The adhesion GPCR VLGR1/ADGRV1 regulates focal adhesion turnover by controlling their assembly

Baran Güler¹, Joshua Linnert¹, and Uwe Wolfrum¹

¹Johannes Gutenberg Universität Mainz

January 4, 2023

Abstract

VLGR1/ADGRV1 (very large G protein-coupled receptor-1) is the largest adhesion G protein-coupled receptor aGPCRs. Mutations in VLGR1/ADGRV1 are associated with human Usher syndrome (USH), the most common form of deaf-blindness, and also with epilepsy in humans and in mice. Although VLGR1 is almost ubiquitously expressed in CNS and ocular and inner ear sensory cells. Little is known about the pathogenesis of the diseases related to VLGR1. We previously identified VLGR1 as a vital component of focal adhesions (FA) serving as a metabotropic mechanoreceptor that controls cell spreading and migration. FAs are highly dynamic and turnover frequently in response to internal and external signals. Here, we aimed to elucidate how VLGR1 participates in FA turnover. Nocodazole washout assays and live-cell imaging of RFP-paxillin consistently demonstrated that FA disassembly was not altered, de novo assembly of FA was significantly delayed in Vlgr1-deficient astrocytes indicating that VLGR1 is enrolled in the assembly of FAs. In FRAP experiments recovery rates were significantly reduced in Vlgr1-deficient FAs, indicating reduced turnover kinetics in VLGR1-deficient FAs. We showed that VLGR1 regulates cell migration by controlling the FA turnover during their assembly. From this, we expect novel insights into pathomechanisms related to pathogenic dysfunctions of VLGR1.
The adhesion GPCR VLGR1/ADGRV1 regulates focal adhesion turnover by controlling their assembly

Baran E. Güler, Joshua Linnert, Uwe Wolfrum*

Institute of Molecular Physiology, Molecular Cell Biology, Johannes Gutenberg University Mainz, 55128 Mainz, Germany.

*Corresponding author: Institute of Molecular Physiology, Molecular Cell Biology, Johannes Gutenberg University Mainz, Hanns-Dieter-Hüsch-Weg 17, 55128 Mainz, Germany; e-mail: wolfrum@uni-mainz.de

Keywords: G protein-coupled receptors, aGPCR, focal adhesions, cell migration, Usher syndrome, epilepsy

Running title: VLGR1 controls focal adhesion assembly
Abstract

VLGR1/ADGRV1 (very large G protein-coupled receptor-1) is the largest adhesion G protein-coupled receptor AGPCRs. Mutations in VLGR1/ADGRV1 are associated with human Usher syndrome (USH), the most common form of deaf-blindness, and also with epilepsy in humans and in mice. VLGR1 is expressed almost ubiquitously, but mainly found in the CNS and in the sensory cells of the eye and inner ear. Little is known about the pathogenesis of the diseases related to VLGR1.

We previously identified VLGR1 as a vital component of focal adhesions (FA) serving as a metabotropic mechanoreceptor that controls cell spreading and migration. FAs are highly dynamic and turnover frequently in response to internal and external signals. Here, we aimed to elucidate how VLGR1 participates in FA turnover. Nocodazole washout assays and live-cell imaging of RFP-paxillin consistently demonstrated that FA disassembly was not altered, de novo assembly of FA was significantly delayed in Vlgr1-deficient astrocytes indicating that VLGR1 is enrolled in the assembly of FAs. In FRAP experiments recovery rates were significantly reduced in Vlgr1-deficient FAs, indicating reduced turnover kinetics in VLGR1-deficient FAs. We showed that VLGR1 regulates cell migration by controlling the FA turnover during their assembly. From this, we expect novel insights into pathomechanisms related to pathogenic dysfunctions of VLGR1.
1. INTRODUCTION

