The Diet of Early Birds Based on Modern and Fossil Evidence and a New Framework for its Reconstruction

Case Miller1,1 and Michael Pittman1,1

1The University of Hong Kong

November 30, 2022

Abstract

Birds are some of the most diverse organisms on Earth, with species inhabiting nearly every conceivable niche in every major biome. As such, birds are vital to our understanding of modern ecosystems. Unfortunately, this is hampered by knowledge gaps relating to the origin of this modern diversity and its role in ecosystems. A crucial part of addressing these shortcomings is improving our understanding of the earliest birds, the non-avian avialans i.e. non-crown birds. The diet of non-avian avialans has been a matter of substantial debate, partly related to some of the ambiguous qualitative approaches that have been used to reconstruct it. Here we review the methods of determining diet in both modern avians and fossil avian and non-avian theropods, and comment on their usefulness when applied to non-avian avialans. We use this to propose a set of comparable, quantitative approaches to ascertain fossil bird diet and on this basis provide a consensus of what we currently know about fossil bird diet. While no single approach can precisely predict diet in birds, each can exclude some diets and narrow the dietary possibilities. We recommend combining [1] dental microwear, [2] landmark-based muscular reconstruction, [3] stable isotope geochemistry, [4] body mass estimations, [5] traditional and/or geometric morphometric analysis, and [6] finite element analysis to accurately reconstruct fossil bird diet. Our review provides specific methodologies to implement each approach and discusses complications future researchers should keep in mind. On this basis we report the current state of knowledge of non-avian avialan diet which remains very incomplete. The ancestral dietary condition in non-avian avialans remains unclear due to a scarcity of data and contradictory evidence in Archaeopteryx. Among early non-avian pygostylians, Confuciusornis has finite element analysis and mechanical advantage evidence pointing to herbivory, whilst Sapeornis only has mechanical advantage evidence indicating granivory, which agrees with fossilised ingested material known for this taxon. The enantiornithine ornithothoracine Shenziquornis has mechanical advantage and pedal morphometric evidence pointing to carnivory. In the hongshanornithid ornithuromorph Hongshanornis, only mechanical advantage evidence indicates granivory, but this is congruent with evidence of fossilised ingested material in this taxon. The same is true for the songlingornithid ornithuromorph Yanornis and its inferred carnivorous diet. Due to the sparsity of robust dietary assignments, no clear trends in non-avian avialan dietary evolution have yet emerged. Dietary diversity may seem to increase through time, but this is a preservational bias associated with a predominance of data from the Early Cretaceous Jehol Lagerstatte. With this new framework and our current synthesis of current knowledge of non-avian non-avialan diet, we expect dietary knowledge and evolutionary trends to become much clearer[...]

1
The Diet of Early Birds Based on Modern and Fossil Evidence and a New Framework for its Reconstruction

Case V. Miller1,* & Michael Pittman1,*

1Vertebrate Palaeontology Laboratory, Division of Earth and Planetary Science, The University of Hong Kong, Pokfulam, Hong Kong SAR, China

*Authors for correspondence (e-mail: case.miller@connect.hku.hk; mpittman@hku.hk)

ABSTRACT

Birds are some of the most diverse organisms on Earth, with species inhabiting nearly every conceivable niche in every major biome. As such, birds are vital to our understanding of modern ecosystems. Unfortunately, this is hampered by knowledge gaps relating to the origin of this modern diversity and its role in ecosystems. A crucial part of addressing these shortcomings is improving our understanding of the earliest birds, the non-avian avialans i.e. non-crown birds. The diet of non-avian avialans has been a matter of substantial debate, partly related to some of the ambiguous qualitative approaches that have been used to reconstruct it. Here we review the methods of determining diet in both modern avians and fossil avian and non-avian theropods, and comment on their usefulness when applied to non-avian avialans. We use this to propose a set of comparable, quantitative approaches to ascertain fossil bird diet and on this basis provide a consensus of what we currently know about fossil bird diet. While no single approach can precisely predict diet in birds, each can exclude some diets and narrow the dietary possibilities. We recommend combining [1] dental microwear, [2] landmark-based muscular reconstruction, [3] stable isotope geochemistry, [4] body mass estimations, [5] traditional and/or geometric morphometric analysis, and [6] finite element analysis to accurately reconstruct fossil bird diet. Our review provides specific methodologies to implement each approach and discusses complications future researchers should keep in mind. On this basis we report the current state of knowledge of non-avian avialan diet which remains very incomplete. The ancestral dietary condition in non-avian avialans remains unclear due to a scarcity of data and contradictory evidence in *Archaeopteryx*. Among early non-avian pygostylians, *Confuciusornis* has finite element analysis and mechanical advantage evidence pointing to herbivory, whilst *Sapeornis* only has mechanical advantage evidence indicating granivory, which agrees with fossilised ingested material known for this taxon. The enantiornithine ornithothoracine *Shenqiornis* has mechanical advantage and pedal morphometric evidence pointing to carnivory. In the hongshanornithid ornithuromorph *Hongshanornis*, only mechanical advantage evidence indicates granivory, but this is congruent with evidence of fossilised ingested material in this taxon. The same is true for the songlingornithid ornithuromorph *Yanornis* and its inferred carnivorous diet. Due to the sparsity of robust dietary assignments, no clear trends in non-avian avialan dietary evolution have yet emerged. Dietary diversity may seem to increase through time, but this is a preservational bias associated
with a predominance of data from the Early Cretaceous Jehol Lagerstätte. With this new framework and our current synthesis of current knowledge of non-avian non-avialan diet, we expect dietary knowledge and evolutionary trends to become much clearer in the coming years, especially as fossils from other locations and climates are found. This will allow us to gain a deeper and more robust understanding of the role birds played in Mesozoic ecosystems and how this led to their pivotal role in modern ecosystems.

Key words: Avialae, birds, dental microwear, diet, dinosaurs, finite element analysis, fossil, mechanical advantage, morphometrics, stable isotopes

Contents

I. Introduction ..4

(1) Modern and Ancient Bird Diet ..4
(2) Diet and Morphology in Aves ...4
(3) Techniques for Determining Avian Diet ..5
(4) Fossil Birds and the Focus of This Review ...6

II. Direct Evidence ..7

(1) Preserved Meals ...7
 (a) Introduction ...7
 (b) Avialan Consumulites ...8
(2) Dental Wear ..9
 (a) Introduction ...9
 (b) Mesowear ...9
 (c) Microwear ..10
(3) Dental Ultrastructure ...12
(4) Soft Tissue ..13
 (a) Landmark-Based Cervical Reconstructions in Fossil Theropods ...13
(5) Discussion ...14

III. Stable Isotopes ..15

(1) Introduction ..15
 (a) Carbon Isotopes ...15
 (b) Oxygen Isotopes ...15
 (c) Calcium Isotopes ...16
(d) Hydrogen Isotopes... 16
(e) Nitrogen Isotopes... 16
(f) Sulphur Isotopes.. 16
(g) Heavy Metal Isotopes... 16
(2) Stable Isotopes in Extant Birds ... 17
(3) Stable Isotopes in Fossil Theropods... 17
(4) Discussion ... 17
IV. Body Mass .. 18
(1) Introduction .. 18
(2) Discussion ... 18
V. Physical Approaches ... 19
(1) Skull Reconstruction .. 19
 (a) Existing Reconstructions ... 19
 (b) Avenues for Improvement ... 20
(2) Morphometrics .. 21
 (a) Introduction ... 21
 (b) Traditional Morphometrics ... 22
 (c) Geometric Morphometrics .. 26
(3) Functional Studies .. 30
 (a) Introduction ... 30
 (b) Lever Modelling ... 31
 (c) Finite Element Analysis .. 34
(4) Complications Applicable across Physical Approaches ... 40
 (a) Phylogenetic Signal .. 40
 (b) Allometric Signal ... 41
 (c) Many-To-One Mapping .. 41
 (d) Liem’s Paradox .. 41
 (e) Integration and Modularity ... 42
 (f) Behavioural Signals .. 42
(5) Discussion ... 44
VI. The Framework and Current Knowledge of Non-avian Avialan Diet 44
VII. Conclusions ... 47
I. Introduction

(1) Modern and Ancient Bird Diet
Living birds [Aves: defined herein as crown birds (see Pittman, O'Connor, Field et al., 2020a)] have been studied more than most any other organisms, and are at the forefront of human efforts to understand global ecology (Tietze, 2018). In large part this is because birds display some of the most varied diets in the animal kingdom. Many are familiar with their neighbourhood songbirds which feed on worms and seeds. However, birds are able to thrive in aquatic, terrestrial, and aerial environments around the world (Rico-Guevara, Sustaita, Gussekloo et al., 2019) and consume nearly every source of nutrition imaginable therein. Rodents, fruit, fish, leaves, plankton, blood, beeswax, and organic mud are just a few of the food sources living birds may subsist off of (Lopes, Fernandes, Medeiros et al., 2016). This rich diversity has also evolved in incredible ways. The ancestral avian has been proposed as an aquatic predator (Brusatte, O'Connor & Jarvis, 2015), granivore (Larson, Brown & Evans, 2016), or omnivore (Felice & Goswami, 2018) with a myriad of dietary radiations occurring during avian evolution including at least three origins of nectarivory, seven origins of aquatic predation, and 18 origins of frugivory (Felice, Tobias, Pigot et al., 2019a).

Dietary diversification outside of Aves among the non-avian avialan birds [Avialae: defined herein as crown birds plus relatives as distant as Archaeopteryx (Gauthier, 1986; and see Pittman et al., 2020a)] is much less well understood. Two species of early-diverging avialans preserve evidence of granivory, a single enantiornithine preserves an ingested invertebrate, and ten ornithuromorph species preserve evidence of granivory or piscivory (O'Connor, 2019). Beyond these, the diet of non-avian avialans is virtually unknown, and accordingly an ancestral avialan diet has not been proposed. It remains unclear if the vast dietary breath of living birds is unique or has deeper roots in the avialan tree, and if birds played the same unique ecological roles during the Late Jurassic and Cretaceous periods that they do in modern ecosystems.

