; Migliaccio et al., 2019; Trimeche et al., 2019; Chiow et al., 2015) or complement the classical accelerometers (Zahzam et al., 2022). By principle, atom interferometers can provide absolute and long-term stable measurements with noise levels of $42 \text{ nm s}^{-2} \text{ Hz}^{-1/2}$ and $0.5 \text{ nm s}^{-2}$.
after averaging, as demonstrated in atom interferometric gravimeters (Ménoret et al., 2018; Freier et al., 2016; Hu et al., 2013; Louchet-Chauvet et al., 2011; Peters et al., 1999). Operation in a microgravity environment could boost the sensitivity of such sensors by increasing the free-fall time of the atoms during the interferometry sequence, a critical parameter for the scaling factor (Kasevich & Chu, 1991), leading to anticipated noise levels of $0.1 \text{nm s}^{-2} \text{Hz}^{-1/2}$ and below (Dickerson et al., 2013). Multiple experiments implemented and investigated atom optics and atom interferometry in microgravity, including the production of Bose-Einstein condensates followed by a matter-wave collimation step, enabling the ultra-low expansion rates of the atomic ensembles for compatibility with extended free-fall times (Gaalloul et al., 2022; Lachmann et al., 2021; Aveline et al., 2020; Becker et al., 2018; Rudolph et al., 2015; Müntinga et al., 2013; Geiger et al., 2011; van Zoest et al., 2010). Operating atom interferometers at high data rates currently either implies an increased noise level due to short free-fall times (Rakholia et al., 2014) or an increased complexity when implementing an interleaved mode (Savoie et al., 2018). An alternative is the hybridisation with an additional sensor to realise a combined drift-free system with sufficient bandwidth (Zahzam et al., 2022; Richardson et al., 2020; Lautier et al., 2014). The usage in inertial measurement units requires additional investigation, which is in synergy with current developments for an Earth-orbit gravity mission.

The AI system detection bandwidth is limited by the Nyquist sampling criterion to half the measurement repetition rate. In order to increase the bandwidth, a supplemental sensor will be used with the AI system. Optomechanical inertial sensors (OMIS) combine high precision displacement metrology with a low-noise mechanical oscillator to detect input acceleration down to the thermal noise limit with a bandwidth of several kHz or more. These sensors can be directly constructed into the AI retroreflecting mirror to provide excellent overlap of their common reference frames easing correlation analysis between the two systems. Further, the optical source can be shared between the two systems, if desired, for reducing payload size. OMIS share a lot of features with optical cavity based frequency references such as low drift and high measurement precision. Additionally, the calibration parameters are tied to the stability of the onboard clock source and this is often the most precise and stable device in the system. This combination of features improves the low-frequency portion of the OMIS bandwidth enough to provide good overlap with demonstrated AI system bandwidths at a similar level of measurement imprecision. In this way, the AI can provide drift control of the OMIS while the OMIS provides high speed measurement of the residual accelerations affecting the satellite.
**Pointing:** The accuracy of the measurement depends on the knowledge of the orbit (see below) and the alignment of the satellites to ground. Several techniques exist to establish the necessary precision to achieve the scientific goals.

The alignment of the satellites can be regularly controlled by using the atom interferometer at regular intervals as a gradiometer. For this purpose, a secondary atom cloud needs to be suspended radially above the first. If the measured gravity gradient is not in line with predictions, the satellite alignment has to be corrected. While this method is certainly intriguing, classical means are foreseen for MaQuIs.

**Propulsion:** As part of the attitude and orbital control (AOCS), the amount of necessary propulsion as well as the positioning will have to be discussed. MaQuIs will fly in a low orbit and orbital corrections as well as alignment corrections will become necessary. For this purpose additional propulsion and appropriate thruster will be implemented. This part of the payload is mentioned here as it could prove an important mass driver.

**Spacecraft Positioning:** The orbit of satellites around other planetary bodies are usually determined by radio Doppler measurements from the Earth. The X-band Doppler radio accuracy for the Mars Reconnaissance Orbiter (MRO) is in the order of 0.05 mm/s (Genova et al., 2016) depending on Sun-Earth-Mars angle. The requirement ($3\sigma$) for the MRO spacecrafts relative position to Mars is 100 m in the along track, 40 m cross track and 1.5 m in the radial direction. Results from the mission show and RMS of 3.5 m, 0.6 m and 0.9 m respectively (Highsmith et al., 2008). For MaQuIs, where unlike tracking-based gravity field solutions the position uncertainty does not translate directly into gravity field uncertainty (provided the orbit is sufficiently accurate), it is expected that a typical two-way coherent X-band Doppler link will be sufficient, and accuracy enhancements from for instance X/Ka-band tracking as is done for BepiColombo (Iess et al., 2021) will not be necessary. Possible complementary range and VLBI data will not help to improve the spacecraft orbits w.r.t Mars, but would be beneficial for continued improvement of the Martian ephemeris (Dirkx et al., 2017, 2019), and possible orbit validation.