VLGR1 (very large G protein-coupled receptor-1), also known as GPR98 and MASS1 and recently renamed to ADGRV1 \(^1\), belongs together with other 33 members to the G protein-coupled receptor (GPCR) family of adhesion G protein-coupled receptors (aGPCRs) \(^2\). Among various VLGR1 isoforms, full length VLGR1b is the largest G-protein coupled receptor in the human body with a molecular weight of ~700 kDa \(^3\). VLGR1/ADGRV1 is a classical aGPCR characterized by a large extracellular domain (ECD) which contains 35 putative Ca\(^{2+}\)-binding calx-ß motifs, pentaxin/ laminin G-like repeats (LAMG/PTX), epilepsy-associated/epitemptin-like domain (EPTP/EAR), the 7-transmembrane domain (7TM), and the relatively short cytoplasmic intracellular domain (ICD) with a class I PDZ domain-binding motif (PBM) at the very C terminal end (Figure 1). Autocleavage at the auto proteolysis site (GPS) localized within GAIN (GPCR auto-proteolysis-inducing) domain leads to a C-terminal fragment (CTF) and an N-terminal fragment (NTF) which can function independently \(^4,5\). There is growing evidence that after autocleavage the short so-called “Stachel” sequence in the very N-terminal end of CTF is exposed and can act as a tethered agonist activating aGPCRs \(^6,7\). We have recently found an 11 amino acid sequence as the “Stachel” peptide of VLGR1 \(^8\). We also found evidence that this activation induces a switch from Gs- to Gi-mediated signaling of VLGR1.

The expression of VLGR1 is almost ubiquitously but highly concentrated in the central nervous system (CNS), especially during development and the sensory cells of the eye and inner ear \(^9\) (Protein Atlas: https://www.proteinatlas.org/). Mutations in the VLGR1/ADGRV1 gene cause human Usher syndrome 2C (USH), a subtype of the most common combined hereditary deaf-blindness disease \(^10,11\). In addition, it has been found that different mutations in mouse models for Vlgr1/Adgrv1 are associated with audiogenic epilepsy \(^9\). However, over the last years there is also growing evidence that mutations in VLGR1/ADGRV1 also can cause different forms of epilepsy in humans \(^12,13\). Concrete knowledge on VLGR1’s molecular function and signaling is necessary for gaining insights into the pathomechanisms and the elucidation of potential targets for therapies of diseases related to VLGR1.

In cochlear hair cells of the inner ear and the retinal photoreceptor cells, VLGR1 is essential for the formation of fibrous links spanning between neighbouring membranes \(^14,15\). While it is thought that the absence of these membrane attachment fibers underlie the sensory neuronal degeneration in the eye and ear causing USH the processes leading to epilepsy due to defects in VLGR1 are completely unclear to date.
Applying affinity proteomics we have previously identified numerous proteins related to focal adhesions (FAs) as potential interaction partners of VLGR1. FAs are large supramolecular assemblies at contact sites of the cell membrane with the extracellular matrix. The dynamic turnover, controlled assembly and disassembly of FAs play a key role in cell spreading and migration. In this regard, FAs are essential for sensing and integrating intracellular signals as well as signals from the environment that control cell migration. We have previously shown that VLGR1 is part of the multiprotein complex of FAs and essential for their proper size and abundance in the cell. More importantly, we have also demonstrated that VLGR1 in FAs functions as a metabotropic mechanoreceptor and controls cell spreading and migration. However, it remained unknown, how VLGR1 participates in the control of the dynamics of FAs during cell migration.

In the present study, we aimed to elucidate how VLGR1 controls the FA turnover during cell migration applying nocodazole washout assays and live-cell imaging fluorescence recovery after photobleaching (FRAP) experiments. Our data conclusively demonstrates that VLGR1 regulates cell migration by controlling the assembly of FA. From our findings, we also expect novel insights into pathomechanisms related to molecular and cellular dysfunction of VLGR1 in the developing and mature CNS.

2 MATERIAL AND METHODS

2.1 Animals

All animal experiments were performed per the guidelines of the Association for Research in Vision and Ophthalmology. Vlgr1/del7TM mice carry a premature STOP codon at exon 82 of Vlgr1, namely the V2250* nonsense mutation of Vlgr1 which leads to the deletion of the entire 7TM domain and only the expression of the extracellular domain. Drum B mice carry c.8554+2t>c mutation in exon 37 of Vlgr1 which results in an early STOP codon in intron 37-38 and if no splicing event occurs, the translation product only contains the first 13 CalXbeta domains and the LamG/PTX domain. Both Vlgr1-deficient mouse lines are bred on a C57BL/6 background.

2.2 Isolation of primary astrocytes from murine brains

Astrocytes were isolated from brains of postnatal day 0 (PN0) mouse pups as previously described. Briefly, P0 mouse pups were dissected and cortices were enzymatically and
mechanically disassociated. Single-cell suspensions were seeded on PLL-coated T75 flasks and cultured in DMEM/10% FBS/2% penicillin/streptomycin (Thermo Fisher Scientific) for 7 to 10 days. Upon confluence, oligodendrocytes and neurons were removed by shaking the flasks. To isolate primary astrocytes from microglia cells, cultures were trypsinized and cell suspensions were seeded on successive dishes. While microglia cells attached to the surface of dishes, astrocytes could be collected from the supernatant. Isolated primary astrocytes were cultured additional 7-10 days in complete growth medium.