(2) Diet and Morphology in Aves
While avian diet itself has been well-reported, few correlations between diet and morphology are known in living birds, and fewer still from more than a single quantitative study. We provide a convenient glossary for the various descriptors of diet used in this review in Table 1. Invertivorous birds possess skulls with a low mechanical advantage (Corbin, Lowenberger & Gray, 2015; Olsen, 2017), while probing feeders [e.g. sandpipers (Pettigrew & Frost, 1985), ibises (Frederick & Bildstein, 1992), kiwis (Cunningham, Corfield, Iwaniuk et al., 2013), and some songbirds (Adamík & Kornan, 2004; Lockie, 1956)] have particularly elongate rostra (Barbosa & Moreno, 1999; Kulemeyer, Asbahr, Gunz et al., 2009). Granivorous birds tend to have ventrodorsally tall beaks (Soons, Herrel, Genbrugge et al., 2010; van der Meij, 2004) exhibiting high mechanical advantage (Corbin et al., 2015; Navalón, Bright, Marugán-Lobón et al., 2018a) and a high strength (Soons, Genbrugge, Podos et al., 2015; Soons et al., 2010) [i.e. low peak Von Mises stresses when loaded (Dumont, Grosse & Slater, 2009)]. Raptorial birds
possess talons that, on average, are hypertrophied at digit I (Csermely, Rossi & Nasi, 2012; Fowler, Freedman & Scannella, 2009) and are more recurved (Csermely & Rossi, 2006; Tsang, Wilson, Ledogar et al., 2019) than in non-raptorial birds. Among raptors, specialists in hunting other birds have longer toes and (Csermely et al., 2006; Tsang et al., 2019) and a wider skull (Hertel, 1995; Sun, Si, Wang et al., 2018) [presumably for housing a larger cerebellum, the part of the brain that processes spatial orientation (Sun et al., 2018)] while those that specialise in hunting fish tend to have all four talons enlarged (Einoder & Richardson, 2007; Fowler et al., 2009). Scavenging raptors appear to be the most morphologically diagnostic group, characterised by large body size (Einoder et al., 2007; Fowler et al., 2009) and a narrow, shallow, (Bright, Marugán-Lobón, Cobbe et al., 2016; Navalón et al., 2018a; Sun et al., 2018) and long (Hertel, 1995; Kulemeyer et al., 2009; Pecsics, Laczi, Nagy et al., 2019; Si, Dong, Ma et al., 2015; Sun et al., 2018) skull with a highly recurved rostrum (Hertel, 1995; Kulemeyer et al., 2009).

Beyond these, diet/morphology correlations are at best known from a single study [e.g. small body size as indicative of nectarivory (Pigot, Sheard, Miller et al., 2020)] and at worst contradicted between studies [e.g. bill curvature has been positively (Kulemeyer et al., 2009), negatively (Navalón et al., 2018a), or not (Barbosa et al., 1999) correlated with probing behaviour]. Characters known from a single study may be awaiting corroboration by future studies, but contradictions between studies suggest that we do not fully understand some aspects of avian diet/morphology relations yet. If living birds are to be used as proxies for fossil birds, then, further work on understanding what they eat and why is imperative.

(3) Techniques for Determining Avian Diet

When an ornithologist wants to know what a bird eats, the most straightforward technique is to directly observe them feeding and record what they ate (reviewed in Rosenberg & Cooper, 1990 alongside most of the following methods). Proxies for direct dietary observation include remote observation (detailed in Sullivan, Wood, Iliff et al., 2009; Zhang, Rayner, Vickers et al., 2019) and examination of faeces (critiqued in Carlisle & Holberton, 2006; augmented in Jarman, McInnes, Faux et al., 2013; detailed in Ralph, Nagata & Ralph, 1985), pellets (critiqued in Votier, Bearhop, Ratcliffe et al., 2001), uneaten prey remains near the nest (critiqued in Tornberg & Reif, 2007), or stomach contents [from dead birds (reviewed in Duffy & Jackson, 1986), those captured and forced to regurgitate (critiqued in Carlisle et al., 2006; Gales, 1987), or collected natural non-pellet regurgitations (detailed in Oro, Ruiz, Jover et al., 1997)]. These ‘direct evidence’ data provide an unambiguous association between an organism and a certain diet. Unfortunately, these techniques require an animal to be alive or recently deceased, and the closest fossil equivalents to these forms of direct evidence, preserved meals, rarely fossilise and are prone to a variety of preservational biases that makes them inadequate to reconstruct the diet of non-avian birds alone. Chemical analysis of stable isotopes in the soft tissues of living birds are commonly used to reconstruct trophic webs (detailed in Kloskowski, Trembaczowski & Filipiuk, 2019), and similar methods have been applied to bioapatite and amino acids preserved in fossil birds (see Section III.2 Stable Isotopes in Extant Birds), but the wide variety of factors controlling them leave them as more ambiguous lines of evidence.

While not used to determine diet per se, several physical approaches have been used to study modern birds in order to explain observed dietary trends and apply them to extinct organisms with unknown diets. Body mass has recently been found to predict a large amount of the variance in the diet of modern birds (Navalón et al., 2018a; Pigot et al., 2020), and so its estimation may represent a key metric
that has been relatively unexplored. With that said, most past studies have adopted ‘physical approaches’, those grounded in morphology and/or mechanics, to the study of avian diet. Dietary studies tend to focus on the skull, living birds’ most important tool for feeding (Rico-Guevara et al., 2019), and the pes, their most important tool for manipulation of food prior to feeding (Clark, 1973; Sustaita, Pouydebat, Manzano et al., 2013) and the primary tool for killing prey in raptorial birds (Fowler et al., 2009). Traditional (detailed in Hertel, 1994) and geometric (detailed in Bright et al., 2016) morphometrics both seek to quantify the shape of body parts, under the assumption that form will reflect function. Other studies investigate functional capacity directly. Lever model simplifications of skulls (detailed in Corbin et al., 2015) describe the efficiency of force production and speed of the jaw while finite element analysis (detailed in Soons et al., 2010) models the response of body parts to loading in order to compare their relative strength between organisms. Each of these techniques have been applied to living birds and non-avialan theropods, but only the two forms of morphometrics have included non-avian avialan taxa. While physical approaches have some of the broadest applications to fossil organisms, they also introduce a variety of complications (see Section V.4 Complications Applicable across Physical Approaches).

There are also a select few lines of direct evidence that have been applied to fossil taxa but never to living and fossil birds. Dental wear analysis is commonly applied to living and fossil mammals (Green & Croft, 2018) with a recent application in theropods (Bestwick, Unwin, Butler et al., 2018; Torices, Wilkinson, Arbour et al., 2018). While inapplicable to avians in its current form because they are all toothless, it is of potential value in the study of toothed non-avian avialans. The same holds true for dentine ultrastructure analysis, which has only been applied to crocodilians and non-avian dinosaurs (Brink, Chen, Wu et al., 2016). Ultrastructure of enamel has recently been investigated in toothed avialans and provides promising, if still preliminary, results (Li, Wang, Wang et al., 2020). Finally, neck musculature has been proposed to inform food disassembly behaviours in non-avian theropods (Snively & Russell, 2007b), although the study of food disassembly in living birds has focused on the head and pes exclusively (Fowler et al., 2009; Sustaita, 2008; Sustaita, Gloumakov, Tsang et al., 2019). Each of these techniques is also addressed due to their potential application in fossil birds.

(4) Fossil Birds and the Focus of This Review
Avialans appear in the fossil record as early as the Late Jurassic, and by the Middle Cretaceous inhabited tropical to polar latitudes and were present on every continent (Pittman, O’Connor, Tse et al., 2020b). While most Mesozoic birds are considered to fall somewhere along a continuum of arboreal and terrestrial lifestyles (Cobb & Sellers, 2020; Mayr, 2017; Serrano, Palmqvist, Chiappe et al., 2017), Ichthyornis and Hesperornithiformes are undisputedly aquatic (Hinić-Frlag & Motani, 2010; Rees & Lindgren, 2005). Enantiornithes are the most widespread and speciose Mesozoic birds. They comprise roughly 60% of all non-avian avialan genera followed by non-avianornithuromorph avialans (~25%) with the remainder made up by Archaeopteryx, Jeholornithiformes, Confuciusornithidae, Jinguofortisidae, and incertae sedis taxa (Table 5 in Pittman et al., 2020b; uncertainty based on their notes of taxa possibly referable to non-avian clades). Anchiornithinae and Scansoriopterygidae have been placed in Avialae previously, but their inclusion is controversial (Pittman et al., 2020a). This review will err on the side of inclusivity and discuss these two clades as ‘avialans’ in addition to well-established Avialae [though personally we only see anchiornithines as avialans (see Pittman et al., 2020a)].

A variety of dietary habits have been proposed for non-avian avialans. The vast majority are based on qualitative methodologies vulnerable to individual interpretation (Dumont, Tafforeau, Bertin et
al., 2016; O'Connor, Zhang, Chiappe et al., 2013; Thulborn & Hamley, 1985; Zinoviev, 2009) or a few preserved meals which provide only a small glimpse of diet (O'Connor, 2019; O'Connor & Zhou, 2019). More comparable, quantitative approaches to fossil avialan diet have been made (Attard, Wilson, Worthy et al., 2016; Navalón, 2014; Wang, Zhou, O'Connor et al., 2014c) but these are few and far between. This review seeks to establish techniques that have proven effective at discriminating diet in living birds as well as fossil dinosaurs and to construct a framework for studying non-avian avialan diet. Parts of this framework not relying on teeth can also be applied to fossil avians, which have a narrower and better-constrained extant phylogenetic bracket. On this basis, we then present a consensus of what we currently know about non-avian avialan diet and how this can be improved upon moving forward. With this, future studies will make strides both in understanding Mesozoic ecosystems and tracing the evolution of one of the most important groups of living organisms.

II. Direct Evidence
(1) Preserved Meals
(a) Introduction
Preserved meals may take the form of food preserved in the digestive system (consumulites) or as closely-associated excretions (coprolites) or egestions (regurgitilites) (all sensu Hunt, Lucas, Milan et al., 2012). Identification of consumulites may be problematic as accessing them often requires destroying the overlying remains, and misdiagnosis of ingested material may lead to erroneous dietary inferences (e.g. Nesbitt, Turner, Erickson et al., 2006). Coprolites, while ostensibly simpler to analyse, are often taxonomically indeterminate (e.g. Chin, Tokaryk, Erickson et al., 1998; Hollocher, Chin, Hollocher et al., 2001; Hunt et al., 2012; Qvarnström, Wernstrom, Piechowski et al., 2019) and of questionable association with surrounding body fossils (e.g. Hunt et al., 2012; James & Burney, 1997; Wang, Zhou & Sullivan, 2016c; Wood, Rawlence, Rogers et al., 2008). Regurgitilites are sparse in the fossil record, possibly due to collection biases and/or misdiagnosis as coprolites (Myhrvold, 2012), but otherwise provide similar information to coprolites with similar referral issues. Hunt et al. (2012) provide a detailed review of the study of coprolites, and Myhrvold (2012) provides one for regurgitilites [which he refers to as emetolites]. There appears to be no comprehensive review of consumulites across fossil taxa other than the two discussed in the following section. Reports are typically centred on individual specimens. Smith and Scanferla (2016) provide an example of a single specimen with both strong and weak candidates for being true consumulites (lizard and insect respectively).

