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Abstract

Understanding three-dimensional (3D) root traits is essential to improve water uptake, increase nitrogen capture, and raise

carbon sequestration from the atmosphere. However, quantifying 3D root traits by reconstructing 3D root models for deeper

field-grown roots remains a challenge due to the unknown tradeoff between 3D root-model quality and 3D root-trait accuracy.

Therefore, we performed two computational experiments. We first compared the 3D model quality generated by five state-of-

the-art open-source 3D model reconstruction pipelines on 12 contrasting genotypes of field-grown maize roots. These pipelines

included COLMAP, COLMAP+PMVS (Patch-based Multi-view Stereo), VisualSFM, Meshroom, and OpenMVG+MVE (Multi-

View Environment). The COLMAP pipeline achieved the best performance regarding 3D model quality versus computational

time and image number needed. Thus, in the second test, we compared the accuracy of 3D root-trait measurement generated

by the Digital Imaging of Root Traits 3D pipeline (DIRT/3D) using COLMAP-based 3D reconstruction with our current

DIRT/3D pipeline that uses a VisualSFM-based 3D reconstruction (Liu et al., 2021) on the same dataset of 12 genotypes, with

5˜10 replicates per genotype. The results revealed that, 1) the average number of images needed to build a denser 3D model

was reduced from 3000˜3600 (DIRT/3D [VisualSFM-based 3D reconstruction]) to 300˜600 (DIRT/3D [COLMAP-based 3D

reconstruction]); 2) denser 3D models helped improve the accuracy of the 3D root-trait measurement; 3) reducing the number

of images can help resolve data storage capacity problems. The updated DIRT/3D (COLMAP-based 3D reconstruction) pipeline

enables quicker image collection without compromising the accuracy of 3D root-trait measurements.
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Abstract

Understanding three-dimensional (3D) root traits is essential to improve wa-
ter uptake, increase nitrogen capture, and raise carbon sequestration from the
atmosphere. However, quantifying 3D root traits by reconstructing 3D root
models for deeper field-grown roots remains a challenge due to the unknown
tradeoff between 3D root-model quality and 3D root-trait accuracy. Therefore,
we performed two computational experiments. We first compared the 3D model
quality generated by five state-of-the-art open-source 3D model reconstruction
pipelines on 12 contrasting genotypes of field-grown maize roots. These pipelines
included COLMAP, COLMAP+PMVS (Patch-based Multi-view Stereo), Vi-
sualSFM, Meshroom, and OpenMVG+MVE (Multi-View Environment). The
COLMAP pipeline achieved the best performance regarding 3D model quality
versus computational time and image number needed. Thus, in the second
test, we compared the accuracy of 3D root-trait measurement generated by the
Digital Imaging of Root Traits 3D pipeline (DIRT/3D) using COLMAP-based
3D reconstruction with our current DIRT/3D pipeline that uses a VisualSFM-
based 3D reconstruction (Liu et al., 2021) on the same dataset of 12 geno-
types, with 5~10 replicates per genotype. The results revealed that, 1) the
average number of images needed to build a denser 3D model was reduced
from 3000~3600 (DIRT/3D [VisualSFM-based 3D reconstruction]) to 300~600
(DIRT/3D [COLMAP-based 3D reconstruction]); 2) denser 3D models helped
improve the accuracy of the 3D root-trait measurement; 3) reducing the num-
ber of images can help resolve data storage capacity problems. The updated
DIRT/3D (COLMAP-based 3D reconstruction) pipeline enables quicker image
collection without compromising the accuracy of 3D root-trait measurements.

Introduction

Root phenotyping is essential in research projects aiming to improve water
uptake, nitrogen capture, and carbon sequestration (Ault, 2020; Lynch, 2019;
Lynch & Wojciechowski, 2015; Paustian et al., 1997; Smith et al., 2007). How-
ever, this approach requires advanced methods to measure and quantify complex
root architectures in the field environment.