2.3 Cell culture

Primary astrocytes isolated from postnatal stage day 0 (PN0) mice were cultured in DMEM/10% FBS/2 mM l-glutamine 1% penicillin/streptomycin. Half of the culture medium was changed on days 1, 2, 7 and 14 after the first isolation. Only passage 1 of astrocyte cultures was used for the experiments to maintain experimental consistency.

2.4 Antibodies, fluorescent tools and DNA constructs

We used the following primary antibodies to: paxillin, rabbit monoclonal (ab32115) (Abcam) and paxillin, mouse monoclonal (BD Transduction Laboratories, 610052), α-tubulin, mouse monoclonal (Sigma-Aldrich, T9026), VLGR1, rabbit polyclonal to the C-terminal of murine Vlgr1 15. Secondary antibodies conjugated to Alexa488, and Alexa647 were purchased from Molecular Probes (Life Technologies) or from Rockland Immunochemicals. DNA counterstained with 4',6-diamidino-2-phenylindole (DAPI, Merck) and stress fibers labelled with TRITC-Phalloidin (Merck). The RFP-paxillin plasmid was kindly provided by Drs. Rudolf E. Leube and Rick Hortwitz 23.

2.5 Immunocytochemistry

Primary astrocytes were fixed with 2% paraformaldehyde for 10 min. After fixations, specimens were washed twice, permeabilized with 0.2% Triton-X in PBS (Carl Roth GmbH) for 15 min and quenched with 50 mM NH₄Cl for 5 min. Before primary antibody treatment, cells were blocked with 0.1% ovalbumin, 0.5% fish gelatin in PBS. Primary antibodies were incubated at 4°C overnight. After removing unbound antibodies by PBS washing, secondary antibodies were incubated at room temperature for 1 h, and an additional wash with H₂O, coverslips were mounted with Mowiol 4.88 (Hoechst).

2.6 Nocodazole-induced FA disassembly assay
FA disassembly assay was performed as described previously with slight modifications 24. 1.5x105 primary murine brain astrocytes were seeded onto fibronectin-coated coverslips. After 48 h of culturing, cells were treated with 10 µM nocodazole (AppliChem GmbH) in 0.3% DMSO for 4 h in a serum-free medium. Subsequently, NDZ was washed out three times with 1x PBS, and upon washout fresh complete growth medium was added. Coverslips were removed from the medium at time points, 0, 15, 30, 45, 60, and 120 min and cells were fixed and stained for FAs during microtubule polymerization.

2.7 Morphometric analysis of FAs

Paxillin FA marker was used for FAs number analysis. The number of FAs was quantified as described in Güler et al., 2021 20 using Fiji image analysis software (https://fiji.sc). Briefly, images were converted to 8-bit images and the background was normalized with FFT Bandpass filter. Filtered images are thresholded and converted to binary images. FA numbers are analysed with the “analyze particles” built-in function. The minimum FA size is defined as 40 pixels. Finally, the total number of FAs was divided by cell area to determine FA numbers in µm2.

2.8 Focal adhesion turnover analysis

For live-cell imaging analysis of FA turnover, ~35,000 cells were seeded on a 5 µg/ml fibronectin-coated µ-Slide 4 Well chamber (Ibidi) 72 hours before imaging. The day after seeding, cells were transfected with RFP-paxillin construct with GeneJuice® transfection reagent (Merck Millipore). Transfections were performed according to the manufacturer’s instructions. Cells were incubated for an additional 48 hours at 37 °C with 5% CO\textsubscript{2} in the incubator. Before starting live-cell imaging, temperature of the incubation chamber was brought to 37°C with 5% CO\textsubscript{2} supply. Imaging was performed with Nikon Eclipse Ti2-E/Yokogawa CSU-W1 Spinning disk microscope using 100x/oil objectives. Live-cell movies acquired at 1 frame/5 minute with 10 z-stacks for a total 155 minutes. Images were analysed using Focal Adhesion Analysis Server (FAAS) (https://faas.bme.unc.edu/) 25. Maximum projections were applied to the image series and converted to 8-bit before uploading to the server. Adhesion size was defined as 10 pixels and the FA phase length was determined as 5 continuous image sets in the entire image analysis to provide experimental consistency. FAAS automatically detect and calculate FA assembly/disassembly rates based on changes in intensities during imaging.
2.9 Fluorescence recovery after photobleaching (FRAP) in primary astrocytes