A preserved meal sheds light on only a single meal in an organism’s life. Extant organisms are known to consume a wide variety of food (Cortés, 1997; Vitt & Pianka, 2005; Wilman, Belmaker, Simpson et al., 2014), so any preserved meal should be viewed as a single data point in reconstructing diet. Taphonomic effects should also be taken into account, as meals with elements that fossilise easier will be more likely to be preserved inside of their consumer (O’Connor, 2019). As the remains of deceased individuals, the meals associated with a fossil may be the thing that killed them rather than a normal food source. This is more likely in the context of consumulites or minimally-processed regurgitilites than coprolites, given that coprolites require time and digestion to produce. In short, the possibility of a preserved meal being atypical cannot be ruled out by a single specimen.
(b) Avialan Consumulites

O’Connor (2019) reviews the consumulites known from traditional Cretaceous avialans which consist of seeds, fish, and invertebrate exoskeletons. O’Connor and Zhou (2019) expand this review to cover all paravians, attributing lizard and fish consumulites to archiornithines. A coprolite containing fish bones has been associated with a specimen of Baptornis (Martin & Tate, 1976), and an indistinct coprolite is known from a Sapeornis specimen (Zheng, Martin, Zhou et al., 2011). Four specimens record evidence of avialans themselves as prey of other organisms [ichthyosaurs (Kear, Boles & Smith, 2003), non-avialan theropods (O’Connor, Zhou & Xu, 2011a; Xing, Bell, Persons et al., 2012), and an indeterminate pellet-producing animal (Sanz, Chiappe, Fernández-Jalvo et al., 2001)].

There is particular controversy around enantiornithine consumulites, which merits discussion. Only a single uncontroversial consumulite is known from an enantiornithine: small [<5 mm] sections of crustacean exoskeleton in the abdomen of the holotype of Eoalulavis hoyasi (Sanz, Chiappe, Pérez-Moreno et al., 1996). The fish bones associated with the holotype of Piscivoranantiornis inusitatus (Wang & Zhou, 2017c; Wang et al., 2016c) and the amber in the abdomen of the holotype of Enantiophoenix electrophyla (Cau & Arduini, 2008; Dalla Vecchia & Chiappe, 2002) were both rejected as consumulites by O’Connor (2019). The former is interpreted as a fish coprolite (but see Xu, Zhou, Wang et al., 2020) and the latter as elements reworked from surrounding soil (O’Connor, 2019). Spherical inclusions in two incertae sedis enantiornithines [and a specimen of Jeholornis] have been proposed as consumed plant matter (Mayr, 2016; Mayr & Manegold, 2013; O’Connor et al., 2019), though other studies have suggested that these inclusions are fossilised ovarian follicles (Bailleul, O’Connor, Zhang et al., 2019; O’Connor, 2019; O’Connor, Zheng, Wang et al., 2014; O’Connor et al., 2019; Wang, Wang, O’Connor et al., 2016d; Zheng, O’Connor, Huchzermeier et al., 2013).

Consumulite preservation is known from at least: four specimens of Jeholornis, eight specimens of Sapeornis, and 14 specimens of ornithuromorph birds [Eogranivora edentulata, Piscivoravis lii, and 12 specimens of Yanornis martini] (Table 1 in O’Connor, 2019). In contrast, confuciusornithid and enantiornithine consumulites have not been found so far, so they have been proposed as being generally molliphagous [feeding on soft things; opposite of durophagous] (O’Connor, 2019). However, several other factors may be at play. Preservation of a consumulite is dependent on the meal being inside the animal’s body [i.e. retained in the gut] and for parts hard enough to fossilise to not be dissolved at time of death. Thus, a longer gut retention time and a lower gut pH favour the preservation of consumulites. Gut retention times vary among modern birds due both to long-term lifestyle differences and short-term events. Lifestyle differences include locomotor habits (Barton & Houston, 1992; Caviedes-Vidal, McWhorter, Lavin et al., 2007; Frei, Ortman, Reutlinger et al., 2014; Hilton, Houston, Barton et al., 1999; Jackson, 1992) and nutrient density of diets (Hilton, Furness & Houston, 2000a; Hilton, Houston & Furness, 1998; Levey & Del Rio, 2001; McWhorter & Martínez del Río, 2000). Events include coincidental dietary switching (Hilton, Furness & Houston, 2000b), migration (McWilliams, Caviedes-Vidal & Karasov, 1999), and rearing young (Thouzeau, Peters, Le Bohec et al., 2004). Stomach acidities are also known to vary among modern raptors, with less bone remaining in the pellets of raptors with lower stomach pH (Duke, 1997). To our knowledge explanations of differing stomach pH have not been explored. Of these complicating factors, locomotor habits are of particular note as enantiornithines have been viewed as more arboreally inclined than contemporary ornithuromorphs (Field, Bercovici, Berv et al., 2018a). In living birds, fully terrestrial species tend to have much longer gut retention times than flighted species (Frei et al., 2014). Among flighted species, those that are more active in flight tend to
have shorter gut retention times (Caviedes-Vidal et al., 2007; Hilton et al., 1999; Jackson, 1992). If enantiornithines were more active fliers than contemporary ornithuromorphs they likely also had shorter gut retention times. This would contribute to a lower incidence of consumulite preservation. Other possibilities, such as diets with higher nutrient density or a generally higher stomach pH than contemporary ornithuromorphs, can only be tested by future discoveries of consumulites or potentially corroborated by the other methods explored below.

(2) Dental Wear

(a) Introduction

Teeth are dynamic systems worn continuously both by contact with ingested material and other occluding teeth (Green et al., 2018). As such, the way teeth are worn directly reflects the diet of an animal. Dental wear analysis traditionally occurs at two distinct scales: mesowear, visible to the naked eye and reflecting periods of months to years (Green et al., 2018); and microwear, visible only under magnification and reflecting the animal’s final days before death (Ungar, 2019). Green and Croft (2018) provide a review of both scales while Ungar (2015; 2018; 2019) provides more in-depth reviews of microwear in particular. Studies of larger-scale wear [e.g. fracture and erasure of denticles] have been used to examine patterns of occlusion (Farlow & Brinkman, 1994; Lambe, 1917; Sankey, Brinkman, Guenther et al., 2002), penetration angle (D'Amore, 2009; Farlow et al., 1994), and potentially grooming (Currie & Evans, 2019) in dinosaurs. All of these studies have remained purely qualitative and uninterested in diet.

(b) Mesowear

Dental mesowear has only been analysed in herbivorous mammals in order to distinguish between browsers and grazers (Green et al., 2018). Its underlying principle is worth unpacking for potential broader use. Teeth experience two distinct types of mesowear: attrition, from contact with occluding teeth; and abrasion, from contact with ingested materials (Fortelius & Solounias, 2000). In mammalian herbivores, these sharpen and dull the teeth respectively (Fortelius et al., 2000; Green et al., 2018). Dental mesowear can be seen as the interaction between these two forces: in softer food diets attrition dominates and cusps are sharper, in tougher food diets abrasion dominates and cusps are rounder and are eventually completely flattened (Fortelius et al., 2000; Green et al., 2018; supporting online material of Mihlbachler, Rivals, Solounias et al., 2011).

This approach is likely applicable to hadrosaurian dinosaurs whose dentition is reminiscent of equid mammals (Carrano, Janis & Sepkoski, 1999) and possibly to ceratopsian dinosaurs where attrition is believed to play a more complicated role (Erickson, Sidebottom, Kay et al., 2015). Both possess teeth with tight occlusion upon which similar interactions between attrition and abrasion to modern herbivorous mammals may have occurred. The teeth of known theropods occlude only slightly, though more than the unoccluding teeth of extant saurians (Schubert & Ungar, 2005). Because of this, the interpretation of mesowear in theropods is obscure. Schubert and Ungar (2005) propose “wear facets” on tyrannosaurid teeth to be the product of attrition while “enamel spalling” is the product of abrasion; the former completely obliterates the latter over time. Candeiro et al. (2017) identify two additional attritional features [vertical and perpendicular attritional surfaces] and one additional abrasional feature [apical grooves]. They also broaden the phylogenetic bracket of these features to Theropoda. All of attritional/abrasional features may or may not overwrite one another based on chance, and so cannot be quantified as simply as the antagonistic mesowear seen in herbivorous mammals. Mesowear analysis as it currently exists, then, is inapplicable to the currently known fossil birds. Instead, a new system would
need to be constructed. Because theropod teeth occlude on only one surface [the lingual surface of upper teeth and labial surface of lower teeth], the difference in wear between the two surfaces may provide similar information to mesowear analysis. The mesowear paradigms of attrition and abrasion balance can, instead of being quantified from cusp shape, be quantified as a ratio between the number and depth of marks on occluding and non-occluding surfaces. Assuming Schubert and Ungar (2005) are correct and that attritional wear would overwrite abrasional wear, the non-occluding surface would provide a baseline for abrasion while the occluding surface would provide information on attrition. However, a lack of extant analogues with theropod-like occlusion renders the validity of such an approach dubious; digital or practical modelling of theropod jaws may provide a baseline for study.

(c) Microwear

(i) Introduction

Dental microwear has been studied across vertebrates (Bestwick, Unwin & Purnell, 2019; Nevatte, Wueringer, Jacob et al., 2017; Purnell, 1995; Purnell, Hart, Baines et al., 2006; Ungar, 2019; Winkler, Schulz-Kornas, Kaiser et al., 2019). Dental microwear describes the surface scarring of tooth enamel at a microscopic level, which can provide insight into the hardness [resistance to fracture] and toughness [resistance to tearing] of an animal’s last meals, typically within the last few days of its life (Ungar, 2019).

Traditionally, microwear analysis involves directly counting surface features under light microscopy or from electron micrographs, with greater numbers of pits considered indicative of consuming harder foods while greater numbers of scratches indicative of consuming tougher foods (Ungar, 2019). This technique is inconsistent, with counting errors regularly reaching 10 percent among trained professionals (Grine, Ungar & Teaford, 2002; Mihlbachler, Beatty, Caldera-Siu et al., 2012). In order to remove measurement noise, wear surfaces have more recently been imported as point clouds and analysed as fractal surfaces (Ungar, 2019) using techniques and software common in micro-scale manufacturing (e.g. Ţălu, Stach, Méndez et al., 2014). An increased area-scale fractal complexity is associated with harder foods in the diet, while an increased surface texture anisotropy is associated with tougher foods (Ungar, 2015). The only known source of error exclusive to fractal surface quantification is inter-microscope variability, which can be minimised by incorporating consistent automated treatments (Arman, Ungar, Brown et al., 2016).

