Exploring Sediment Compaction in Experimental Deltas: towards a meso-scale understanding of coastal subsidence patterns

Samuel M Zapp¹, Kelly Marie Sanks², Jose Silvestre², John Shaw³, Ripul Dutt², and Kyle Martin Straub²

¹Louisiana State University
²Tulane University
³University of Arkansas at Fayetteville

December 7, 2022

Abstract

We present the first investigation of subsidence due to sediment compaction and consolidation in two laboratory-scale river delta experiments. Spatial and temporal trends in subsidence rates in the experimental setting may elucidate behavior which cannot be directly observed at sufficiently long timescales, except for in reduced scale models such as the ones studied. We compare subsidence between a control experiment using steady boundary conditions, and an otherwise identical experiment which has been treated with a proxy for highly compressible marsh deposits. Both experiments have non-negligible compactional subsidence rates across the delta-top, comparable in magnitude to our boundary condition relative sea level rise of 250 μm/h. Subsidence in the control experiment (on average 54 μm/h) is concentrated in the lowest elevation (<10mm above sea level) areas near the coast and is likely due to creep induced by a rising water table near the shoreface. The treatment experiment exhibits larger (on average 126 μm/h) and more spatially variable subsidence rates controlled mostly by compaction of recent marsh deposits within one channel depth (<10 mm) of the sediment surface. These rates compare favorably with field and modeling based subsidence measurements both in relative magnitude and location. We find that subsidence “hot spots” may be relatively ephemeral on longer timescales, but average subsidence across the entire delta can be variable even at our shortest measurement window. This suggests that subsidence rates in a given decade or century may exceed thresholds for marsh platform drowning, even if the long term trend does not.
Exploring Sediment Compaction in Experimental Deltas: towards a meso-scale understanding of coastal subsidence patterns

Samuel M. Zapp1,2, Kelly Sanks1,3, Jose Silvestre3, John B. Shaw1, Ripul Dutt3, and Kyle M. Straub3

1Department of Geosciences, University of Arkansas, Fayetteville, 72701, USA
2Department of Oceanography and Coastal Science, Louisiana State University, Baton Rouge, LA, USA
3Department of Earth and Environmental Sciences, Tulane University, New Orleans, LA, USA

Key Points:

• The addition of a proxy for marsh sedimentation increases subsidence due to sediment compaction in two laboratory delta experiments
• Subsidence is spatio-temporally variable and dominantly shallow in the experiment with a marsh proxy
• Subsidence rates, even across large areas, are highly variable on short timescales

Corresponding author: Samuel M. Zapp, szapp1@lsu.edu
Abstract

We present the first investigation of subsidence due to sediment compaction and consolidation in two laboratory-scale river delta experiments. Spatial and temporal trends in subsidence rates in the experimental setting may elucidate behavior which cannot be directly observed at sufficiently long timescales, except for in reduced scale models such as the ones studied. We compare subsidence between a control experiment using steady boundary conditions, and an otherwise identical experiment which has been treated with a proxy for highly compressible marsh deposits. Both experiments have non-negligible compactional subsidence rates across the delta-top, comparable in magnitude to our boundary condition relative sea level rise of 250 µm/h. Subsidence in the control experiment (on average 54 µm/h) is concentrated in the lowest elevation (<10mm above sea level) areas near the coast and is likely due to creep induced by a rising water table near the shoreface. The treatment experiment exhibits larger (on average 126 µm/h) and more spatially variable subsidence rates controlled mostly by compaction of recent marsh deposits within one channel depth (~10 mm) of the sediment surface. These rates compare favorably with field and modeling based subsidence measurements both in relative magnitude and location. We find that subsidence “hot spots” may be relatively ephemeral on longer timescales, but average subsidence across the entire delta can be variable even at our shortest measurement window. This suggests that subsidence rates in a given decade or century may exceed thresholds for marsh platform drowning, even if the long term trend does not.

Plain Language Summary

Coastal and deltaic wetlands sit very near sea level. They accumulate a compressible mixture of organic material and mud which is deposited by tides and/or overbank flooding from rivers. As a result, these wetland environments can rapidly build elevation to keep pace with a significant amount of relative sea level rise. Over time, more sediment is delivered on top of the initially porous surface layers and they become compacted as they are buried, contributing to a downward movement of the land surface known as subsidence. Subsidence is a hazard that threatens infrastructure and worsen coastal flooding. Here we examine the spatial and temporal patterns of subsidence in a small (about 2 m2) physical delta experiment which includes a compressible proxy for wetland sediments. We find that subsidence is significantly higher where these wetland sediments have recently been deposited, and driven by their compaction in the very shallow subsurface.