For FRAP analysis, we used RFP-paxillin expressed wild type and Vlgr1-deficient astrocytes. Before photobleaching cells were imaged every 20 seconds for total 120 seconds to define basal bleaching rates. After 120 seconds of imaging, randomly selected FAs from the periphery of the cells were photobleached with 561 nm laser set to 100% power. To quantify FA kinetics, raw intensity values photobleached area (ROI1), whole cell (ROI2) and background area (ROI3) were measured with Fiji image analysis software. Intensity values were uploaded to the easyFRAP online tool (https://easyfrap.vmnet.upatras.gr/)\(^26\). Post-bleached intensity values were normalized by subtracting pre-bleach values for bleach correction. Full-scale normalization was applied for FRAP fluorescence intensity curves and T-half time and mobile fractions were calculated with double curve fitting function. Only P values less than 0.05 are taken under consideration for quantifications. Samples were analysed with a Nikon Eclipse Ti2-E/Yokogawa CSU-W1 Spinning disk microscope using 63x/water objectives.

The study was conducted in accordance with the Basic & Clinical Pharmacology & Toxicology policy for experimental and clinical studies\(^27\).

3 RESULTS

3.1 Nocodazole washout assays revealed enrolment of VLGR1 in the assembly of focal adhesions.

We have previously shown that VLGR1 is vital for FAs affecting the size and length of focal adhesions (FAs) as well as the velocities of cell spreading and migration \(^17\). However, it has remained unclear/open whether VLGR1 controls migration capacity and turnover of FA during the assembly or the disassembly of FAs. We performed washout assays with microtubule depolymerization drug nocodazole (NDZ), previously introduced to monitor the disassembly of FAs \(^24\) (Figure 2A). We treated primary astrocytes derived from brains of Vlgr1-deficient Vlgr1/DrumB mutant mice or wild type (WT) mice with either DMSO or nocodazole (NDZ) (10 μM) in DMSO. Consistent with previous reports \(^24,28,29\), NDZ treatment induced microtubule depolymerization leading to cell-cycle synchronization and accumulation of FAs (Figures 2A, B). After replacing the NDZ medium by fresh medium without NDZ (NDZ washout) a phase of rapid FA disassembly was introduced which rested for approximately 45 min (Figures 2A,
B). Quantifying the number of FAs after the 4 h NDZ treatment and during the FA disassembly phase we did not observe significant differences between WT and Vlgr1-deficient mice in the number of FAs (Figure 2C, time points 15 to 45 min).

After 45 min of NDZ washout, the FA disassembly phase was followed by a phase of *de novo* assembly of FAs, characterized by increasing numbers of FAs in the primer astrocytes of mouse lines (Figure 2A, B; time points 60 and 120 min after NDZ washout)\(^\text{24}\). Quantifying the number of FAs during this FA *de novo* assembly phase revealed a significant lower number of FAs in *Vlgr1*-deficient astrocytes when compared to WT astrocytes (Figure 2B, C). In contrast, we did not observe any changes in FA numbers in controls in which we only treated the astrocytes of both mouse lines with DMSO (Supplemental Figure S1A, B). Taken together, the NDZ washout experiments showed that the absence of VLGR1 did not affect the disassembly of FAs, but rather indicated a role of VLGR in the assembly of FAs.

3.2 Live-cell imaging demonstrated that VLGR1 controls focal adhesion assembly in the living cell

Next, we analyzed the FA turnover by live-cell imaging of primary astrocytes of WT and *Vlgr1*-deficient mice expressing the FA marker RFP-paxillin \(^\text{20}\). Immunostaining of astrocytes demonstrated the co-localization of VLGR1 and RFP-paxillin confirming our previous results on VLGR1 and endogenous paxillin (Supplemental Figure S2)\(^\text{17}\). Anti-paxillin immunofluorescence of primary astrocytes transfected with RFP-paxillin also revealed co-localization of RFP-paxillin and endogenous paxillin in FAs (Supplemental Figure S2) demonstrating the correct cellular localization of RFP-paxillin.