While microwear has been viewed as phylogenetically independent, this may be because it was studied among closely-related taxa. A recent study comparing disparate clades of herbivorous mammals found microwear to describe phylogeny better than diet, but to successfully distinguish diet within each phylogenetic group (Mihlbachler, Campbell, Ayoub et al., 2016). It seems, then, that dental microwear comparisons should be restricted in taxonomic scope out of caution in order to avoid potential biases. Because the temporal coverage of dental microwear is so short, analyses also require a large sample size to properly encompass the full breadth of an animal’s diet (Ungar, 2019). Green and Croft (2018) imply that a minimum of 10 individuals should be sampled. Individual tooth sets can still act as individual examples of diet similar to preserved meals, and differently worn teeth within a single jaw have been proposed to give insight into non-dietary behaviours such as grooming (see Section V.4.f.i Grooming).

(ii) Rhamphotheca Microwear

The possibility of applying techniques like those used in dental microwear to bird rhamphothecae [the horny covering of the beak] is interesting, but as of now uncertain in viability. Sload (2014) is the only
researcher to apply microwear techniques to structures other than teeth [claws of Florida stone crabs, *Menippe mercenaria*]. He notes that the lower hardness of the carapace [average microhardness of 1.33 GPa in melanised Florida stone crab carapace (Melnick, Chen & Mecholsky, 1996) versus 3.56 GPa in human enamel (Eimar, Ghadimi, Marelli *et al.*, 2012)] leads to atypical patterns of microwear, with many surfaces worn completely away (Sload, 2014 pg. 11). Reported averages for rhamphotheca hardness range from 1/4 [woodpecker (Lee, Horstemeyer, Rhee *et al.*, 2014)] to 1/11 [starling (Bonser & Witter, 1993)] that of Florida stone crab carapace, and so may experience even more extreme destruction of surface features. Rhamphotheca microwear is expected to reflect only very short periods of dietary input, requiring accordingly large sample sizes in order to acquire meaningful data about diet. However, hardness alone cannot predict wear resistance or patterns. Material behaviour and contact angle with abrading particles also play major roles (Zum Gahr, 1998). Enamel and crab carapace are both brittle ceramics for whom wear resistance increases near-linearly with hardness, but more flexible materials like metals and, potentially, keratin can display neutral or even negative correlation between hardness and wear resistance (Figure 4 in Zum Gahr, 1998). The combined differences in material type and contact angles of food particles [with a rhamphotheca likely straighter and smoother than any dental battery] means rhamphothecal microwear patterns will not resemble any known dental microwear patterns. A ground-up approach to the science will be necessary to make this application feasible: just as early mammal researchers identified scratches and pits to reflect tough and hard foods, diagnostic features of rhamphotheca wear have to be identified. The most straightforward method for identifying features would be laboratory experiments feeding birds known diets with differing mechanical properties. Such features can provide additional insight into living birds with obscure dietary habits as well as potentially being applied to fossilised rhamphotheca (see Section II.4 Soft Tissue).

(iii) *Microwear in Fossil Theropods*

Owing to their lack of teeth, dental microwear studies have not been performed on any extant avians (see above). There are two studies of dental microwear in fossil theropods, both of which address diet. Candeiro *et al.* (2017) provide little detail of their methodology but stated that analysis was “undertaken with the support of a scanning electron microscope” (pg. 230). They observed the presence of an elongated groove worn into select teeth and proposed it as evidence of osteophagy (Candeiro *et al.*, 2017). Torices *et al.* (2018) combine qualitative analysis of dental microwear with finite element analysis (see Section V.3.c.iii Finite Element Analysis in Fossil Theropod Skulls). They found all theropod teeth from the area of study to be worn with only scratches and no pits (Torices *et al.*, 2018), indicating a diet of tough but soft material (Ungar, 2019). Torices *et al.* (2018) interpret this as a lack of bone-crushing behavior, where either flesh was removed selectively or prey was swallowed whole. They also cite the bimodal distribution of scratch directions as evidence of a puncture-and-pull feeding style. They propose scratches parallel to the tooth margin are formed while biting down while those oblique to the margin form when pulling back to disassemble prey (Torices *et al.*, 2018). Finally, they make commentary on possible omnivory in the troodontid *Troodon* based on finite element analysis. In their provided example micrographs, though, the scratches on the *Troodon* teeth appear longer, more numerous, and less parallel to the tooth margin than those in cf. *Pyroraptor* or *Gorgosaurus* (Figure 2 in Torices *et al.*, 2018). This may evince *Troodon* incorporating more abrasive foods into its diet than the contemporary theropods studied. If not an artefact of the small number of examples provided, quantification of microwear may provide additional insight into dietary differences among toothed theropods. Also of note is a conference abstract finding the dental microwear of *Archaeopteryx* to most closely resemble that of invertivorous
Saurians (Bestwick et al., 2018). These results are planned for full publication, but dietary conclusions for Archaeopteryx are tentative due to a small sample size (Jordan Bestwick pers. com. 2020).

(iv) Application to Fossil Avialans
Fractal quantification of microwear (Ungar, 2015) has not been applied to any theropod taxon, and may be of particular interest in testing the proposed durophagy of certain enantiornithines including Shenqiornis (O'Connor & Chiappe, 2011b; Wang, O'Connor, Zhao et al., 2010b) and Sulcavis (O'Connor et al., 2013). Successful application of the technique to fossil lepidosaurs of a similar size (Bestwick et al., 2019) shows promise for success in toothed avialans. Should dental microwear of toothed avialans prove exclusively scratch-dominated as in non-avian theropods (Torices et al., 2018), only durophagy can be effectively ruled out. Other techniques are necessary to further refine a dietary niche. It is worth noting that, while complications from swallowing prey whole have been raised (O'Connor et al., 2019; Torices et al., 2018), microwear in particular has been observed to reflect diet in extant lepidosaurs and archosaurs despite their limited use of the teeth in prey processing (Bestwick et al., 2019; Winkler et al., 2019). Purely tooth-based approaches avoid many of the issues of reconstructing skull material. However, the possibility of anterior or posterior rhamphothecae in toothed avialans (Wang, Stiegler, Wu et al., 2020a) acting as an additional feeding surface may complicate conclusions drawn from dental analysis only.

Application of microwear to beaked fossil avialans is contingent on the preservation of the rhamphotheca and on validation studies in modern birds. Microwear represents only a short window of time in tooth enamel usage (Green et al., 2018), and appears to turn over even faster in crab carapace (Sload, 2014). Thus rhamphothecae, which are even softer, will likely require large sample sizes for meaningful data. With less than a dozen rhamphothecae reported in the entire vertebrate fossil record (see Section II.4 Soft Tissue) this avenue requires the discovery of more specimens before it can be attempted. Procedures may also need to be devised to account for alterations to the microstructure of the keratin during burial, as in feathers (Figure 3 in Saitta, Kaye & Vinther, 2019).

(3) Dental Ultrastructure
Brink et al. (2016) report that the tubule density of dentine in archosaur teeth [imaged via multiple harmonic generation microscopy] is able to discriminate between taxa proposed as hypercarnivorous and hyperherbivorous. Hypercarnivorous taxa, according to their study, possess a higher density of tubules within the dentine. While potentially promising in the future, the authors provide an incomplete explanation for the functional significance of this difference. The taxonomic breadth of the study leaves room for the differences observed to reflect phylogeny (as proposed by Wang, Song, Song et al., 2015a) rather than function. Should future studies validate the dietary signal of this technique it would be applicable to any specimens in which dental wear analysis can be used.

Li et al. (2020) performed similar investigations into theropod enamel. They found loss of interglobular porous spaces and thinning of enamel at the avialan transition. These are proposed as reductions in tooth strength coincident with a dietary shift away from hard foods. However, while the authors propose interglobular porous spaces as restricting crack propagation, the mechanical differences between enamel and dentine are sufficient for this purpose in extant species (Bechtle, Fett, Rizzà et al., 2010). Enamel thinning has alternatively been proposed as a byproduct of selection for rapid incubation (Yang & Sander, 2018). This does not mean that it could not have caused a dietary transition as another byproduct, and the thickening of enamel in enantiornithines proposed as durophagous (Li et al., 2020 pg.
6) would seem to imply an ecological effect. This hypothesis will be worth examining against finite element models of non-avian avialans (see Section V.3.c Finite Element Analysis).

(4) Soft Tissue
While not direct evidence of diet, the preservation of muscular tissue can aid in determining the inputs for functional models of extinct animal feeding. Unfortunately, fossilised jaw musculature has only been reported in placoderm fish (Trinajstic, Marshall, Long et al., 2007) and fossilised gular musculature in an ornithomimosaurian theropod (Briggs, Wilby, Perez-Moreno et al., 1997). The more commonly preserved postcranial musculature (e.g. Dal Sasso & Signore, 1998; Kellner, 1996; Schultz, 1989) may become useful in reconstructing dietary habits as the alliance between cranial and postcranial systems in feeding becomes better understood (Montuelle & Kane, 2019). Similar can be said for body outlines (Wang, Pittman, Zheng et al., 2017d) for corroborating landmark-based muscular reconstructions (see following section).

Fossilised rhamphotheca are invaluable when studying the diet of edentulous fossil taxa. Fossilised rhamphotheca impressions are known from a pterosaur (Frey, Martill & Buchy, 2003), hadrosaurid (Farke, Chok, Herrero et al., 2013; Morris, 1970; Sternberg, 1935) and ceratopsian (Lingham-Soliar, 2008) ornithischians, and ornithomimosaur (Barrett, 2005; Norell, Makovicky & Currie, 2001) and confuciusornithid (Chiappe & Meng, 2016 pg. 156; Falk, O’Connor, Wang et al., 2019; Hou, Martin, Zhou et al., 1999c; Miller, Pittman, Kaye et al., In Press; Zhang, Zhou & Benton, 2008) theropods. While preservation of rhamphotheca appears to be rare from this small sample size, the fact that half of known confuciusornithid rhamphotheca are only visible with the use of UV or laser-stimulated fluorescence (LSF) imaging (Chiappe et al., 2016 pg. 156; Falk et al., 2019; Miller et al., In Press) shows promise for modern imaging techniques revealing previously unknown rhamphotheca. These fossils allow construction of more accurate models of beaked organisms in the fossil record. They also narrow the phylogenetic bracket for studying taxa with rhamphotheca that were not preserved.

(a) Landmark-Based Cervical Reconstructions in Fossil Theropods
While the skull is often the first point of contact and/or the primary tool used in feeding, it functions only with the aid of postcranial systems (Montuelle et al., 2019). Once the jaws have bitten down, the neck powers further disassembly of food by using the teeth and/or beak to tear material into a swallowable size [except in cases of chewing, which is not known in theropods (Zanno & Makovicky, 2011)]. In an animal that uses its neck for disassembly, selection is expected to favour an increase in size of those muscles that power disassembly. While not studied at length in living birds, comparisons of radiographs of Gallus and Anas appear to show greater muscle volume spanning the areas of most intense flexion during feeding (Figures 3 and 4 in van der Leeuw, Bout & Zweers, 2001). Thus, reconstruction of neck musculature can elucidate what way, if any, non-avian avialans disassembled their food before swallowing.