1 Introduction

Subsidence, the downward directed movement of the Earth surface, exerts a fundamental physical control on river deltas. Summed with changes in eustatic sea level, subsidence increases relative sea level rise (RSLR) which controls the equilibrium size of a delta, and the dynamics of its channels and marshes (Liang et al., 2016; Moodie & Passalacqua, 2021; R. Morton et al., 2006). Sediment deficits and projections of future sustainability of deltas often include subsidence as one of the largest uncertainties (K. M. Sanks et al., 2020; Shirzaei et al., 2021). Hence, subsidence affects the dynamic ecosystems and several hundred million people that live on river deltas.

The stability of coastal wetlands is closely coupled to subsidence because they exist within the intertidal zone and accrete as a function of elevation relative to sea level (Morris et al., 2002; Cahoon et al., 2019). These threatened environments provide valuable ecosystem services including storm surge protection, carbon sequestration, and water quality regulation (Engle, 2011). Wetland retreat is expected to respond non-linearly with future RSLR projections (Mariotti, 2020; Tornqvist et al., 2020). In South Louisiana alone, over 5,000 km2 of coastal wetlands have been lost since 1930 (Couvillion et al.,
2017), largely due to high, spatio-temporally variable subsidence rates from the compaction of highly compressible marsh deposits in the shallow subsurface (Törnqvist et al., 2008). On modern river deltas, subsidence within the top several meters of stratum, often including a significant amount of organic material, can dominate background RSLR (eustatic sea level rise plus tectonic regional subsidence) over large areas by as much as an order of magnitude, at least on short timescales (Jankowski et al., 2017; Erban et al., 2014; Zumberge et al., 2022).

Measured subsidence rates on river deltas worldwide are both highly spatially and temporally variable. While subsidence rates over annual to decadal timescales can approach a centimeter per year on the Mississippi River Delta (Nienhuis et al., 2017), there is disagreement about the upper bound of annual subsidence rates and whether or not subsidence maxima correlate with geologic controls such as Holocene deposit thickness (Jankowski et al., 2017; Byrnes et al., 2019). Millennial scale subsidence rates are consistently estimated to be significantly lower (Kooi & de Vries, 1998; Meckel et al., 2006; van Asselen, 2011; Frederick et al., 2019). It remains unclear if areas of high subsidence can persist on century and longer timescales due to a lack of direct measurement going back further than about 15 years. Additionally, the overprinting of several possible subsidence mechanisms including sediment compaction, faulting, anthropogenic soil drainage and deep fluid withdrawal make it difficult to understand which processes are driving the complexity of observed subsidence rates (Dokka, 2006; Yuill et al., 2009; Chang et al., 2014). Understanding the degree to which natural processes and human activity each impact different subsidence mechanisms is crucial to proposed land loss mitigation plans such as sediment diversions and wetland restoration, which are planned on decadal to centennial timescales (Louisiana’s Comprehensive Master Plan for a Sustainable Coast, 2017).

Our understanding of the co-evolution between delta morphodynamics, marsh growth, and emergent subsidence remains relatively limited. This incomplete understanding can be attributed to our inability to observe the processes of delta evolution (i.e. aggradation, channel incision, avulsion) and marsh platform growth over sufficiently long “meso-timesscales” (10^2-10^3 years), as well as difficulty isolating the various forcing conditions that drive morphodynamic change and mechanisms that contribute to coastal subsidence (Hoyal & Sheets, 2009; Yuill et al., 2009).

Here we describe the autogenic subsidence behavior of two laboratory scale delta experiments, one treated with a proxy for marsh deposits (TDWB-19-2, hereafter called the treatment experiment) and one untreated experiment (TDB-18-1, hereafter called the control experiment), in order to better understand how the coupling between deltas and marshes impacts the spatio-temporal variability of subsidence rates throughout delta evolution. Reduced-scale experiments are effective at creating analogous kinematics and spatial architecture to autogenic behavior observed in field deltas (Paola et al., 2009). They are a particularly useful tool to understand “meso-scale” delta evolution that cannot be fully captured by continuous field measurement during active morphodynamic changes, nor reconstructed by stratigraphic interpretation (Paola et al., 2009). Our setup is designed to dissociate background relative sea level rise applied as a boundary condition (RSLR_b; meant to represent both tectonic subsidence and eustatic sea level rise) from spatially and temporally variable subsidence that emerges within the experiment (σ_s).

This study is part of a larger project (including K. M. Sanks et al. (2022)) which aims to assess the impact of marshes on a wide range of deltaic processes, from delta-top kinematics to stratigraphic patterns. No studies have previously described autogenic subsidence due to sediment compaction (hereafter, just subsidence) in a delta experiment. We hypothesize that the addition of the marsh proxy in the treatment experiment will generate significant subsidence across the portion of the delta that regularly receives marsh deposits. In this case, subsidence rates will likely be correlated with underlying marsh
deposit thickness. If subsidence rates are sufficiently large over long enough timescales, they could influence a wide range of geomorphic processes.