With the development of computer vision techniques, image-based root pheno-
typing with industrial cameras has emerged as a cost-efficient, highly scalable,
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and accessible alternative to expensive high-end imaging devices. Established
2D image-based root-phenotyping methods, such as DIRT (Bucksch et al., 2014),
archiDART (Delory et al., 2016), EZ-Root-VIS (Shahzad et al., 2018), GiA
Roots (Galkovskyi et al., 2012), and RhizoVision (Seethepalli et al., 2020) pro-
vide highly accurate trait measurements. However, 2D imaging approaches can
only capture partial information from dense and highly occluded 3D maize-root
architectures. Therefore, quantifying important traits, such as crown root num-
ber and whorl number, and their distances remains challenging.

The use of 3D imaging techniques in root phenotyping is promising because
of their ability to leverage multiple views of a given scene to resolve occlusion
in dense root architectures (Bucksch, 2014; Clark et al., 2011; Dowd et al.,
2022; Topp et al., 2013). However, 3D imaging methods, such as X-ray CT
(Shao et al., 2021) or magnetic resonance imaging (MRI; van Dusschoten et
al., 2016), are 100–1000 times more expensive than multicamera systems (Liu
et al., 2021), and they do not meet the needs of large-scale field studies due
to the restriction on their operation cost and difficulties in deploying in the
field environment. Moreover, 3D-imaging methods incur labor costs for highly
trained staff and custom shielded rooms for operations. Therefore, X-ray CT
and MRI techniques are unsuitable for capturing root architecture with high
throughput. In contrast, multicamera systems can scale at a fraction of the
cost of 3D-imaging methods and require neither highly trained staff nor custom
facilities for their operation.

Fortunately, open-source image-based 3D reconstruction pipelines COLMAP
(Schonberger & Frahm, 2016), COLMAP+PMVS (Furukawa & Ponce,
2007), VisualSFM (Wu, 2011), Meshroom (Griwodz et al., 2021), and
OpenMVG+MVE (Moulon et al., 2016) Fuhrmann et al., 2014) enable 3D
reconstructions of root-system architectures from large sets of unordered images
obtained using multicamera systems (Liu et al., 2021) Hoppe et al., 2012).

However, which pipelines have the best performance when generating 3D root
models? Until now, it has not been quantified if the model quality sufficient to
measure root traits can be seen as a trade-off between the number of images
and computation time.

To answer the question above, we performed two computational experiments.
We compared the 3D model quality generated by the above five open-source 3D
model reconstruction pipelines on 12 samples from 12 contrasting genotypes of
field-grown maize roots in the first computational experiment. The 3D model
quality comparison includes visual quality, number of points and surface den-
sity of a 3D point cloud model, and computation time. The COLMAP pipeline
achieved the best performance regarding 3D model quality, which represented
the optimal tradeoff between the point cloud metrics number of points and
surface density, image number, and runtime. Therefore, in the second computa-
tional experiment, we implemented COLMAP in the 3D reconstruction pipeline
in DIRT/3D (Liu et al., 2021) and compared the accuracy of 3D root traits
generated by DIRT/3D (COLMAP-based 3D reconstruction) pipeline with our
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current DIRT/3D (VisualSFM-based 3D reconstruction) pipeline from the same
dataset, including 12 genotypes with 5~10 replicates per genotype (Liu et al.,
2021). For abbreviation purposes, we shall now refer to DIRT/3D (COLMAP-
based 3D reconstruction) pipeline as DIRT/3D (COLMAP), and DIRT/3D
(VisualSFM-based 3D reconstruction) pipeline as DIRT/3D (VisualSFM).

In the following section, we discuss the methodology including root sample col-
lection, two computational experiments and statistical analysis method. Then,
reconstructed models of various maize genotypes are visually and quantitatively
assessed for the quality of retrieved traits measurement.