Among theropods, neck muscles have been reconstructed in ceratosaurids (Snively et al., 2007b), allosaurids (Bakker, 1998; Snively, Cotton, Ridgely et al., 2013; Snively et al., 2007b), and tyrannosaurids (Bakker & Williams, 1988; Snively & Russell, 2007a; Snively et al., 2007b; Tsuihiji, 2010) based primarily on the occipital region of the skull. The general consensus of these studies is that ceratosaurids and allosaurids could exhibit greater force in dorsiflexion while tyrannosaurids could exhibit greater lateroflexive force. This leads to reconstruction of ceratosaurids and allosaurids pulling their heads back to disassemble prey and tyrannosaurids shaking their heads side-to-side (Snively et al., 2007b). Such reconstructions have yet to be attempted in paravian theropods.
Application to Fossil Avialans

Tsuihiji (2005; 2007) compiled homologies of cervical muscles across extant diapsids, including crocodilians and birds. This provides an extant phylogenetic bracket for reconstruction of non-avian avialan cervical muscles, though typically two-dimensional fossil preservation may prove to be obstacle to the reconstruction process. Aside from the possibility of digital reconstruction (see Section V.1 Skull Reconstruction), only Archaeopteryx (Alonso, Milner, Ketcham et al., 2004; Rauhut, 2014), Neuoquenornis (Chappe & Calvo, 1994), Piscivorenantiornis (Wang et al., 2017c), Enaliornis (Elzanowski & Galton, 1991), Hesperornis (Elzanowski, 1991), and Ichthyornis (Field, Hanson, Burnham et al., 2018b) preserve the occipital region well enough to potentially identify muscular insertions. Of these, only Neuquenornis, Hesperornis, and Ichthyornis preserve any other regions of the skull. However, cervical muscles can be mapped on cervical vertebrae in lateral view (Snively et al., 2007b; Tsuihiji, 2010), and the relative size of muscle insertions on the skull are consistent with those on the vertebrae (Snively et al., 2007b). Muscles that in both crocodilians and birds contribute to dorsoventral flexion (e.g. m. spinalis capitis) and lateral flexion (e.g. m. obliquus capitis) can be identified from the cervical columns of avian compression fossils preserved in lateral view [e.g. IVPP V13313 (Dalsätt, Zhou, Zhang et al., 2006), IVPP V13558 (Zheng, O'Connor, Huchzermeyer et al., 2014), STM 2-15 (O'Connor, Wang, Sullivan et al., 2018), STM 29-11 (O'Connor, Wang, Zheng et al., 2016c)]. Once identified, their relative areas can be compared following the methodology of Snively and Russell (2007b) to determine predispositions in cervical flexion and, in turn, methods of prey disassembly. We propose that prey disassembly method, in turn, can be extrapolated to inform the typical loading of the jaw. Their work implies that dorsiflexion shifts the muscular load vector cranially, ventroflexion shifts it rostrally, and lateroflexion shifts it laterally although they did not explicitly state this.

Discussion

Lines of direct evidence are the most powerful and unequivocal data that we can obtain about avialan diet, but have a small scope for application. The study of dental mesowear and dentine ultrastructure are not recommended to investigate toothed avialan diet due to, respectively, the lack of occlusion in the clade and the lack of robust validation of dentine ultrastructure studies. While the information they provide is vital, the paucity of avialan consumulites in the fossil record prevents reliance on them for understanding diet in most specimens. Enamel ultrastructure has shown promising preliminary results, but physical approaches (Section V) are necessary to corroborate their findings. The lack of fossilised avialan musculature means reconstructions must currently rely on landmarks for their attachment. Landmarks on the cervical vertebrae in particular can inform habits of prey disassembly by presenting adaptations for cervical flexion (see also Section V.3.b.iv Discussion for notes on skull muscle reconstruction) in both toothed and beaked avialans. The most promising line of direct evidence of avialan diet is dental microwear. In particular, its utility in detecting the input of hard foods into animals’ diets makes it ideal for investigations of possible durophagy in enantiornithines. The main drawback of this technique is the requirement of a large sample size, and so referral of unidentified specimens to known taxa may be necessary before such studies can be undertaken at phylogenetically meaningful levels. Rhamphotheca microwear requires a foundation in extant taxa before any application to beaked avialans can be attempted.
III. Stable Isotopes

(1) Introduction
Natural abundances of stable isotopes [i.e. those not known to radioactively decay] vary both geographically and by the way they are preferentially incorporated into biomolecules. With knowledge of these variations observed in living communities, the abundance of stable isotopes in the tissues of extinct animals can be used to reconstruct various aspects of palaeobiology (Clementz, 2012). The preservation window of stable isotope systems cited in all publications post-2010 can be traced to those listed in Table 5.2 of Koch’s (2007) review of the stable isotope chemistry in fossil vertebrates. Koch, however, does little to justify the ranges of these windows. He justifies the preservation window of bone, enamel, and soft tissues, but the provided temporal limits of individual isotope systems in these tissues are not justified. As such, the exclusion of an isotope system from analysis because the specimen is ‘too old’ is unfounded. Therefore, in addition to the traditional systems of carbon, oxygen and calcium isotopes commonly analysed in Mesozoic enamel and bone [bioapatite], we will also address hydrogen, nitrogen, and sulfur systems found in collagen [convincing evidence of preservation dating to the Early Jurassic (Lee, Chiang, Huang et al., 2017)] as well as heavy metal [strontium, neodymium, lead, iron, copper, magnesium, and zinc] systems found in bioapatite. Keratin can theoretically preserve all isotope systems collagen does (Koch, 2007), but recent taphonomic evidence finds keratin chemistry to be lost too quickly for fossilisation (Saitta et al., 2019; contra Schweitzer, Zheng, Moyer et al., 2018).

(a) Carbon Isotopes
13C is enriched relative to 12C in plants utilising a C4 photosynthetic pathway relative to those using the C3 pathway (Park & Epstein, 1960). The isotopic ratio of the carbon contained in the CO$_3$ components of bioapatite and within the amino acids of collagen can be used to determine what photosynthetic source(s) the nutrition of the animal in question ultimately came from. DNA and palynological evidence agree on an Oligocene origin of the C4 pathway (Sage, Sage & Kocacinar, 2012), and so this aspect of the isotope system is uninformative of diet in specimens older than roughly 30 Ma.

Marine ecosystems are known to be enriched in 13C relative to terrestrial ecosystems, though upper extremes of terrestrial species tend to overlap with those of marine species (Schoeninger & DeNiro, 1984) likely due to terrestrial input from C4 plants. Thus, prior to the emergence of C4 plants, we may expect a more bimodal distribution of 13C enrichment, with high enrichment of 13C indicating marine input into an organism’s diet.

(b) Oxygen Isotopes
18O is enriched relative to 16O in the leaves of plants relative to their other tissues, with increasing enrichment the higher those leaves are in the canopy (Koch, 2007). So, an enrichment in 18O in the CO$_3$ and PO$_4$ of bioapatite or the amino acids of collagen may indicate a higher proportion of leaves in the diet or feeding on leaves higher in the canopy. While not directly indicative of foraging height, 18O could potentially be used as a proxy. However, this enrichment must be evaluated based on comparison with specimens from the same locality, as atmospheric temperature and water temperature are stronger controls on the enrichment of 18O.

More frequently, 18O enrichment is used to discern metabolic activity. Body fluids are known to fractionate 18O with temperature (Koch, 2007). Thus comparisons of the 18O enrichment between different bones within an organism (Barrick & Showers, 1994; Barrick, Showers & Fischer, 1996; but see
Kolodny, Luz, Sander et al., 1996) and comparing global trends of 18O enrichment to that of known ectotherms (Amiot, Lécuyer, Buffetaut et al., 2006; Fricke & Rogers, 2000) can both yield evidence of homeothermy. If used in dietary reconstruction, then, both locality and metabolic rate must be kept constant when making comparisons.

(c) Calcium Isotopes

44Ca is known to deplete relative to all other calcium isotopes with increasing trophic level (Clementz, 2012), and so ratios of 44Ca/Ca in bioapatite across a locality may allow for rough approximation of the trophic pyramid. However, carnivorous taxa that do not consume the mineralised tissues of prey [e.g. early hominids] appear to be at a lower trophic level from these ratios (Reynard, Henderson & Hedges, 2010). Osteophagous herbivorous taxa (Esque & Peters, 1994; Hutson, Burke & Haynes, 2013) will presumably appear to be at a higher trophic level.

(d) Hydrogen Isotopes

2H is enriched relative to 1H with similar trends in plant tissues to 18O/16O, but with less contribution from evaporative conditions and greater contribution from differences in plant tissues (Koch, 2007). If collagen can be recovered, then this system appears more appropriate than oxygen for comparing between different localities and between organisms with differing metabolic rates.

(e) Nitrogen Isotopes

15N is enriched relative to 14N with increasing trophic level, and is used widely in analyses of modern food webs (e.g. Davenport & Bax, 2002; Gu, Schelske & Hoyer, 1996; Rau, Ainley, Bengtson et al., 1992). The baseline enrichment of 15N varies based on locality, and so comparisons must be made within a given locality (Koch, 2007). Nitrogen is sourced in the amino acids of an organism which are more difficult to avoid consuming than bone, and so if collagen can be recovered nitrogen isotopes may provide a superior reflection of trophic level to calcium isotopes.

15N is also known to be enriched in marine ecosystems relative to terrestrial ecosystems, and with significant separation in levels between the two [except in reef fish] (Schoeninger et al., 1984). As such, an ecosystem with organisms feeding on exclusively marine or terrestrial organisms should display a bimodal distribution and not affect signal for trophic level, but organisms taking from both sources may muddy the waters.

(f) Sulphur Isotopes

Sulphur isotopes are known to vary between plants in modern ecosystems, but not in any predictable manner (Connolly, Guest, Melville et al., 2004; Koch, 2007). Sulphur extracted from collagen may provide evidence of consumers having different producers contribute to their diet. Without fossilised plant proteins, which taphonomic studies rule unlikely (Fogel & Tuross, 1999), greater precision appears impossible.