The orbit determination also depends on variation of center of mass (COM) with respect to the radio antenna phase center (Cascioli & Genova, 2021), which can be in the decimeter range (Genova et al., 2016) e.g. due to orientation changes of the radio antenna to ensure its pointing towards the Earth or rotations of the solar panels to align with the Sun. For spacecraft like the MRO with a movable high gain antenna and solar panels (see Fig 7), a mechanical model is required to calculate the COM depending on the mass distribution of the satellite components and its fuel consumption (Cascioli & Genova, 2021).
On a number of recent missions, such as BepiColombo and JUICE, an accelerometer is used to measure non-conservative forces, including variations of the change in spacecraft center of mass due to for instance effects of propellant sloshing (Cascioli & Genova, 2021; Iess et al., 2021).

These aspects have not been an issue with terrestrial satellite gravimetry missions, because offsets between star cameras, GNSS antennas and the CMO are relatively static during one orbit due to fixed solar panels and antennas (see Fig. 5). However, for MaQuIs the aforementioned considerations might become relevant. The requirement for the GRACE-FO mission for the short term stability (one orbit) of the COM with respect to the accelerometer testmass is ±9µm. Long term variations (six months) of COM movements, e.g. due to fuel consumption, are kept within ±100µm by employing movable mass trim mechanisms (Kornfeld et al., 2019). The evaluation of GRACE-FO LRI data has shown the ability of the attitude and orbit control system (AOCS) to maintain the pitch and yaw variations of the satel-
lite pair within ±100 µrad (Goswami et al., 2021), which is the technical requirement of the LRI. Additionally, the combination of differential wavefront sensing and the beam steering mechanism with the star camera and IMU show the potential for an improved accuracy for attitude determination.

**Mission Lifetime:** One of the limitations of the mission is its lifetime. To measure the gravitational field distribution, an orbit, as close as possible to the surface is preferential. In the case of GRAIL, for instance, a low orbit over the lunar surface, with only 30 km height was chosen (Zuber et al., 2013). This was possible due to the lack of atmosphere on the moon. In case of GRACE, GRACE-FO, and GOCE higher altitudes had to be chosen to allow for the required mission lifetimes within Earth’s atmosphere.

Similar considerations have to be taken into account for MaQuIs. The final orbital considerations will be a trade-off between atmospheric drag, available fuel, acceptable vibrations, and required mission lifetime.

At this time a mission lifetime of at least two Martian years is planned. This allows for the study of annual processes and enable comparability between two sets of measurements in a given annual position. This choice has implications on a reasonable orbital altitude, satellite design, as well as fuel-consumption.

### 4.5.2 Additional Instruments

**Mass Spectrometer:** The primary Instrument is the laser ranging facility including the supporting technology. In addition, knowledge of the atmospheric density and composition at the orbit is important. It is therefore conceivable to include a mass spectrometer in the payload.

The atmospheric disturbances could also be measured using the atom interferometer without the additional mass spectrometer. The drag on the satellites yields information on atmospheric density and phenomena such as gravity waves (Starichenko et al., 2021) within those. Consequently, measuring the forces acting on the satellite allows scientific studies of the Martian atmosphere and its dynamics in addition to the gravitational field mapping.

**Imaging Technology:** As it is mentioned above, the gravitational data should be supplemented with imaging data. The correlation between images and the recorded gravitational data yields the information on the ground below. Of course, several high-resolution images of Mars exist. To supplement the gravitational data and account for any temporal changes, an additional camera on MaQuIs is beneficial. As, in addition, available cameras are not taking up a high portion of the available size, mass, and power budget. Consequently, flying a camera on MaQuIs will allow to correlate the gravity data directly to im-
ages taken during flight. Space qualified cameras are readily available and should be implemented into the payload.

**4.5.3 Technology Readiness Level**

Currently, the items in the payload are advanced with respect to the technology readiness level (TRL) and promise reliable operation and precise measurements. The least evolved system is the atom interferometer, allowing for the drift-free correction of the inertial measurement unit. As it is described above, condensed atom ensembles have already been deployed in space. The adaptations necessary to deploy such a system in space are supported and with similar missions planned for Earth, the technology will be readily available at the time of proposed launch for MaQuIs.

For most of the other components, commercial, space qualified items are available or other hardware with space heritage exists. While MaQuIs will opt for non-qualified items, for all items a qualified option exists, that could be exchanged if the technology proves too immature. This is especially true, since the system will fly in a GRACE-configuration and could therefore rely on the developments for GRACE, GRACE-FO, and GRAIL.

Additional developments of the required technologies are outlined in the cold atoms roadmap (Alonso et al., 2022). This shows the increased interest in cold atom technology for scientific and applied missions and the required developments to establish the necessary systems for different missions. MaQuIs both, benefits from and drives these developments.

**4.6 Noise Sources**

The missions success relies on understanding noise sources and mitigating their impact. The discussed noise sources in this proposal are:

- Residual accelerations of the satellites leads to an incorrect measurement. To correct for this, two inertial measurement units are proposed for MaQuIs. An additional means of reducing the impact of atmospheric drag is the satellite design, similar to the GOCE mission (Rummel et al., 2011)
- Undetected orbital variations will lead to a difference in the measured signal and thereby in a faulty analysis of the data in post processing. Orbital surveillance and correction are therefore paramount for the success of the mission.
• The laser wavelength deployed for the link between the two satellites determines the accuracy of the measurement. Hence, knowledge about its absolute value in orbit is required.