Materials and Methods

Root Sample Collection

We used the same root samples as described in (Liu et al., 2021), including 12
genotypes with 5~10 replicates per genotype. The plants were grown at Pennsyl-
vania State University’s Russell E. Larson Agricultural Research Center, which
has Hagerstown silt loam soil (fine, mixed, semi-active, mesic Typic Hapludalf;
Liu et al., 2021). The selected genotypes represent extremes of dense vs. sparse,
large vs. small, and maximum and minimum number of whorls selected from
a full diversity panel. The 12 genotypes included six inbred lines (B101, B112,
DKIB014, LH123HT, Pa762, PHZ51) and six hybrid lines (DKPB80 x 3IIH6,
H96 x 3IIH6, LH59 x PHG29, Pa762 x 3IIH6, PHG50 x PHG47, PHZ51 x
LH59). Sampling followed the shovelomics protocol, which minimizes variation
by selecting similar representative architectures. Shoots were removed above
all root-producing nodes and air-dried on a greenhouse bench. Then, the roots
were transported to the lab for imaging.

Three-Dimensional Root-Model Reconstruction and Three-Dimensional Trait
Computation

Computational Experiment 1:

Image Capture and Computational Methods

The image collection was conducted in an imaging chamber prototype built for
Pennsylvania State University (Shi et al., 2019). Since this imaging chamber
was equipped with a higher resolution camera than the cameras described in
(Liu et al., 2021), we selected 12 roots from all the roots samples, with each root
representing one genotype. We captured images of each root using this proto-
type imaging chamber, as conceptually introduced in (Shi et al., 2019). The
images were captured using 10 cameras (Image Source DFK 33ux183 USB 3.0,
12mm focal length V1228-MPY2 12 Megapixel Machine Vision Lens) arrayed
around a central focal point. Image capture was synchronized using a cluster of
10 Raspberry Pi 4s with a server-client design. For each sample, between 300
and 360 images with an image resolution 5,472×3,648 were taken.

We captured 12 sets of images. Then, we computed 60 3D root models for
each image collected with all five 3D reconstruction pipelines (COLMAP,
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COLMAP+PMVS VisualSFM, Meshroom, and OpenMVG+MVE). The 3D
root-trait measurement was conducted using the same pipeline as that described
in (Liu et al., 2021).

Computational Environment

We conducted the first computational experiment on a DELL workstation. (Op-
tiPlex 7080, 10th Generation Intel® Core™ i9-10900K, 20 MB Cache, 10 Cores,
20 Threads, 3.7 GHz to 5.3 GHz, 125 W, 64 GB RAM, 4 x 16 GB, DDR4,
M.2 2280, 1 TB hard drive, Gen 3 PCIe x4 NVMe, Class 40 SSD). In addition,
we used Graphics Processing Units (GPU)to facilitate the computation if the
software-supported GPUs. The GPU model with the DELL workstation was a
GeForce RTX 2070 SUPER, NVIDIA Corporation TU104, nvcc: NVIDIA (R)
Cuda compiler driver. All the pipelines were tested under command-line inter-
face (CLI) to generate related 3D root models in point cloud format. The scripts
for the workstation are on GitHub (https://github.com/Computational-Plant-
Science/3D_review_scripts/tree/master, folder Computational_test_1).

Computational Experiment 2:

Image Capture and Computational Methods

We used the same image dataset as in Computational Experiment 1. However,
for each root sample, we used only a subset of 600 images to simulate reduced
time for image capturing.

We computed all 100 3D root models for the 12 genotypes from a subset of 600
images with DIRT/3D (COLMAP). The 3D trait measurement of the roots was
conducted using the same pipeline as that described in (Liu et al., 2021).

Computational Environment

The computation was conducted on the high-performance-computing (HPC)
resource SAPELO2 at the Georgia Advanced Computing Resource Center
(GACRC). We ran DIRT/3D (COLMAP) in a Docker container and recorded
the running time for each execution of the container. The Docker container
was retrieved from Docker hub (named as computationalplantscience/dirt3d-
reconstruction and computationalplantscience/dirt3d-traits). All the scripts
for this computational experiment are on GitHub (https://github.com
/Computational-Plant-Science/3D_review_scripts/tree/master, folder
Computational_test_2).