2 Methods

2.1 Experimental Setup

We analyze two delta experiments conducted at the Tulane Sediment Dynamics and Stratigraphy Lab. The experiments have identical boundary conditions, and approached a dynamic equilibrium state under constant forcing conditions of sea level rise rate ($RSLR_b$), basin geometry (2.8 m across with an open seaward boundary), and water (Q_w) and sediment discharge (Q_s) listed in Table 1. Each experiment was allowed to prograde for 120 hours before hour zero of runtime. The treatment experiment differed only in that a proxy for marsh sedimentation was applied to regions near sea level, resulting in about 8% of the final deposit mass and 15% of the final deposit volume (K. M. Sanks et al., 2022). Therefore, significant statistical differences in subsidence rates can be attributed to the impact of the marsh proxy deposits.

Table 1. Boundary conditions of both experiments.

<table>
<thead>
<tr>
<th>Delta Experiment</th>
<th>Experiment Run Time (h)</th>
<th>Q_w (m^3/s)</th>
<th>Q_s (kg/h)</th>
<th>$RSLR_b$ (mm/h)</th>
<th>Sediment Mixture</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control (TDB-18-1)</td>
<td>560</td>
<td>$1.72*10^4$</td>
<td>1.40</td>
<td>0.25</td>
<td>Strongly cohesive mixture (Straub et al., 2015)</td>
</tr>
<tr>
<td>Marsh (TDWB-19-2)</td>
<td>560</td>
<td>$1.72*10^4$</td>
<td>1.40</td>
<td>0.25</td>
<td>Strongly cohesive mixture (Straub et al., 2015) EPK marsh proxy (200g/2hr)</td>
</tr>
</tbody>
</table>

Topography was measured with a Lidar scanner to create digital elevation models (DEMs) with a 5 x 5 mm planform grid, and a sub-mm vertical resolution (Text S2). In the control experiment, scans were collected at the beginning of each run hour. In the treatment, scans were collected at the beginning of every even run hour directly before the marsh proxy was dispensed, as well as 48 minutes into each run hour after the marsh was dispensed. This allows for measurement of subsidence at the two-hour timescale, as well as the initial thickness of each marsh deposit.

The marsh proxy was distributed based on a simple conceptual model relating primary production in salt marshes to elevation relative to sea level (Morris et al., 2002). As such, the distribution patterns here are primarily intended to mimic marshes present in coastal settings. Every two hours, a DEM was averaged at the 0.015 m² scale on a hexagonal grid in order to identify suitable elevations for marsh deposition (Fig. 1a). The marsh proxy (Edgar Plastic Kaolin, or EPK) was distributed to each hexagon as a function of this averaged elevation (mm) relative to current sea level (rsl). All binned locations with an average elevation between -9 mm and 5 mm rsl (hereafter referred to as the “marsh window”) received marsh sediment from a vibrating sieve (Fig. 1b). The proxy’s porosity when settling through water was measured in pre-experiment trials to be roughly 90% when first deposited. This gives it significantly more compaction potential than the fluvially-introduced clastic sediment. The sediment mixture delivered by river transport to both experiments ranges in grain size from coarse sand to clay and contains a polymer to increase sediment cohesion. It has been described in K. M. Straub et al. (2015).
Cores taken from the control experiment have porosities of 50-60% averaged across the thickness of the entire stratigraphic package.

This setup was not meant to imitate any particular field setting, but designed to create a steady-state scenario where the unstable (-9 to -5 mm rsl) and stable (0 to 5 mm rsl) marshes would inevitably lose elevation in the absence of mineral sediment nourishment, while maximally productive marsh (-5 to 0 mm rsl; Fig. 1b) areas would outpace RSLRb, at least over short timescales. All marshes could theoretically drown if σs became sufficiently high. Initial marsh deposit thicknesses from -9 to -5 mm and 0 to 5 mm accreted at 0.45 times RSLRb, and deposits in the -5 to 0 mm elevation range accreted 1.1 times RSLRb. Total drowning of the marsh platform would occur under mineral sediment input equal to RSLRb (our long-term steady-state assumption) if σs were to exceed RSLRb by a factor of 1.1 (or 275 µm) for enough time to submerge any pre-existing elevation capital. On shorter timescales, where mineral sedimentation from the fluvial system could be entirely absent in some areas, σs values in excess of 0.1 times RSLRb (or 25 µm) would cause all marshes to lose elevation.

Figure 1. (a) An image of the treatment experiment during a marsh distribution cycle. The metal apparatus is a sieve mounted to a low-frequency vibrator which shakes out marsh proxy. The darker brown sediment is exposed marsh deposits. White hexagons represent the grid that marsh proxy was distributed over. (b) Elevation based rules for marsh deposition rates. Average channel depth of treatment experiment is ≈ 14 mm. The maximum production marsh region (-5 to 0 mm rsl) aggrades faster than RSLRb, while unstable (well below sea level) and stable (above sea level) regions aggrade slower than RSLRb. Modified from K. M. Sanks et al. (2022).