• Due to the unequal arm lengths of the laser interferometer that shall be used for the inter-satellite distance measurements, laser frequency noise dominates the range measurement. (Bachman et al., 2017; Müller et al., 2022) MaQuIs will deploy optical frequency references to increase the laser stability.

• Thermal fluctuations impact several systems of the satellites resulting in an elevated noise floor.

• Cosmic radiation and light pollution can lead to damage in the system or faulty measurements.

5 Additional Gradiometer

On Earth, the only satellite gradiometry mission flown to date was GOCE (Rummel et al., 2011), which determined the global static gravity field with unprecedented accuracy. The noise of the gradiometer axes was approximately $10 \text{ mE/qrtHz}$. Further improvements or resolving temporal variations of the gravity field would require major improvements in the satellite design and a reduction of the measurement noise to $5 \text{ mE/qrtHz}$ or below. In parallel to studies investigating cold atom interferometry on GRACE-FO type missions, in which the cold atom interferometer acts as a accelerometer, gradiometry mission designs based on quantum technologies are also the topic of numerous studies. A quantum gradiometer employs two spatially separated clouds of (ultra-)cold atoms which interact with the same laser beams. This requires a vacuum chamber of a size to accommodate the desired separation, e.g., 50 cm for each axis.

The works by, for example, Douch et al. (2018), Trimeche et al. (2019) and Migliaccio et al. (2019, 2022) discuss different scenarios for employing GOCE type mission scenarios utilising a cold atom interferometer based single axis gradiometer. The proposed instrument and mission designs show a clear benefit in determining temporal gravity field variations as well as geophysical processes when compared to GOCE and in some scenarios even GRACE. However, the main technical challenges, in addition to realising a gradiometer in space, arise from the rotation of the satellite about its along track axis (Lan et al., 2012). A full 3-axis gradiometer could solve this challenge while increasing the complexity of the instrument. A discussion on the rotation of an along track quantum accelerometer can be found, e.g., in (Meister et al., 2022). A compromise in the gradiometer design would be a single axis gradiometer in the cross track direction, greatly reducing rotational effects but not sufficient on its own to exceed GOCE performance levels (Douch et al., 2018), employed on GRACE like mission (Rosen, 2021). This design
adds observations perpendicular to the LRI measurements thereby effectively reducing the aliasing errors in GRACE solutions commonly referred to as striping effect.

6 Summary and Outlook

The Mars Quantum Gravity Mission (MaQuIs) targets Mars and its gravitational field to investigate the planet for subsurface water occurrences. With this capability, MaQuIs is qualified to contribute to the discussion around the occurrence of liquid or frozen subsurface water on Mars. Furthermore, the study of the gravitational field yields information on planetary dynamics and seasonal changes, interesting for planetary research.

Within this paper we discussed the currently available technologies to execute a complex gravitational field measurement to improve the available gravitational maps using quantum technologies.

7 Data Availability Statement

The paper proposes a mission scheme which does not include any underlying data or software for analysis. In consequence there is no data that we can make available or which needs to be published or made publicly available.

References


---


doi: 10.1038/ncomms1479


O’Rourke, L., Heinisch, P., Blum, J., Fornasier, S., Filacchione, G., Van Hoang, H., . . . others (2020). The philae lander reveals low-strength primitive ice inside cometary boulders. *Na-
Combining the deep Earth and lithospheric
gravity field to study the density structure of the upper mantle. In EGU General Assembly,
19.-30.04.2021, Vienna, Austria. doi: 10.5194/egusphere-egu21-2950

jog.2016.02.008


Root, B. C., Sebera, J., Szwillus, W., Thieulot, C., Martinec, Z., & Fullea, J. (2022). Benchmark forward
gravity schemes: the gravity field of a realistic lithosphere model winterc-g. Solid Earth,

static adjustment in the static gravity field of fennoscandia. Journal of Geophysical Research:

Rosen, M. D. (2021). Analysis of hybrid satellite-to-satellite tracking and quantum gravity gra-
diometry architecture for time-variable gravity sensing missions (Doctoral dissertation, The
University of Texas at Austin). doi: 10.26153/tsw/14541

1367-2630/17/6/065001

85, 777-790. doi: 10.1007/s00190-011-0500-0

Long-term stable optical cavity for special relativity tests in space. Optics express, 27(25),
36206–36220. doi: 10.1364/OE.27.036206

atom interferometry for high-sensitivity inertial measurements. Science Advances, 4. doi: 10
.1126/sciadv.aau7948

Schütze, D., Stede, G., Müller, V., Gerberding, O., Bandikova, T., Sheard, B. S., . . . Danzmann,
Express, 22(20), 24117–24132. doi: 10.1364/OE.22.024117

—46—