Three-Dimensional Model Quality Computation

We used CloudCompare v2.12.alpha (Girardeau-Montaut, 2016) to compute
the number of points in the 3D point cloud model and to estimate the surface
density of a point cloud in Computational Experiments 1 and 2. We loaded each
point cloud model into CloudCompare v2.12.alpha using the software’s graphical
user interface. We then retrieved the number of points via the “Properties” tab.

The surface density S was estimated by counting the number of neighbors N
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inside a sphere of radius R for each point. The surface density S is defined as
follows:

S = N / (Pi*R2)

Statistical Analysis

The CORREL function in Microsoft Excel (Microsoft 365 A3) and the Analysis
ToolPak add-in for Excel were used to compute correlation coefficients between
the two sets of trait measurements derived from DIRT/3D (COLMAP) and
DIRT/3D (VisualSFM). In addition, the built-in R-squared formula RSQ in
Microsoft Excel (Microsoft 365 A3) was used to compute the R-squared value
in the regression analysis.

Results

Computational Experiment 1: Qualitative and Quantitative Comparison of
Three-Dimensional Model Quality from Five Open-Source Three-Dimensional
Reconstruction Pipelines

Visual Assessment

We selected 12 field-grown maize roots from 12 different genotypes to compute
3D point clouds using all five pipelines. For each root sample, 300~600 images
were captured, and 60 3D point cloud models were generated.

Figure 1 provides a visual comparison of the computed 3D models with the
pipelines COLMAP, VisualSFM, OpenMVG, Meshroom, and MVE. Among
all the tested 3D reconstruction pipelines, COLMAP and COLMAP+PMVS
achieved good visual results, in terms of model completeness, with no obvious
disconnection of roots or missing parts of the root system. With the reduced
image dataset, VisualSFM tended to omit fine details, such as brace roots at
the margins of the point cloud. Meshroom produced models with large interior
gaps. OpenMVG+MVE displayed finer details than VisualSFM but does not
provide color information per point.
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Figure 1. Visual comparison of three reconstructed maize genotypes. The 3D
root models in each row compare the same genotype across different 3D re-
construction pipelines. The 3D root models in each column compare a 3D
reconstruction pipeline across different genotypes.

Quantitative Assessment

We assessed the two sets of point cloud metrics (number of points and surface
density) for each 3D point cloud model. “Number of points” represents the total
of 3D points generated by a 3D reconstruction pipeline. “Surface density” is
the average density across the surface of the root architecture. The comparison
results for the number of points are illustrated in Figure 2. The COLMAP
pipeline produced the largest number of points, achieving, on average, 94 times
the number of points of Meshroom, which generated the fewest points. In gen-
eral, COLMAP outperformed all the other tested pipelines regarding the number
of points per root system (see Figure 2).
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Figure 2. Comparison of the number of points in 3D models. The five pipelines
are color labeled, and the lengths of bars represent the value of the number of
points in each 3D point cloud model.

In addition to the number of points, we compared the surface density of the point
clouds generated by each pipeline. Higher surface density values are desirable for
point cloud characteristics. The comparison of surface density in Figure 3 reveals
that COLMAP and OpenMVG+MVE produced the models with the largest
surface density. The surface density generated by COLMAP was, on average, 94
times the surface density generated by VisualSFM, whereas OpenMVG+MVE
was 31 times the surface density of VisualSFM. VisualSFM generated models
with the lowest surface density among all the pipelines.
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Figure 3. Comparison of surface density of 3D models. COLMAP produced
models with the highest surface density among all the pipelines, whereas Visu-
alSFM produced the lowest surface density. The five tested pipelines are color
labeled, and the lengths of the bars represent the value surface density of each
3D point cloud model.