The cohesive “clastic” sediment mixture delivered by river transport to both experiments ranges in grain size from coarse sand to clay and contains a polymer to increase sediment cohesion (K. M. Straub et al., 2015; Li et al., 2017). Cores taken from the control experiment have porosities of 50-60% averaged across the thickness of the entire stratigraphic package.
2.2 Subsidence and Marsh Thickness Maps

Subsidence maps for both experiments were generated by differencing DEMs and screening out areas that were flooded by sea level or that received surface water flow at some point during the timestep. This was done to remove all sediment transport processes and isolate subsidence in “quiescent” areas. Areas covered by surface water were removed by a color threshold screen. Differenced DEM values lower than -1000 µm or greater than 5000 µm were considered erroneous and removed from the dataset.

Control experiment DEMs were differenced by appropriately screening each scan, subtracting the previous dry scan from a given scan, and then summing the resulting two-hour DEMs of difference. The treatment experiment DEMs were differenced by subtracting the wet scan collected 72 minutes prior from each dry scan. This was done to exclude marsh accretion in the first 48 minutes of each two-hour period of run time. The resulting subsidence maps were then multiplied by a correction factor of 120/72 to account for “lost” time and make them equivalent to two-hour DEMs of difference. Therefore, subsidence rates can be compared between the experiments at a two-hour temporal resolution. Subsidence rates were also compared at ten-hour time steps by summing consecutive two-hour subsidence maps. Subsidence rates were also compared at ten-hour time steps by summing consecutive two-hour subsidence maps and excluding points which did not return a value each time step.

An initial thickness map of each marsh deposit was separately quantified by differencing the wet scan taken right after distribution and the dry scan taken right before, then screening out areas outside of the marsh window. Areas receiving surface water were excluded in the same manner as in the subsidence maps.

Marsh maps derived from Lidar scans were stacked to create a ”synthetic stratigraphy” representing the total uncompacted thickness of the marsh maps at each location. The marsh maps do not account for submarine marsh deposition, so they do not equate to total initial marsh deposit thickness, only subaerial marsh thickness. However, this marsh thickness can be normalized by the thickness of the final deposit to yield a synthetic marsh fraction which is comparable to the directly measured marsh thickness from stratigraphy.

2.3 Measurements of Marsh Deposits in Stratigraphy

At the end of the treatment experiment, the deposit was sectioned along strike parallel to the entrance channel at 10 cm intervals. The thicknesses of buried marsh deposits were measured at a number of locations. Several measurements of porosity (used to calculate void ratio) were taken from individual seams of preserved marsh proxy at various ultimate burial depths (Fig. 7a). The cumulative marsh thickness at each location was divided by the entire deltaic deposit thickness to get the marsh fraction in stratigraphy.

This experimental proxy for compressible marsh sediments compacted to less than 25% of its initial thickness under the minor loading (<1kPa) experienced in the experiment. While this mimics some of the subsidence mechanism found in real deltas, the exhaustion of primary consolidation potential within Holocene strata (Keucher, 1994; Keogh, 2020) was not achieved. Additionally, organic-rich field samples experience a high degree of secondary compression due to the collapse of peat particles (Mesri et al., 1997), as well as volumetric losses from oxidation (Chambers et al., 2019). Our marsh proxy is entirely mineral sediment. Even so, the autogenic compaction patterns produced sediment compaction over thicknesses less than a channel depth, providing a compelling comparison to the field.
3 Results

3.1 Overall Subsidence Trends

Both experiments exhibit measurable subsidence in unchannelized subaerial portions of the delta over timescales of two and ten hours. The quiescent region of measurement varied with delta top channel dynamics, but averaged 0.27 and 0.40 m\(^2\) on the ten hour timescale for the control and treatment respectively, resulting in uncertainties less than 25 \(\mu m\) for each experiment (Fig. 2a, Text S2). Both experiments also exhibit significant spatial and temporal variability. However, the treatment experiment has a significantly higher delta-wide mean subsidence rate of 126 \(\mu m/h\) compared to 54 \(\mu m/h\) for the control experiment (over 10 hours; Fig. 2b). Subsidence rates in the treatment experiment usually exceed the threshold for drowning in the absence of river sediment input for stable/unstable marshes (blue dashed line in Fig. 2b corresponding to blue boxes in Fig. 1b), but are lower than the threshold for maximally productive marshes (green dashed line corresponding to green box).

![Figure 2. (a) Time series of the delta area where Lidar-based subsidence measurements were possible. Note that the number of measurements for the treatment was sufficiently large that error was always less than 25 \(\mu m\), and generally less than 10 \(\mu m\). (b) Distributions of spatially-averaged subsidence rate for each 2 and 10-hour timestep for both experiments. Boxplots span the 25\(^{th}\) to 75\(^{th}\) percentile values, and whiskers extend up to 1.5 times the interquartile range. These subsidence rates are generally greater in the treatment experiment than the control. Dashed green and blue lines represent the thresholds for drowning in maximally productive and stable/unstable marshes respectively.](image)