For live-cell imaging we recorded RFP-paxillin-labeled FAs in *Vlgr1*-deficient primary astrocytes derived from Vlgr1/DrumB mice and WT astrocytes for two hours in a spinning disc confocal microscope (Supplemental Videos S1, S2). Subsequently, we analysed and quantified the dynamics of RFP-paxillin-FAs in these video tracks by applying the Focal Adhesion Analysis Server (FAAS) web tool (https://faas.bme.unc.edu)\(^\text{25}\) (Figure 3). To eliminate putative background signals in FAAS analyses, FA sizes were defined minimum of 10 pixels and assembly/disassembly processes were determined by using FAs which appeared in 5 continuous image sets (Figure 3A). Following individual FAs (identified by FAAS) in time-lapse image sequences of RFP-paxillin in WT and Vlgr1/DrumB astrocytes, we observed that FAs undergo rapid assembly and disassembly in WT astrocytes, while the turnover of FAs was slower in Vlgr1/DrumB astrocytes (Figure 3B). The spatiotemporal dynamics in living astrocytes of WT and Vlgr1/DrumB were visualized by superposition of all FAs from microscopy image taken
every 5 min during the entire time course of 155 min of colour for the set of FAs at each time point (Figure 3C).

Quantifications of all FAs in the analysed cells revealed that the assembly rate of FAs (Figure 3D) and the life time of FAs (Figure 3F) were significantly higher in WT astrocytes when compared to Vlgr1/DrumB astrocytes. In contrast, the disassembly rates did not significantly differ between both (Figure 3D). To verify these results on FAs in Vlgr1/DrumB astrocytes, we also examined primary astrocytes derived from brains of Vlgr1/Del7TM mice (Supplemental Figure S3), another Vlgr1-deficient mouse line. Analogous live-cell imaging experiments showed, as in Vlgr1/DrumB astrocytes, no differences in the rate of FA disassembly but a significantly higher assembly rate of FAs in Vlgr1/Del7TM astrocytes compared with WT (Figures 3D, E; Supplemental Figures S3C-D). In contrast to Vlgr1/DrumB, we did not observe differences in the life time of FAs in astrocytes of Vlgr1/del7TM (Supplemental Figure S3E).

Taken together, our data show that deficiency in Vlgr1 results in differences in turnover rates based on slower assembly rates of FAs.

3.3 VLGR1 controls turnover kinetics of focal adhesions by fluorescence recovery after photobleaching (FRAP)

We have shown that VLGR1 controls the assembly FA by our NDZ washout assays and live-cell imaging. We addressed next the effects of Vlgr1-deficiency on the kinetics of FA assembly by adhesions by fluorescence recovery after photobleaching (FRAP) (Figure 4). WT and Vlgr1-deficient astrocytes derived from Vlgr1/del7TM mouse brains were seeded onto fibronectin-coated surfaces and transfected them with RFP-paxillin. Randomly selected FAs in the cell periphery of astrocytes were photobleached by full power of laser of 560 nm excitation (Figure 4). Subsequently, fluorescence intensities in the bleached regions were determined by time-lapse imaging over a time period of 880 sec (Supplemental Video S3, S4). Image analyses of the video tracks showed fast fluorescent intensity increases (FRAP) in WT astrocytes; already ~120 sec after photobleaching RFP-paxillin fluorescence was recovered in FAs (Figure 4A, B, upper panels). In contrast, the recovery of RFP-paxillin was much slower in Vlgr1/del7TM astrocytes; we did not observe substantial FRAP until 240 seconds after photobleaching (Figure 4A, B, lower panels). FRAP signals were quantified by the online FRAP analysis tool EasyFRAP (https://easyfrap.vmnet.upatras.gr/)26. For this, the FRAP intensities of bleached FA regions were normalized to the intensity values of background regions where noise signals were measured and to unbleached FAs where auto-fading values were measured. In Figure 4C the quantitative analysis for time course of RFP-paxillin fluorescence recovery is shown. The
recovery of RFP-paxillin intensity was faster in WT astrocytes when compared to Vlgr1/del7TM astrocytes. In WT after 420 seconds approximately 50% of the RFP-paxillin fluorescence intensity of before bleaching levels was reached while in contrast, only 40% the RFP-paxillin fluorescence intensity was recovered in Vlgr1/del7TM astrocytes after that time (Figure 4C). In line with these results, we found a significant slower average half-time ($t_{1/2}$) recovery of FRAP in Vlgr1/del7TM astrocytes with 338 seconds compared to WT astrocytes in which the $t_{1/2}$ was 223 seconds (Figure 4D). Nevertheless, our analysis by EasyFRAP revealed no significant differences in the calculated mobile fractions of RFP-paxillin between astrocytes of both WT and Vlgr1-deficient mice (Figure 4E).