Although COLMAP produced the best 3D model results regarding the num-
ber of points and surface density, its computation time was almost 29 times
longer than the quickest algorithm (OpenMVG+MVE), and five times longer
than Meshroom, on average. COLMAP+PMVS was significantly faster than
COLMAP, and needed, on average, three times longer than OpenMVG+MVE
to produce the 3D model. COLMAP+PMVS required a similar time to compute
the 3D point cloud as VisualSFM, as illustrated in Figure 4.
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Figure 4. Comparison of computation times per 3D reconstruction pipeline. The
five tested pipelines are color labeled, and the lengths of the bars represent the
time needed to compute the point cloud model. Although COLMAP generated
the best 3D models among all the pipelines regarding number of points and
surface density, it also took the most computational time, on average. Meshroom
was the second most time-consuming pipeline. COLMAP+PMVS took the least
computational time, on average.

Computational Experiment 2: Comparison of Three-Dimensional Trait Accu-
racy with Maximal Surface Density Three-Dimensional Models

COLMAP produced higher surface density compared with the other tested al-
gorithms, using around 600 images per sample based on the comparison results
in Computational Experiment 1. In the second computational experiment, we
tested whether the increased surface density enabled similar trait measurement
accuracy using COLMAP, with around 600 images, to the original version of
DIRT/3D (Liu et al., 2021) using 3600 images with VisualSFM. Therefore, we
implemented COLMAP in the 3D reconstruction pipeline in DIRT/3D (Liu et
al., 2021) and named it DIRT/3D (COLMAP) to distinguish it from the old
DIRT/3D (VisualSFM).
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Figure 5. 12 sample 3D root models and their related computed root structure
DIRT/3D (COLMAP). The rows named “3D models” provide examples of the
computed 3D root point clouds per genotype. The rows named “Structure”
illustrate the computed root architecture representation as skeletal curves.

In this computational experiment, we used the same maize-root image dataset as
described in DIRT/3D (Liu et al., 2021). The full dataset includes 12 genotypes
with 5~10 replicates per genotype. For each root sample, we down sampled the
images from around 3600 images to 600 for this test. A visualization of the 12
example 3D root models and their skeletal curves is provided in Figure 5.
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Figure 6. Comparison of the number of points in 3D models generated by
DIRT/3D (COLMAP) and DIRT/3D (VisualSFM). The average numbers of
points for the genotypes are rendered in different color bars. The lengths of the
bars represent the value of the number of points. Black lines represent standard
deviation.

We also compared the average number of points for each genotype for all samples
within the genotype (see Figure 6). The comparison revealed that the number
of points generated from DIRT/3D (COLMAP) increased, on average, six times
compared with that of DIRT/3D (VisualSFM). The largest increase of the num-
ber of points was observed for Genotype B101. The average number of points
generated by DIRT/3D (COLMAP) was approximately 11 times higher for B101
than in the 3D models generated by DIRT/3D (VisualSFM). The smallest in-
crease of the number of points was observed for Genotype LH59XPHG29; the
average number of points increased by about three times when changing from
DIRT/3D (VisualSFM) to DIRT/3D (COLMAP).
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Figure 7. Comparison of surface density in 3D models generated from DIRT/3D
(COLMAP) and DIRT/3D (VisualSFM). Average surface density for each geno-
type is rendered in different color bars, with the lengths of the bars representing
the value of surface density. Standard deviation is represented as black lines.
Surface density is defined as the number of neighbors divided by the neighbor-
hood surface area.

In addition to the average number of points, we further compared the surface
density of 3D models generated by DIRT/3D (VisualSFM) and DIRT/3D
(COLMAP). The results in Figure 7 reveal that the model surface density
improvement is significant between DIRT/3D (VisualSFM) and DIRT/3D
(COLMAP). The results indicate that the surface density of the 3D model
generated by DIRT/3D (COLMAP) increased 11 times, on average, compared
with that of DIRT/3D (VisualSFM).

The largest increase in surface density was observed for Genotype B101, which
increased 22 times from the DIRT/3D (VisualSFM) implementation to the
DIRT/3D (COLMAP) implementation. The smallest increase in surface density
was for Genotype B112, which still increased five times.