Subsidence rates (measured over 10 hours) do not show a significant temporal trend over either experiment (Fig. 3c), but regularly fluctuate by more than 100 \(\mu m/h\) across the delta top. The deposit aggrades from 25 to 165 mm thick at the shoreline throughout the experiment, so the lack of a gradual increase in rates demonstrates that subsidence is uncorrelated with total deposit thickness. Average subsidence rates rarely approach imposed sea level rise (\(RSLR_b=250 \mu m/h\)) for the treatment and never do in the control. Therefore, most of the total relative sea level rise is created by imposed rising base level, as opposed to compactional subsidence, in both cases.
Figure 3. (a) Overhead image of control experiment at hour 180 overlain with subsidence map (5 mm x 5 mm resolution) of the previous 10 hours. (b) Overhead image of treatment experiment at hour 520 overlain with subsidence map of the previous 10 hours. (c) Time series of average subsidence rates across the low elevation zone for each ten-hour timestep for both experiments. Subsidence rates are variable through time, but do not exhibit a temporal trend. (d) Time averaged profiles of subsidence as a function of elevation above relative sea level for both experiments. The window of active marsh deposition for the treatment experiment is shaded orange.

Subsidence varies in both experiments as a function of elevation relative to sea level. Subsidence is highly concentrated near the coastline in the control experiment, but more dispersed throughout the subaerial delta and highly spatially variable in the treatment experiment (Fig. 3a, b). Subsidence in the control is clearly related to elevation above sea level (Fig. 3d). Subsidence rates peak at 7-8 mm above sea level and become minimal at around 10 mm above sea level. This subsidence peak moves with the shoreline through transgressions and regressions. It is associated with a slope maximum (Fig. 4a), which consistently occurs 5-10 mm above sea level and backsteps as base level rises. In contrast, the treatment experiment subsidence rates are relatively consistent. Subsidence rates are slightly higher in the window of active marsh deposition, but only decrease by 20-40% in the 20 mm above the marsh window. The subaerial slope break observed in the control (Fig. 4a) is notably absent in the treatment (Fig. 4b), where slopes on the order of several degrees only occur below sea level.

3.2 Treatment Experiment Subsidence Pattern and Mechanism

The subsidence patterns in the treatment experiment are more complex than in the control. We study the persistence of subsidence across the delta over a 2-hour timescale. Correlations are drawn by gridding each subsidence map into 50 mm x 50 mm blocks,
Figure 4. (a) Profile of the control experiment topography along transect C-C’ from Fig. 3a at hours 160, 170, 180, and 190. Significant bed lowering occurs above sea level and landward of a subaerial slope break. (b) Profile of the treatment topography along transect T-T’ from Fig. 3b at hours 500, 510, 520, and 530. No subaerial slope break is present here. The profile is net aggradational everywhere over this time period in spite of subsidence because of marsh deposition (especially from 200-350 mm along transect).
Figure 5. Histograms showing the distribution of correlation coefficients (Pearson R) between all local subsidence rates from one timestep to the next (in orange), and between all local subsidence and the most recent marsh deposit thickness (in blue) in the treatment experiment. Median Pearson R values for both histograms are also shown.

$$\sigma_s(z) = \int_{z_{max}}^z s dz.$$ (1)

Subsidence rates calculated in this way assume a steady input of uncompacted marsh (90% porosity) every 2 hours. If the likelihood of marsh deposition is assumed to be unchanging through time, areas that received marsh 50% of the time (with the remainder assumed to be incompressible fluvial sediment) would have 50% of the calculated subsidence rate in this steady-state compaction model.

The majority of the subsidence in the treatment experiment is associated with the compaction of marsh deposits within 20 mm of the surface, and nearly half occurs above one typical channel depth (Fig. 7b). Surface subsidence rates in the compaction model agree well with 10-hour Lidar measurements of surface subsidence clipped to areas actively receiving marsh window. Agreement is particularly good when the subsidence model assumes marsh deposition comprises 25-50% of aggradation with the remainder incompressible fluvial sediments. Much of the delta is comprised of 15-30% marsh deposits (Fig. 6a; K. M. Sanks et al. (2022)). These two independent measurement techniques yield a consistent picture of shallow subsidence in the treatment experiment.

4 Discussion

The experimental results presented in this paper suggest that the spatial and temporal structure of shallow subsidence rates are strongly influenced by the presence of compressible marsh deposits in low elevation areas of river deltas. The control experiment exhibited a tight band of subsidence just above sea level. Subsidence patterns in the treatment experiment are widely dispersed and temporally unpredictable at short timescales,
Figure 6. Subsidence rate, marsh fraction from stacked marsh maps, and marsh fraction measured from stratigraphy are compared as a function of distance downbasin from the feeder channel. (a) Each parameter peaks around the average shoreline position of 1100 mm downstream of the entrance channel. (b-d) Pair-wise correlation between the three parameters in (a).

but are ultimately predicted by the presence of marsh deposits over long timescales. Scaling subsidence rates by background relative sea level rise ($\sigma_s/RSLR_b$), we see that the control experiment was 0.2, the treatment experiment was 0.5, and some modern field measurements range between 0.95 and 3.8 (Table 2). While subsidence relative to background relative sea level rise is larger on field scale deltas, the experimental treatment increased compactional subsidence on in the laboratory experiment.