Our FRAP data indicated that VLGR1 also participates in the recruitment of paxillin to FAs during their assembly.

4 DISCUSSION

The coordination and regulation of FA dynamics are central for cell migration under both healthy and pathological conditions. Cell migration requires the continuous dynamic arrangement of FAs, the assembly of nascent FAs in the leading edge of cells and disassembly in their rear. In this regard, FAs are essential for sensing and integrating intracellular signals as well as for the reception of signals from the environment to control cell migration. We previously showed that VLGR1 is part of the multiprotein complex of FAs and essential for their proper size and abundance in cells. More importantly, our studies have also shown that VLGR1 is crucial for FA key functions, namely in cell spreading and cell migration. For this the VLGR1 acts as a metabotropic mechanosensor sensing mechanical signals from the extracellular environment. So far, however, it had to remain open in which aspect of turnover process of the dynamic macromolecular FA complexes VLGR1 participates.

In the present study, we aimed to elucidate how VLGR1 controls the FA turnover during cell migration. The turnover rate of FAs is characterized by the time courses of their assembly and disassembly. Our data received by NDZ washout assays, live-cell imaging and FRAP consistently provide several lines of evidence that VLGR1 regulates the turnover of FAs by participating in the assembly process of FAs. In the NDZ washout assay, FAs accumulated in response to NDZ-induced microtubule depolymerization are first rapidly degraded after NDZ washout, before FAs are reassembled. Our results show that the time course of the later FA de novo assembly, but not the disassembly phase, is significantly delayed to an equal extent in the primary brain astrocytes of both Vlgr1-deficient mouse models studied. (Figure 2A-C;
Supplemental Figure 3A, B). Consistent with these findings, present live-cell imaging data acquired by monitoring the dynamics of FA turnover in living cells expressing the fluorescently tagged FA core protein paxillin also demonstrated that the assembly rate but not the disassembly rate of FAs was significantly reduced in astrocytes of both Vlgr1-deficient mouse models (Figures 3D, E; Supplemental Figure 3C, D). Present FRAP experiments also showed that the recruitment of fluorescent paxillin to FAs is slower in Vlgr1-deficient astrocytes (Figure 4C, D) which is in line with a reduced assembly rate of FAs as discussed above. Defects in the assembly of FAs also lead to reduced FA dynamics which is documented by an increase of the lifetime seen in astrocytes of Vlgr1/DrumB mice (Figure 3F) which is consistent with the reduced migration rate in VLGR1 deficient cells that we previously found.

All in all our findings on VLGR1 are consistent with the role of regulators of FA dynamics and cell migration, such as RACK1 and the phosphatidylinositol phosphate kinase type 1γ (PIPKIγ). Deficiency of VLGR1 decreases the turnover rates of the FA adaptor protein paxillin which has previously been observed for downregulation or mutations in FA regulators.

When FAs are reassembled, integrins of disassembled FAs are recycled to the leading edge of migrating cells. These integrin clusters receive signals from the extracellular matrix substrate triggering the sequential recruitment and activation of further FA components. We have recently identified several molecules essential for the sequential assembly of FAs and related activation, such as the integrins β1, α3, α5, and α6, talin, RhoA, focal adhesion kinase (FAK), and integrin-linked kinase (ILK), as potential interacting proteins of VLGR1. The absence of talin-1, one of the first FA molecules recruited to the integrin cluster, or, for example, mutations in FAK essential for the activation of other FA proteins, result in a delay of FA assembly but do not affect the FA disassembly rate. This is exactly what we found in the present study for VLGR1 in Vlgr1-deficient cells. Taken together these data indicate that VLGR1 interplays with its interacting partners during the process of FA assembly.