In our traits measurement accuracy comparison, we used the manual measure-
ments of ten 3D root traits and compared their correlations with the DIRT/3D
(VisualSFM) and DIRT/3D (COLMAP). The correlation analysis of these traits
revealed 𝑟2>0.80 and 𝑃 < 0.001 (Figure 8). These traits include complete root
crown traits and individual root traits, as described in (Liu et al., 2021).
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Figure 8. Comparison of correlation analysis of 10 traits. Results computed
by DIRT/3D (COLMAP) and DIRT/3D (VisualSFM). The Y-axis represents
the manual measurement values, whereas the X-axis represents the DIRT/3D
(COLMAP) or DIRT/3D (VisualSFM) computed values. R2 represents R-
squared value in regression analysis. The dotted blue lines represent the linear
trending lines of the correlation.

Regarding the complete crown root traits, we observed the improvement of trait
measurement accuracy for most of the traits, except root-system diameter and
second-youngest nodal–third-youngest nodal whorl distance, see Figure 8(A).

Regarding the individual root traits, we observed the improvement of trait mea-
surement accuracy for the youngest nodal root diameter and second-youngest
nodal root diameter, see Figure 8(B). This improvement might benefit from
the surface density increase of DIRT/3D (COLMAP) over DIRT/3D (Visu-
alSFM). Of note is that DIRT/3D (VisualSFM) resulted in r2 >0.8 in the orig-
inal datasets, with around 3600 images per sample root; however, DIRT/3D
(COLMAP) only required around 600 images per sample root, with the correla-
tions improving despite reducing the number of input images.

DISCUSSION and conclusions
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The first computational experiment evaluated five open-source pipelines regard-
ing their 3D reconstruction quality in field-maize root systems. All five pipelines
produce point clouds as output. We quantified reconstruction quality based on
the point count and surface density, and we quantified efficiency as total com-
puting time. In our evaluation, COLMAP and COLMAP+PMVS generated
the largest number of points and highest surface density compared with the Vi-
sualSFM pipeline. Although the computation time of COLMAP was around 12-
times slower than the VisualSFM implementation used in the original DIRT/3D
paper (Liu et al., 2021), COLMAP achieved 10 times the number of points, and
94-times higher surface point density.

However, does an improvement in 3D model quality benefit the accuracy of root
traits measurement? Therefore, the obvious increase in surface point density
when using COLMAP in Computational Experiment 1 formed the hypothesis
that a drastically reduced input image set can produce equally good trait mea-
surements as the 3600 input images of the original VisualSFM implementation of
DIRT/3D (VisualSFM). We tested this hypothesis in our second computational
experiment by using around 600 images as input to DIRT/3D (COLMAP). We
then computed the correlation of the DIRT/3D traits against the same manual
ground truth used in DIRT/3D (VisualSFM). We observed slightly better corre-
lations for the traits extracted with the COLMAP implementation of DIRT/3D
(COLMAP) than with DIRT/3D (VisualSFM).

Overall, our experiments indicate it is possible to reduce the image-capturing
time and trade it against increased computation time without significantly com-
promising the accuracy of the trait measurement. This finding suggests poten-
tial reductions in imaging time and effort, which typically require a trained staff
member to place each root in the 3D scanning device manually and wait for the
scanning to finish before placing the next root (Liu et al., 2021). Reducing the
number of images from 3600 to around 600 reduces scanning time from seven
minutes to four minutes per root and can reduce data transfer times from the
scanner to online storage at CyVerse (Devisetty et al., 2016) from 15 minutes
to six minutes (based on our second experiment). This outcome promises to
streamline the most labor-intensive step of the root-phenotyping process.

We found that reductions in scanning and computation time are possible without
excessively diminishing model quality. Our results highlight the need for further
exploration of tradeoffs in root-image processing and demonstrate that neither
customized operating rooms nor highly trained staff are necessary to operate a
high-throughput root-imaging system. Our 3D imaging system promises to excel
in high-throughput applications as an inexpensive and scalable 3D scanning
solution for 3D root phenotyping.
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