We did not anticipate any subsidence in the control experiment, yet it revealed a well-organized signature. We interpret the subsidence in the control experiment to be compaction from soil creep near sea level. Creep is commonly experienced in coastal areas such as salt marshes and plays a role in bed lowering at a local scale (Mariotti, 2016). Unlike purely vertical sediment consolidation (Terzaghi, 1943), which occurs as pore water is expelled, creep can be triggered by a rising water table decreasing friction between grains and causing failure (Mariotti et al., 2019). The water table rises with $RSLR_b$, so creep is deemed the most likely mechanism triggering the “subsidence” band.

Where can we expect to find this creep style subsidence beyond our control experiment? It is likely to be found in other laboratory delta experiments with rising sea levels, and particularly those using the “strongly cohesive” sediment that includes significant fine grain fractions and a polymer to increase cohesion. While creep has been demon-
Figure 7. Subsidence within marsh deposits calculated from measurements of void ratio within the final deposit. (a) Void ratio as a function of depth. Circles indicate measurements, with exponential fit (see Section 2.2). (b) Subsidence rate with depth for marsh deposits calculated from eq 1. 100% marsh deposition represents a scenario where marsh is always deposited equal to $RSLR_b$ and never eroded. Spatially averaged, 10-hr subsidence rates from Ladar measurements for all areas within the marsh window and average channel depth in the treatment experiment are also shown.

Stratified in coastal environments, we know of no field data that shows such tight elevation-control of subsidence rates.

By comparison, the treatment experiment produces subsidence that was larger in magnitude and more widespread (Figs. 2, 3). Significant subsidence occurs outside of the marsh window (Fig. 3d). Because the addition of marsh is the only change between experiments, this suggests that marsh sedimentation is influencing subsidence outside the active marsh window. This is unexpected because subsidence is shallow and weakly correlated with recent deposit thickness. This discrepancy can be explained by the fact that a large portion of subsidence in the treatment experiment is controlled by surficial compaction of clay layers, but a degree of marsh deposit compaction continues to occur for some time post-burial (Fig. 7).

Remarkably, the strong elevation-controlled signature of the control experiment is damped in the treatment. This could be because marsh sedimentation decreases the average delta slope by 50% (K. M. Sanks et al., 2022) in the marsh window, potentially reducing creep-based subsidence. Overall, it seems that marsh sedimentation decreases the slope of the delta, removing the near-shore creep failure mechanism, and adding a more spatially variable mechanism of marsh deposit compaction/consolidation.
The behaviors described above establish that the experiments, and particularly the treatment experiment, have strong spatiotemporal variation in compactional subsidence rates. Therefore, the hot spots of above-average subsidence found at one timestep do not predict continued above-average subsidence (Fig. 4). Similar subsidence hot spots have been found on the Mississippi (Jankowski et al., 2017; R. A. Morton et al., 2003; Karen-gar et al., 2015), Ganges-Brahmaputra (Higgins et al., 2014), and Po (Teatini et al., 2011) deltas. While groundwater pumping and land use can cause persistent subsidence hotspots (Jones et al., 2016), our results show that there may be significant natural temporal variability in compactional subsidence as well.

Recent research comparing bulk densities of Mississippi River Delta sediments over a wide range of lithologies and burial depths shows that most subsidence occurs due to compaction within the upper 10 m of sediment (Jankowski et al., 2017; Keogh, 2020; Zumberge et al., 2022), or even deposits less than 100 years old and well within a meter of the surface (Keogh, 2020). Similarly, compactional subsidence rates in the Ganges-Brahmaputra Delta decay exponentially with depth, with the majority occurring within approximately 1-2 channel depths, or about 25-50 m (Steckler et al., 2022). These findings match well with the exponential decay in subsidence rates with depth found in the treatment experiment (Fig. 7). In both field and experimental settings, most subsidence is occurring in recent marsh deposits shallower than one channel depth. This near surface bed lowering is continuously replenished by new marsh accretion and therefore does not contribute much to the long-term generation of accommodation, as \(\sigma_s \) accounts for only about one quarter of \(RSLR_b \) below a channel depth (Fig. 7b). Field (van Asselen, 2011) and modeling (Moodie & Passalacqua, 2021; Liang et al., 2016; Xotta et al., 2022; Kim et al., 2010) studies have repeatedly shown the potential influence of subsidence on surface morphology and kinematics. However, they require subsidence to be sufficiently deep-seated for the geomorphic features themselves (channels, levees, etc) to differentially subside. The treatment experiment, along with the preponderance of field data, suggest that compactional subsidence is largely too shallow to impact surface processes.