(g) Heavy Metal Isotopes

87Sr/86Sr (Koch, 2007), 144Nd/143Nd (van de Flierdt, Robinson, Adkins et al., 2006), and 207Pb/206Pb (Scheuhammer & Templeton, 1998) are not known to fractionate in biological systems, and so are typically used as indicators of location. In fossil terms, differences in these systems in bioapatite of organisms from a given locality would represent different migratory patterns of said organisms in life.
In extant mammals, 56Fe/54Fe is higher in females than males while the reverse is true for 65Cu/63Cu (Jaouen, Balter, Herrscher et al., 2012; Martin, Tacail & Balter, 2017). While potentially useful for identifying sexual dimorphism from bioapatite, the trend is hypothesised to be linked to menstrual cycles (Martin et al., 2017) and thus may not be applicable outside of Eutheria.

Enrichment of both 26Mg and 66Zn in bioapatite with increasing trophic level have also been reported, but these isotopes appear more vulnerable to small regional variations than calcium or nitrogen (Martin et al., 2017). They may prove to be effective as secondary systems used to confirm predictions based on calcium and/or nitrogen.

(2) Stable Isotopes in Extant Birds

The first record of stable isotopes analysed in extant birds comes from the study across vertebrates of Schoeninger and DeNiro (1984), followed by Hobson (1987) as the first to focus specifically on birds. Both studies focused on determining marine or terrestrial input to the diet via 13C and/or 15N. Hobson (1990) was the first to apply 13C towards determining trophic level and proposed 15N as a superior alternative. His following paper (Hobson, 1993) codified the role of 15N in determining trophic level and serves as a basis for all subsequent avian studies. 18O (Farmer, Rye, Landis et al., 2003; Hobson, Bowen, Wassenaar et al., 2004), 3H (Chamberlain, Blum, Holmes et al., 1996; Farmer et al., 2003; Hobson et al., 2004; Lott, Meehan & Heath, 2003; Norris, Marra, Bowen et al., 2006), 34S (Farmer et al., 2003; Lott et al., 2003; Sanpera, Ruiz, Moreno et al., 2007), 87Sr (Blum, Taliaferro & Holmes, 2001; Chamberlain et al., 1996), and 207Pb (Schuehhammer, Bond, Burgess et al., 2003; Schuehhammer et al., 1998; Svanberg, Mateo, Hillström et al., 2006) have all only been used as indicators of locality in extant birds, typically by comparing sets of feathers from known localities to determine an isotopic signature without regard to the ecological drivers described above. To our knowledge no studies of calcium, neodymium, iron, copper, magnesium, or zinc stable isotopes in birds have been performed.

(3) Stable Isotopes in Fossil Theropods

Among fossil avians, stable isotopes have been used in dietary reconstructions in recent (Hobson & Montevecchi, 1991; Miller, Fogel, Magee et al., 2005) and Palaeocene-Eocene (Angst, Amiot, Buffetaut et al., 2015; Angst, Lécuyer, Amiot et al., 2014) taxa. Dietary studies older than this are restricted to non-paravian dinosaurs, primarily analyses of 13C determining ecosystems were based on C3 plants (Amiot, Wang, Lécuyer et al., 2010; Amiot, Wang, Zhou et al., 2015; Ghosh, Bhattacharya, Sahni et al., 2003; Montanari & Norell, 2011; van Baal, Janssen, van der Lubbe et al., 2013). The one exception is the work of Ostrom et al. (1993) who tabulated 15N enrichment in bulk bones and teeth of vertebrates from the Judith River Formation, and recovered expected trends of greater enrichment in proposed hypercarnivorous taxa [e.g. tyrannosaurs, plesiosaurs] than proposed herbivorous/omnivorous taxa [e.g. hadrosaur, sturgeon]. No additional attempts to analyse nitrogen stable isotopes of any Mesozoic vertebrate have been made, nor have stable isotopes of any paravian dinosaur tissue been analysed.

(4) Discussion

Stable isotopes promise information with validity akin to that of direct evidence, but the variety of influences on their ratios complicates the signals they provide. As such, the range of tissues and elements used in dietary inference is inherently small. Any attempts at bioapatite stable isotope analysis should be performed on teeth rather than bone if possible to ensure the highest level of accuracy (Hollund, Arts, Jans et al., 2015). The only locality with a large number of published avialan teeth is the Jehol Group
IV. Body Mass

(1) Introduction

While not traditionally used to determine diet in fossil organisms, recent studies of modern birds (Bright et al., 2016; Navalón et al., 2018a; Pigot et al., 2020) have found body mass to explain more of the variance in diet than physical approaches. Invertebrate feeders tend to be smaller than those that scavenge or hunt vertebrates [separation near 300 g] (Navalón et al., 2018a), and among raptorial birds scavengers are distinctly larger than active hunters or omnivores (Bright et al., 2016). It is worth noting that this trend appears to apply only to feeding on animals, as herbivorous diet types are spread across the range of measured body masses (Figure 6 in Navalón et al., 2018a). However, body mass alone can only consistently predict nectarivory in extant birds (Pigot et al., 2020). Body mass has a major influence on feeding strategy in extant birds, but can be used only as a component in analysis [e.g. coupled with TM as in (Pigot et al., 2020)] or as a secondary determinant. For instance, if other methods within the framework provide evidence of general carnivory mass may help specify prey to vertebrates or invertebrates.

(2) Discussion

Body mass is a universal metric among animals, but the reasons behind its observed effects on bird diet remain unclear and thus its application in fossil avialans is questionable. The proposed reason for size having such influence in raptorial birds is tight integration of the rostrum and cranium, disallowing significant change of one without the other (Bright et al., 2016). If this is true, then this means that the control of size on diet is developmental, not mechanical. Bird skulls have undergone extreme changes from the early-diverging avialan condition thought to be brought about by radical shifts in developmental controls (Bhullar, Hanson, Fabbri et al., 2016). Certain features of non-ornithuromorph skulls [small premaxilla [except in confuciusornithids], large maxilla [except in confuciusornithids], robust nasal and lacrimal, prominent postorbital (Hu, O’Connor, McDonald et al., 2020a; O’Connor et al., 2011b; Rauhut, 2014)] more strongly resemble that of early-diverging theropods than extant birds. As such, developmental constraints on extant bird skulls are unlikely to be at play in groups diverging earlier than...
Ornithuromorpha. However, size explaining the largest portion of dietary variance persists across extant birds (Navalón et al., 2018a; Pigot et al., 2020) despite differences in modularity between avian clades and a general decoupling of the rostrum and braincase shape across living birds as a whole (Felice et al., 2018). Diet, then, may be under mechanical control rather than developmental control. For instance, invertebrate taxa tend to be smaller than vertebrate taxa, so larger birds are less likely to feed on them. With that assumption, it is recommended that mass calculations be factored into dietary reconstructions of fossil birds if possible.

Serrano et al. (2015) provide mass estimates of 43 Mesozoic birds based on extant bird skeletons (see their Table 8). Table 2 expands on their work, providing mass estimates based on photographs in the literature for 71 additional specimens of non-avian avialans representing 61 species. Combined with the estimates of (Serrano et al., 2015), ~65% of non-avian avialan species likely fell below the 300g dietary transition observed by (Navalón et al., 2018a). However, this is largely driven by ornithothoracine species. Among non-ornithothoracine taxa only three specimens of Archaeopteryx have an estimated mass range below 300g (Table 8 in Serrano et al., 2015). There may be some taphonomic bias against preservation of large ornithothoracines, as the largest enantiornithine (Atterholt, Hutchison & O'Connor, 2018) and non-avian ornithuromorph (Buffetaut & Angst, 2016) taxa are only known from highly fragmentary material. Of taxa known from more complete material, it appears predatory ornithothoracines would be more likely to prey on invertebrates. Conversely, non-ornithothoracine avialans lacking distinct evidence of herbivory [Archaeopteryx and Confuciusornithidae] are more likely to have taken vertebrate prey. Some ornithothoracine groups [Bohaiornithidae, Pengornithidae, Songlingornithidae] also tend to have body masses above 300g (Table 1 in Serrano et al., 2015) and may represent a secondary adaptation to take vertebrate prey. 13 specimens of Yanornis [a songlingornithid] preserving ingested fish (O'Connor, 2019) support this premise.

V. Physical Approaches
(1) Skull Reconstruction
(a) Existing Reconstructions
All of the physical approaches described below, when applied to skulls, require reconstruction of the skull. A listing of all reported avialan skulls is provided in Table 3. No complete avialan skull is preserved in three dimensions. A composite reconstruction of the Ichthyornis dispar skull has been constructed in 3D (Field et al., 2018b). A team has also assembled a full 3D model of Archaeopteryx, but it is unreleased and intended for public education so its accuracy is unclear (Carney, Kaplan, Kirk et al., 2018). All other non-avian avialan skull reconstructions to date are 2D, owing to the flattened preservation of most avialans.

Over a dozen 2D skull reconstructions of Archaeopteryx exist (Elzanowski, 2001b; Rauhut, 2014). These tend to agree with one another, differing mostly in how bones contact at the antorbital fenestra and in the dorsocranial region. The same is true of Hesperornis, with some variation in the structure of the orbit (compare Bühler, Martin & Witmer, 1988; Gingerich, 1973) and the addition of the predentary to later restorations (Martin & Naples, 2008). Reconstructions of Sapeornis are less consistent, with the skull generally seen as more robust with a more downturned rostrum and mandible over time (compare Hu et al., 2020a; Zhou & Zhang, 2003b). Skull reconstructions of Confuciusornis (Chiappe, Shu'an, Qiang et al., 1999; Elzanowski, Peters & Mayr, 2018; Navalón, 2014; Zhou & Hou, 2002a) have
no clear trend in their variation. Most differences between reconstructions are in the length of the rostrum and height of the frontal, possibly representing intraspecific variation. *Anchiornis* sees the most variability in skull reconstruction, with noticeable differences in the size of fenestrae, shape of the mandible, placement of sutures in all reconstructions (Wang et al., 2017d; Xu, You, Du et al., 2011; Xu, Zhou, Dudley et al., 2014). In each case the skull was merely illustrative with no record of reconstruction methods, and so a more intentional reconstruction of the skull of *Anchiornis* is necessary. Quite a few avialans have had only a single skull reconstruction produced. These include Yi (Xu, Zheng, Sullivan et al., 2015) [probably a non-avian pennaraptoran (Pittman et al., 2020a)], Xiaotingia (Xu et al., 2011), Jeholornis (O’Connor, Wang, Sullivan et al., 2013), Gobipteryx (Elzanowski, 1977), Cathayornis (Martin & Zhou, 1997), Eoenantiornis (Hou, D Martin, Zhou et al., 1999b), Shenqiornis, Rapaxavis, Pengornis (O’Connor et al., 2011b), Piscivorenantiornis (Wang et al., 2016c), an indeterminate enantiornithine hatchling (Sanz, Chiappe, Perez-Moreno et al., 1997), Patagopteryx (Chiappe, 2002), Yanornis (Huang, Wang, Hu et al., 2016), and Yixianornis (Clarke, Zhou & Zhang, 2006).