The assembly of FAs as contact sites of the cell to its ECM substratum is controlled by external forces. The principal membrane receptors to sense mechanical signals from the ECM are integrin dimers. Nevertheless, there is emerging evidence that adhesion GPCRs act as mechanosensors at the cell surface, sensing mechanical forces from the extracellular environment as well. Our recent identification of VLGR1 as a metabotropic mechanosensor in FAs, in conjunction with the results found in the present study, suggest a mechanosensory role for VLGR1 in the process of FA assembly. Future studies will elucidate how the mechanosensation of integrins and VLGR1 during the assembly of FAs are coordinated.
There is growing evidence that defects in cell migration can increase susceptibility to epilepsy. Given that the turnover of FAs is crucial for proper cell migration, the altered composition rate of FAs in cells defective for VLGR1 is likely to contribute to the cellular pathophysiology in diseases caused by defects of VLGR1. VLGR1 is highly expressed in the developing CNS, where the correct migration of neurons, glial cells, and their progenitors is essential. To determine the role of VLGR1 in the turnover of FAs, we examined FA dynamics in primary brain astrocytes, which are characterized by particularly high migration properties. Proper migration of astrocytes is essential for the development and maintenance of the CNS. During the differentiation of the CNS, astrocytes are derived from radial glia cells in the ventricular and subventricular zone and migrate to the different layers of the brain. In their final location, astrocytes play crucial roles in neurotransmitter clearance, synaptogenesis, and ion homeostasis and the loss of astrocyte function can lead to severe disorders of the CNS in human. Interestingly, the loss or dysfunction of potential interacting proteins of VLGR1 in FAs, such as integrin β1, talin, or FAK can lead to astrogliosis, a hallmark in the pathogenesis of epilepsy. Accordingly, VLGR1 deficiency in astrocytes may also contribute the pathophysiology underlying epilepsy, which will need to be addressed in detail in the future.

5 CONCLUSIONS

Studying the highly mobile brain astrocytes we validated the important role of adhesion GPCR VLGR1 in the dynamics of FAs. Our data conclusively revealed that VLGR1 controls the kinetics of FAs by participating in the assembly of FAs, thereby the migration of the cells. For this VLGR1 may act as a metabotropic mechanosensor sensing in parallel with integrins mechanical signals from the environment. Our findings elucidate not only the molecular and cellular function of VLGR1 in healthy brain astrocytes but also provide novel insights into pathomechanisms of VLGR1-associated epilepsy.

ACKNOWLEDGEMENT

We thank Drs. Rudolf E. Leube and Rick Hortwitz for kindly providing the RFP-paxillin plasmid, Dr. Kerstin Nagel-Wolfrum for fruitful discussions on the manuscript and Susanne Wilhelm for language editing.

CONFLICT OF INTEREST

The authors declare no conflict of interest.

Author Contributions: B.E.G. conducted the majority of the experiments, analysis of data
and figure preparation. J.L. helped with the isolation and culturing astrocytes. U.W. and B.E.G. designed the studies and wrote the manuscript. All authors have read and agreed to the published version of the manuscript.

Funding information
The German Research Council DFG FOR 2149, project numbers 246212759 (UW), and The Foundation Fighting Blindness (FFB) PPA-0717-0719-RAD (UW).

Institutional Review Board Statement:
The use of mice in research was approved by the German regulation authority for the use of animals in research, the district administration Mainz-Bingen, 8341a/177-5865-§11 ZVTE, 30.04.2014.

REFERENCES

Figure legends

Figure 1. Domain structure of VLGR1/ADGRV1 and mutations in Vlgr1 mouse models.

VLGR1 is composed of an extremely long extracellular domain (ECD), 7-serpentine transmembrane domain (TM), and a relatively short intracellular domain (ICD) with a characteristic PDZ binding motif (PBM). The ECD includes a signal peptide (SP), 35 Ca$^{2+}$ binding calcium exchanger β motifs (Calx-β), pentaxin/laminin G-like repeats (LAMG/PTX), an epilepsy-associated/Epitemptin-like domain (EPTP/EAR), a GPCR autoproteolysis-inducing domain (GAIN) which includes the G-protein-coupled receptor proteolytic site (GPS). Autoproteolytic cleavage at the GPS can result N-Terminal fragment (NTF) and the C-Terminal fragment (CTF) and the expose of the Stachel sequence at the very N-terminal end of the CTF which can act as tethered agonist. In Vlgr1/del7TM mice V2260* nonsense mutation introduces a STOP codon which leads to the deletion of 7TM and ICD domains of Vlgr1 and translation product is only ECD. In the Vlgr1/DrumB mice the 8554+2T>C mutation leads to a STOP codon in intron 37-38. Translation product is a relatively short truncated protein, which includes only 13 CalXbeta domains and the LAMG domain.