The treatment experiment represents a first pass at understanding coupling between river deltas and marshes. Future work will link dynamic subsidence rates to marsh platform stability, delta top kinematics, and stratigraphic stacking patterns of coal seams. Continued field and numerical modelling efforts will extend our ability to reliably predict subsidence rates in low elevation coastal zones past the decadal timescale, where they likely remain spatially and temporally variable even under natural conditions.

5 Conclusion

This paper represents the first detailed analysis of subsidence within an experimental delta deposit. Subsidence rates in abandoned delta lobes of experiments both treated and untreated with a marsh proxy are non-negligible, at least locally, indicating that they could be an important contributor to total relative sea level rise in cohesive delta experiments. The control experiment experienced rapid bed lowering slightly landward of the coast, likely due to soil creep, but otherwise had subsidence rates near zero. This mechanism may occur in other laboratory experiments that do not include a marsh proxy. In contrast, subsidence patterns in the treatment experiment resemble field scale measurements from the Mississippi River Delta and some global deltas in their spatial and temporal heterogeneity over short timescales, contribution to total relative sea level rise, mechanism of shallow compaction, and correlation with marsh deposition near the shoreline. The compaction of buried marsh deposits which are analogous to peat/coal layers at depth appears to be relatively less important than surficial compaction. These experimental results give valuable predictions of shallow subsidence in space and time that can inform management, modeling, and sustainability initiatives for global deltas.
Table 2. Relative importance of compactional subsidence (σ_s) vs allogenic relative sea level rise ($RSLR_b$) for field scale, experimental, and modelled river deltas at a range of timescales. Rates for Mississippi (Nienhuis et al., 2017), Po (Suvetski et al., 2009; Bruno et al., 2017), and Mekong (Erban et al., 2014; Ishii et al., 2021) are based on modern measurements. Millennial scale rates for the Mississippi (Törnqvist et al., 2008) and longer timescale rates from a hydrodynamic compaction model (Kooi & de Vries, 1998) are included to compare subsidence measurements at different timescales. $RSLR_b$ were estimated for field deltas by adding 1 mm/yr of deep-seated subsidence to eustatic sea level rise rates. The compensation timescale is defined as the mean channel depth divided by the long term aggradation rate (or $RSLR_b$ in the experiments).

<table>
<thead>
<tr>
<th>Delta</th>
<th>σ_s (mm/y)</th>
<th>$RSLR_b$ (mm/y)</th>
<th>$\sigma_s / RSLR_b$</th>
<th>Timescale of Measurement, t_{meas} (y), *(h)</th>
<th>Compensation Timescale, t_{comp} (y), *(h)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control (TDB-18)</td>
<td>*54</td>
<td>*250</td>
<td>0.22</td>
<td>*2-10</td>
<td>*58.4</td>
</tr>
<tr>
<td>Treatment (TDWB-19-2)</td>
<td>*126</td>
<td>*250</td>
<td>0.50</td>
<td>*2-10</td>
<td>*53.6</td>
</tr>
<tr>
<td>Modern Mississippi</td>
<td>7.1</td>
<td>4.3</td>
<td>1.66</td>
<td>10</td>
<td>$^{-}10^5$</td>
</tr>
<tr>
<td>Modern Mekong</td>
<td>16</td>
<td>4.2</td>
<td>3.81</td>
<td>$^{-}10$</td>
<td>$^{-}3*10^4$</td>
</tr>
<tr>
<td>Modern Po</td>
<td>4</td>
<td>4.2</td>
<td>0.95</td>
<td>$^{-}10$</td>
<td>$^{-}2*10^4$</td>
</tr>
<tr>
<td>Holocene Mississippi</td>
<td>1-5</td>
<td>$^{-}1.5$</td>
<td>0.67-3.33</td>
<td>$^{-}10^3$</td>
<td>$^{-}10^5$</td>
</tr>
<tr>
<td>Hydrodynamic Model</td>
<td>0.1-1</td>
<td>$^{-}1$</td>
<td>0.1-1</td>
<td>$^{-}5*10^4$</td>
<td>$^{-}10^5$</td>
</tr>
</tbody>
</table>

6 Data Availability Statement

The data needed to reproduce the results in this study can be found at: https://figshare.com/articles/dataset/Subsidence_Experimental_Deltas/21197728, or (Zapp, 2022b). These data can then be used to reproduce the results of this study when processed with the software located at: https://github.com/SamZapp/Subsidence_Experimental_Deltas or (Zapp, 2022a). Raw experimental data is also available for TDB-18-1 (K. Straub & Dutt, 2022), and TDWB-19-2 (K. Sanks et al., 2022).
Acknowledgments

The project was funded by an NSF grant (co PIs Kyle Straub; NSF EAR-1848994 that funded Kyle Straub and Jose Silvestre’s time plus much of the experimental costs and John Shaw; NSF EAR-1848993 that funded John Shaw and Samuel Zapp’s time plus some experimental costs). We have no known conflicts of interest. J. B. Shaw and K. M. Straub funded by the National Science Foundation.