(b) Avenues for Improvement
Due to most avialan specimens being compression fossils, relatively little material lends itself to construction of 3D models. A 3D reconstruction of *Parahesperornis*, or at least a general hesperornithiform, should be possible with reported material. A nearly complete 3D skull of *Parahesperornis* is known, alongside well-preserved 3D pieces of the skull of *Hesperornis* (Bell & Chiappe, 2020) and *Pasquiaornis* (Sanchez, 2010). Excellent skulls of *Gobipteryx minuta* (Chiappe, Norell & Clark, 2001; Elzanowski, 1974; Elzanowski, 1977) are nearly complete and preserved in three dimensions, and represent the most complete picture of the enantiornithine skull. The skulls of *Gobipipus reshetovii* (Kurochkin et al., 2013) and an unnamed gobiptyrgid (Lu, Xu, Zhang et al., 2011) are more fragmentary, but are similar enough to *Gobipteryx* that complete reconstruction is possible. Unfortunately, the skulls of these taxa are highly derived (Hu, Sansalone, Wroe et al., 2019) and are of dubious use in reconstructing the skulls of other enantiornithines (O’Connor et al., 2011b). One complete enantiornithine skull is preserved in amber (Xing et al., 2017), but is of an extremely early ontogenetic stage, damaged from preparation, and extremely difficult to image (Xing et al., 2017 pg. 266). The remainder of three-dimensionally preserved non-avian avialan skull material (Table 2) is too fragmentary for reconstruction. While an avian, the holotype of the Mesozoic bird *Asteriornis* includes a well-preserved and nearly complete skull (Field, Benito, Chen et al., 2020) which can also offer insight into avian ecosystems in the Late Cretaceous.

As the vast majority of avialan skulls are preserved two-dimensionally (Table 2), two-dimensional reconstructions will likely remain standard in the coming years. As such, valid approaches to 2D reconstruction are imperative for applying physical approaches to avialans. In an ideal scenario of a near-perfect skull (Sanz et al., 1997) reconstruction is often just a matter of retrodeformation. When no one skull can supply all the information needed, multiple skulls must be combined into a chimera. O’Connor and Chiappe (2011b) set the standard for enantiornithines by restricting the phylogenetic bracket to only other members of the clade. Within Enantiornithes, however, there is still ample variation in skull morphology (Morschhauser, Varricchio, Chunling et al., 2009; O’Connor et al., 2013; Zhang, Ericson & Zhou, 2004). We therefore recommend a refinement of current 2D avialan reconstructions by narrowing the phylogenetic bracket of reconstructions further. Four distinct families are generally recognised within Enantiornithes [Avisauridae (Atterholt et al., 2018; Brett-Surman & Paul, 1985), Bohaiornithidae (O’Connor, 2019; Shi & Li, 2019; Wang, Zhou, O’Connor et al., 2014c; contra Chiappe,
Qingjin, Serrano et al., 2019b), Longipterygidae (O’Connor, 2019; O’Connor, Wang, Chiappe et al., 2009; Pittman et al., 2020a; Shi et al., 2019), and Pengornithidae (O’Connor, 2019; Pittman et al., 2020a; Wang, O’Connor, Zheng et al., 2014e)], and so missing information can be preferentially filled by members of the family. Similar is true for the three widely recognised families of early-diverging ornithuromorphs [Hesperornithiformes (Bell & Chiappe, 2016; Clarke, 2004), Hongshanornithidae (O’Connor, Gao & Chiappe, 2010b; Pittman et al., 2020a; Wang, Zheng, O’Connor et al., 2015b), and Songlingornithidae (Clarke et al., 2006; Hou, 1997; Pittman et al., 2020a)]. In addition, the level of error introduced by chimerisation can be estimated by creating similar chimeras of modern bird skulls and comparing results of individuals to that of the composite. Skulls or individual teeth of lizards can help estimate the effects of chimeric dentition for toothed avialans. This will provide information on the accuracy of any analyses performed on inevitably chimeric avialan skull reconstructions.

Alternatively, technological advancements may allow for 3D reconstruction from 2D sources. 3D images of specimens can be taken using computed tomography (CT) (Abel, Laurini & Richter, 2012) or augmented laminography (AL) (Zuber, Laaß, Hamann et al., 2017). Subsequently, broken parts can be segmented and reconstructed according to techniques described by Lautenschlager (2016). Unfortunately, in addition to the man hours necessary to segment and manipulate the numerous shards of a shattered skull, there are significant obstacles to collecting these data. Typically, avialan skulls are part of slab specimens. These slabs do not yield good results when imaged with standard scanners on site and are too large for higher-resolution scanners (Michael Pittman, pers. obs.). Preparation can resolve the size issue, but most museums are hesitant to approve preparation work, especially as slab specimens are generally beautifully articulated (Michael Pittman, pers. obs.). This means that to obtain CT data, whole slabs must be sent to far away specialist scanners [large chamber μCT scanner and synchrotron scanner] that involves time-consuming permit- and logistics-related paperwork, high transports cost [usually personal courier via air travel] and an elevated risk of damage to the specimen during its transport. Thus, 3D data has been difficult to collect from avialan skulls and will continue to be a challenge whilst these obstacles remain. The 2D approach described above is recommended to circumvent these issues and preserve fossils for future study, though fossils whose skulls are already disarticulated [e.g. Longusunguis (Hu, O’Connor, Wang et al., 2020b; Wang et al., 2014c) or Eogranivora (Zheng, O’Connor, Wang et al., 2018a)] (see also Table 3) would be ideal for pilot studies of 3D reconstruction of avialan skulls.

(2) Morphometrics
(a) Introduction
Morphometrics is the study of shape and the quantification of shape change, typically in a biological context (Rohlf, 1990). Shapes are quantified by defining landmarks, “(1) homologous anatomical loci that (2) do not alter their topological positions relative to other landmarks, (3) provide adequate coverage of the morphology, [and] (4) can be found repeatedly and reliably…” (Zelditch, Swiderski, Sheets et al., 2004 pg. 24). In studies that are concerned with only two dimensions of geometry, all landmarks must also lie in the same plane (Zelditch et al., 2004 pg. 24). Once landmarks are placed on the structure in question, the methods in which they are analysed differentiate traditional morphometrics [TM], based on pre-selected distances and angles between landmarks (Marcus, 1990), and geometric morphometrics [GM], where the differences between landmark position in all models is quantified and significant variables are identified a posteriori (Zelditch et al., 2004 pg. 24). Guillerme et al. (2020) review the collection, analysis, and interpretation of all morphometric data.
(b) Traditional Morphometrics

(i) Introduction
Comparing linear measurements of animals likely predates the formalisation of science itself. Traditional morphometrics [TM] are differentiated by rigorous statistical considerations of measurements taken, and selection of measurements believed to be relevant to the topic of study. The full range of statistical techniques used in TM are detailed by Marcus (1990).

The traditional appeal of TM has been the low computing power required. Measurements can be taken by hand and compiled into a spreadsheet for analysis of relatively low complexity. Now that computing power is no longer a limiting factor, the main appeals of TM are the lower investment of time and money into the project. TM does not necessitate creating two- or three-dimensional models nor placement of landmarks and semi-landmarks onto models (Rohlf, 1990). TM also allows for a priori selection of measures believed to have functional significance [though this may lead to arguments of cherry picking or p-hacking (e.g. Warton & Hui, 2011)]. TM is most recently utilised in studies of diet with positive results (Fraser & Theodor, 2011; Hertel, 1994; Hertel, 1995; McBrayer & Corbin, 2007; Surkov & Benton, 2008).

(ii) Traditional Morphometrics in Extant Bird Skulls
Traditional morphometric approaches to understanding the avian skull trace their roots to the descriptive measurements of Shufeldt (1909 pg. 88, 181). The following decades were characterised by numerous univariate comparisons of skull measurements (e.g. Schoener, 1965). Baker and Moeed (1979) were the first to include measures of the skull in an avian morphometric study. Grant and Grant (1993) are the first the link avian morphometric results to dietary groups. Hertel (1994) is the first to study purely the morphometrics of the avian skull, and his follow-up study (Hertel, 1995) is the first to compare fossil and modern avians. Hertel (1995) defines 21 linear and 4 angular measurements to define the avian skull, though subsequent studies of the skull tend to focus exclusively on linear (Ladyguin, 2000; Li & Clarke, 2016) or angular (Button, 2018) morphometrics. All of the landmarks chosen in these studies make up some subset of Hertel’s (1995). These studies, as well as those incorporating postcranial morphometrics (Barbosa et al., 1999; Corbin, 2008; Herrel, Soons, Aerts et al., 2010b; Pigot et al., 2020) and mechanical properties of the skull (Corbin et al., 2015; Herrel et al., 2010b), have all been successful in predicting diet in extant birds. However, as is always true with TM, the a priori selection of measurements may limit their broader applicability. Beak curvature, for instance, is a major axis of the morphospace in vultures (Hertel, 1994) but considered irrelevant in shorebirds (Barbosa et al., 1999) and flycatchers (Corbin, 2008). Pigot et al. (2020) successfully applied their morphometrics to 99.7% of extant bird species, but their reliance on soft tissue landmarks means they are inapplicable to most fossil taxa.

(iv) Traditional Morphometrics in Fossil Theropod Skulls
While TM applied to non-avialan theropods is applicable across a broad range of taxa, the diets of all extinct theropods are necessarily speculative. So, TM use has been mostly restricted to detecting inter-population differences (Smith, 1998) or niche partitioning (Henderson, 1998; Holtz Jr., 2008; Van Valkenburgh & Molnar, 2002) in fossil theropods. Holtz Jr. (2008) frames his study of tyrannosaurids in terms of hunting style, but the section therein focusing on skull morphometrics only shows a lack of separation of tyrannosaurids and non-tyrannosaurid morphospaces with no comments on diet. Button and Zanno (2020) incorporate many skull measurements typical of TM in a study of theropod diet, such as
skull length or premaxillary angle. However, because they investigate them in context of function rather than shape the study is covered in Section V.3.b.iii Lever Models of Fossil Theropods.

While most rigorously defined for phylogenetic use (Hendrickx & Mateus, 2014), TM has been applied twice to non-avialan theropod teeth as an exploration of diet. Holtz Jr. et al. (Holtz Jr., Brinkman & Chandler, 1998) found a trend of generally coarser denticles in herbivorous vertebrates than carnivorous ones, with therizinosauroids and some troodontids plotting near the former. This technique is inapplicable to currently-known avialans as all reported avialan teeth are unserrated (O’Connor 2019; but see Dumont, Tafforeau, Bertin et al., 2016 and Wang, Zhao, Shen et al., 2015a) . Holtz Jr. (2008) examined the height, length, and width of theropod tooth crowns, which can be applied to unserrated teeth. While tyrannosaurid teeth weakly separated in the morphospace from non-tyrannosaurs, they were only effectively distinguished when examining functional indices [with an implication of increased strength indicating osteophagy]. No comparisons to taxa with known diets were made.