Figure 2. Analysis of focal adhesion (FA) turnover in primary astrocytes by nocodazole washout assays. (A) Scheme of nocodazole (NDZ) washout assay. Primary murine astrocytes were incubated with 10 uM NDZ in serum-free medium for 4 h to induce FA accumulation. Subsequent NDZ washout with complete growth medium induces FA disassembly (15-45 min), before de novo assembly starts at 60-120 min. (B) Immunostaining of the FA marker paxillin (magenta) and nuclear counterstaining of DAPI (blue) in primary astrocytes derived from wild type (WT) and Vlgr1-deficient Vlgr1/DrumB mouse hippocampi at different time points after NDZ washout. (C) Quantification of FA numbers after NDZ washout. In the FA disassembly phase (15-45 min after NCD washout), FA numbers steadily decreased in both WT and in Vlgr1-deficient Vlgr1/DrumB astrocytes without a significant difference. During the de novo assembly of FAs (60, 120 min), the number of FAs was significantly lower in Vlgr1-deficient Vlgr1/DrumB. N= 47-58 cells in WT astrocytes and 48-62 cells in Vlgr1/DrumB astrocytes per time-points were analysed in n=3 independent experiments. Data are represented as mean ± SD. Statistical evaluation was performed using two-tailed Mann-Whitney U-test, *p % 0.05, **p % 0.01, ***p % 0.001. Scale bars: 10 µm.

Figure 3. Live-cell imaging analysis of FAs turnover in primary astrocytes Vlgr1-deficient Vlgr1/DrumB mice. (A) Identification of FAs RFP-paxillin fluorescence image analysis by the Focal Adhesion Analysis Server (FAAS) (https://faas.bme.unc.edu) in wild type (WT) and
Figure 4. Fluorescence recovery after photo bleaching (FRAP) analysis of FAs turnover in primary astrocytes expressing RFP-paxillin. (A) Representative time-lapse fluorescence images of RFP-paxillin-transfected wild type (WT) and Vlgr1/del7TM primary astrocytes before and after Fluorescence recovery after photobleaching (FRAP). RFP-paxillin-expressed cells were imaged for 100 seconds before photobleaching (flash) to track basal intensity levels and bleached at 120 seconds. Images were acquired to record intensity recoveries for 880 s after photo bleaching. (B) Fluorescence recovery curve showing the intensity over time in the bleach ROI. From the recovery curve the immobile fraction and recovery half time can be determined. Intensity changes in individual RFP-paxillin focal adhesions during pre-bleaching and post-bleaching. (C) Normalized RFP-paxillin fluorescence intensity FRAP curves. Quantification of FRAP indicates reduction in intensity recovery in Vlgr1/del7TM astrocytes. The red dashed line indicates 50% of the recovery of the initial fluorescence intensity. Asterisks indicate significant differences in the fluorescence recovery between WT and to Vlgr1/del7TM astrocytes. (D) Recovery of RFP-paxillin fluorescence after photobleaching. The recovery time after photobleaching is significantly longer Vlgr1/del7TM astrocytes (average 338 s) compared to WT astrocytes (average 233 s). (E) Mobile fractions of RFP-paxillin in WT and Vlgr1/del7TM astrocytes show no significant difference. Fluorescence recoveries normalized to pre-bleach levels and intensities of individual FA calculated by Fiji image analysis tool and quantified by using EasyFRAP online-tool. 66-80 individual FAs were analysed in N=3-7 cells of n=3 experiments. Statistics: two-tailed Student’s t test, *p % 0.05, **p % 0.01, ***p % 0.001. Scale bars: 10 µm.
Supplemental Figures

Supplemental Figure S1. Analysis of focal adhesion (FA) turnover in primary murine WT astrocytes treated with DMSO

Supplemental Figure S2. Validation RFP-paxillin localization in wild-type primary astrocytes.

Supplemental Figure S3. Focal adhesion turnover (FA) analysis in primary Vlgr1/del7TM astrocytes by nocodazole washout assay and live-cell imaging

Supplemental Videos

Supplemental Video S1. Monitoring RFP-paxillin expressed WT control astrocytes, related to figure 3.

Supplemental Video S3. FRAP assay in RFP-paxillin expressing WT control astrocytes, related to figure 4.

Supplemental Video S4. FRAP assay in RFP-paxillin expressing Vlgr1/del7TM astrocytes, related to figure 4.