References

–16–

doi: 10.1038/s43017-020-00115-x

Supporting Information for "Exploring Sediment Compaction in Experimental Deltas: towards a meso-scale understanding of coastal subsidence patterns"
Samuel M. Zapp1,2, Kelly Sanks1,3, Jose Silvestre3, John B. Shaw1, Ripul Dutt3, and Kyle M. Straub3

1Department of Geosciences, University of Arkansas, Fayetteville, 72701, USA
2Department of Oceanography and Coastal Science, Louisiana State University, Baton Rouge, LA, USA
3Department of Earth and Environmental Sciences, Tulane University, New Orleans, LA, USA

Contents of this file

1. Text S1 to S2

Additional Supporting Information (Files uploaded separately)

1. Captions for Movies S1 to S2

Introduction

This supplement describes the procedure for generating the surface subsidence and marsh deposit thickness maps from sequential lidar scans collected during the control (TDB-18) and treatment (TDWB-19-2) experiments. Uncertainties associated with those products are also discussed.

Text S1. Digital Elevation and Subsidence Maps Digital elevation maps (DEMs) of the basin were collected using a stationary FARO LiDAR scanner similar to Straub,
Li, and Benson (2015) and Li et al. (2017). For the control experiment, “dry” scans were collected at the beginning of each run hour while fluvial input was paused, and “wet” scans were collected 48 minutes into each hour while the fluvial system was active. For the treatment experiment, dry scans were collected every even hour of runtime and wet scans 48 minutes into each run hour. LiDAR generated point clouds were cleaned in MATLAB and gridded into 5x5 mm raster pixels, each representing the median value of all points within the pixel. Each pixel has a vertical uncertainty of approximately 0.71 mm, which is discussed in the following error propagation section.

Ringing artifacts due to angular measurement error were present in the DEMs of both experiments. Banding was somewhat more pronounced in the treatment experiment subsidence maps, possibly because the magnitudes of all values were multiplied by the previously discussed correction factor. These artifacts were mitigated by running each two-hour DEM of difference through a cleaning script before applying any screens. This script identified the center of ringing as the location of the LiDAR scanner relative to the basin. It then broke each map into a series of radial bands with a width of five pixels (2.5 mm). The median value all pixels within each band was subtracted from the initial value of each pixel within a given band to remove the artifact. Real subsidence patterns did not align with the orientation of these bands, so they are assumed to be relatively unchanged. Subsidence rates with and without ringing removed were similar, suggesting that this cleaning step did not bias subsidence rates. Additionally, overall subsidence rates throughout the experiments were nearly unchanged, though local subsidence rates at a given time and location were often altered, presumably now reflecting actual elevation changes rather than
instrument artifacts. Due to the slightly elliptical shape of the bands, and the irregularity of their magnitudes and locations, some ringing remains in both datasets.

Text S2. Error Propagation The FARO uncertainty in ranging measurement is listed as +/- 1 mm. The FARO was positioned above the deposit and collected returns at an approximately 45-degree angle, so vertical uncertainty can be estimated as $1/\sqrt{2}$, or 0.71 mm. This number is conservative because the reported measurement for each pixel is the median value of typically multiple measurements. The standard error of the mean on each pixel of a difference map can be described by the equation,

$$S_z = \sqrt{(S_{z1})^2 + (S_{z2})^2}$$

(1)

where S_{z1} and S_{z2} are the vertical uncertainty on one point at two different instances. The standard error on each pixel of the difference map comes out to +/- 1 mm. This is larger than almost all observed subsidence magnitudes over timescales of interest in the experimental setting, so values need to be spatially averaged over many pixels to yield workable error bars. Average uncertainty over a number of individual pixel measurements (S_{zn}) is described by the equation,

$$S_z = \sqrt{(1/n) \cdot S_z^2}$$

(2)

where n is the number of pixels averaged. Error decreases as n increases. For $S_z = +/- 1$ mm and $n = 1000$, S_{zn} is .001 mm or 1 μm. Delta-wide average subsidence values at the two and ten hour time steps calculated in Section 3.1 always average over at least this many pixels, so uncertainty is assumed to be minimal. All spatially distributed subsidence measurements in Figure 5 are created by averaging over 10x10 pixel areas (50 x 50 mm) with at least 40 non-NaN values ($n >= 40$). In this case, $S_{zn} = 0.025$ mm or 25 μm.
This is significantly smaller than the range of typically measured values and assures the validity of correlations drawn in those analyses.

The error propagation technique outlined in this section assumes a lack of spatial or temporal correlation in errors. We make this assumption only after applying the ringing artifact mitigation script described in the previous section. These artifacts are an example of spatially correlated error. For this reason, anomalous subsidence measurements calculated over a small number of pixels should be met with skepticism.

Movie S1. Movie of TDB-18-1 (control experiment) overlaid with subsidence maps spanning the two hours prior to each frame.

Movie S2. Movie of TDWB-19-2 (treatment experiment) overlaid with subsidence maps spanning the two hours prior to each frame.

References