(v) Traditional Morphometrics in Extant and Extinct Theropod Foot

Every TM study of the fossil theropod pes has included extant taxa for comparison, and few studies of extant avians exclude fossil taxa. It is, therefore, unhelpful to divide these studies by their subject, and so instead are divided by their focus on angular or linear measurements. In addition to studies concerned directly with dietary cues (Csermely et al., 2006; Csermely et al., 2012; Einoder et al., 2007; Fowler et al., 2009; Fowler, Freedman, Scannella et al., 2011; Mosto & Tambussi, 2014; Wang et al., 2014c) and grasping ability (Kambic, 2008), we also include studies concerned purely with locomotion (Clark, Hopson, Fastovsky et al., 1998; Cobb et al., 2020; Dececchi & Larsson, 2011; Feduccia, 1993; Glen & Bennett, 2007; Hopson, 2001; Morschhauser et al., 2009; Peters & Görgner, 1992; Pike & Maitland, 2004; Tinius & Russell, 2017; Zhou, 1999). Locomotion can provide insight into what resources would be available to individuals to feed on and how free the hind limbs were to manipulate food while feeding.

1. Angular Measures

The first application of TM, based on the curvature of avian claws, was proposed by Peters and Görgner (1992). However their method, ambiguously worded and requiring fitting of an idealised parabola, was less influential than that of Feduccia (1993). Feduccia modelled the ventral arc of the claw as that of a circle (Figure 1A) and proposed that a greater degree of curvature [i.e. larger central angle measure] of said arc indicated a greater degree of arboreal behavior within avians. Xu et al. (2000) briefly mention utilising this method in their description of Microraptor zhaoianus. Pike and Maitland (2004) would go on to formalise this circular arc methodology, preferring to measure the dorsal arc of the claw due to a less ambiguous proximal landmark (see Figure 1C). Csermely and Rossi (2006) utilised this method and were the first to apply it to feeding behaviour. They investigated if it could distinguish between raptorial and non-raptorial birds, as the former is known heavily utilise their feet in prey restraint and manipulation (e.g. Csermely & Gaibani, 1998b; Goslow, 1972; Sustaita et al., 2013; Ward, Weigl & Conroy, 2002). Subsequent studies measuring curvature would either measure the dorsal arc exclusively (Csermely et al., 2012; Glen et al., 2007; Mosto et al., 2014) or both the dorsal and ventral arcs (Birn-Jeffery, Miller, Naish et al., 2012; Cobb et al., 2020; Fowler et al., 2009; Fowler et al., 2011; Tinius et al., 2017) [though note (Fowler et al., 2009; Fowler et al., 2011; Tinius et al., 2017) use an alternate ventral arc proximal landmark (Figure 1B)]. Dececchi and Larsson (2011) code claws as either “straight”, “recurved”, or “highly recurved” without clarification of how these codings are determined. Of these methods, the angle from the dorsal arc as defined by (Pike et al., 2004) or the ventral arc as defined by (Fowler et al., 2009) appear to be the most informative as both utilise unambiguous landmarks that represent the proximal and
distal extents of the keratinous covering of the talon (Hedrick, Cordero, Zanno et al., 2019a). Because the majority of studies incorporate other measurements in addition to curvature it is impossible to pinpoint which measure most effectively discriminates between groups.

2. Linear Measures
The second application of TM, based on linear measurements of the phalanges, traces its roots to the descriptive measurements of Shufeldt (1909 pg. 47, 93, 125, 196, 335). The first statistical analysis of these measurements as ecological indicators appears to be from Leisler and Thaler (1982). They and subsequent researchers, though, tended to utilise pedal measurements as a single component in larger whole-body morphometric analyses. Zhou (1999) included a chapter which introduced analysis of avian ecomorphology focused entirely on pedal proportions, though the paradigm was popularised by and is commonly attributed to Hopson (2001). Both studies followed similar methodologies to intuit locomotor behavior in extinct birds. Csermely and Rossi (2006) were the first to investigate signal of diet [specifically predatory behavior] with linear pes measurements. Kambic (2008) was the first to search for signals specific to grasping ability in the pes. Unlike angular measurements, linear measurements of the avian pes are far from standardised. Non-ungual phalanges may have measurements of length [whole toe (Abourachid, Fabre, Cornette et al., 2017; Clark et al., 1998; Dececchi et al., 2011; Hopson, 2001; Kambic, 2008; Morschhauser et al., 2009; Wang et al., 2014c; Zhou, 1999) and individual phalanges (Abourachid et al., 2017; Clark et al., 1998; Dececchi et al., 2011; Hopson, 2001; Kambic, 2008; Morschhauser et al., 2009; Wang et al., 2014c; Zhou, 1999)], width [whole toe (Csermely et al., 2006; Csermely et al., 2012) and individual phalanges (Abourachid et al., 2017; Kambic, 2008)], and height [whole toe (Csermely et al., 2006; Csermely et al., 2012) and individual phalanges (Abourachid et al., 2017; Kambic, 2008)] on record (Figure 2A–C). Ungual phalanges may have measures of length [chord (Csermely et al., 2006; Csermely et al., 2012; Fowler et al., 2009; Fowler et al., 2011; Hedrick et al., 2019a), arc length (Abourachid et al., 2017; Mosto et al., 2014), and flexor tubercle chord (Abourachid et al., 2017; Mosto et al., 2014)], width [at the base of the claw (Csermely et al., 2006; Csermely et al., 2012) and of the flexor tubercle (Mosto et al., 2014)], and height [at the base of the claw (Fowler et al., 2009; Fowler et al., 2011), at the midpoint of the arc (Fowler et al., 2009; Fowler et al., 2011), and of the flexor tubercle (Mosto et al., 2014)] on record (Figure 2D–E). The only linear measurements comparable with the majority of studies of linear phalangeal measurements are ungual chord length and individual phalanx length [which closely approximates total toe length (Falk, 2014)]. Arguments have been made for the inclusion of certain measurements, e.g. the ungual chord length as a proxy for body size (Pike et al., 2004) or phalangeal lengths indicating flexibility of the toes (Zhou 1999 citing Fisher 1946). However, the inconsistency of measures attests to how little justification there is for any given set of linear measurements to properly quantify the shape of avian feet.

This category includes two of the three quantitative studies focused on avialan diet, though both are directly examining locomotion and only refer to diet as a subsidiary of these results. Hou et al. (2004) hypothesised that Longirostravis was a probing feeder, and Morschhauser et al. (2009) tested the hypothesis through the closely-related Rapaxavis. Morschhauser et al. (2009) incorporated digit III phalanx measurements of Rapaxavis into the data set of Hopson (2001) and found it to fall into the arboreal morphospace. From this they propose that, instead of being ground probers comparable to charadriiforms, they may have instead been bark probers (Morschhauser et al., 2009 pg. 553). Wang et al. (2014c) took a similar approach to Bohaiornithidae, adding their phalangeal measurements to the dataset of Hopson (2001) and adding claw curvature measurements of Pike and Maitland (2004) [it appears
comparisons to the latter are merely qualitative, referring only to “high” and “low” curvature. Narrowing the dataset to raptorial birds due to high claw curvature and lack of specialised limb proportions associated with climbing, they found the closest phalangeal proportions to be those of Pandion. While the researchers propose a piscivorous diet in bohaiornithids because of this similarity, they attenuate the diagnosis with qualitative assertions of their teeth seeming to be more adapted for durophagy (Wang et al., 2014c pg. 68).

(vi) Discussion
Pilot studies are necessary to examine the application of TM to non-avian avialan skulls to predict diet. All TM frameworks that rely on the curvature of the premaxilla (Barbosa et al., 1999; Button, 2018; Hertel, 1994; Hertel, 1995) cannot be applied to toothed avialans as nearly all possess straight premaxillae. The exceptions are for Sapeornis, Ichthyornis and the Hesperornithiformes which are interpreted as possessing rhamphotheca which replaced the rostralmost teeth (Wang et al., 2020a); premaxillary curvature is likely a product of edentulism with teeth no longer serving as a gripping surface for food. Whether the straight beaks of all known fully-edentulous avialans (Chiappe et al., 2001; Elzanowski et al., 2018; O'Connor, 2019; Zhou, Zhou & O’Connor, 2012; Zhou, Zhou & O’Connor, 2013; Zhou & Li, 2010) represents a dietary or developmental signal is unclear. Frameworks reliant on the width of the skull (Corbin, 2008; Corbin et al., 2015; Li et al., 2016; Pigot et al., 2020) would require referral of more specimens with skulls preserved in dorsal or ventral views. Skull width is unknown in all described non-avian avialan genera except Anchiornis, Confuciusornis, Sapeornis, Dalingheornis, Eopengornis, Fortunguavis, Longusunguis, Monoenantiornis, Archaeorhynchus, Yixianornis, Ichthyornis, Hesperornis, and Parahesperornis (Table 2). Of these all but Ichthyornis, Hesperornis, and Parahesperornis are crushed skulls whose widths are dubious. TM seems more likely to prove useful when applied to dentition. Dental TM is already known to effectively determine the phylogenetic placement of most theropods (Hendrickx et al., 2014; Hendrickx, Tschopp & d Ezcurra, 2020), with universal characters already defined in the literature (Hendrickx, Mateus & Araújo, 2015). While preliminary studies of lizard teeth have shown only a tenuous link with diet (Estes & Williams, 1984; Melstrom, 2017), they remain the best extant group to compare to due to the much more narrow range of tooth form in crocodilians (Erickson, Gignac, Steppan et al., 2012). So, we recommend a study of extant lizard teeth using the existing TM framework (Hendrickx et al., 2015) as a baseline dietary morphospace. Otherwise, the lack of effective application of skull TM to non-avian theropod diet does not bode well for the technique applying to non-avian avialans.

TM studies of the theropod pes have both a more consistent focus on dietary analogues and a more consistently applied set of measurements, and so a more thorough evaluation of methods is possible. Most TM studies of the pes concerned themselves with only digit III [DIII] (Clark et al., 1998; Cobb et al., 2020; Dececchi et al., 2011; Feduccia, 1993; Glen et al., 2007; Kambic, 2008; Morschhauser et al., 2009; Peters et al., 1992; Pike et al., 2004; Tinius et al., 2017; Wang et al., 2014c), two studies with digit I [DI] and DIII (Csermely et al., 2006; Csermely et al., 2012), two studies with digit II [DII]–digit IV [DIV] (Hopson, 2001; Zhou, 1999), and the remainder with all four digits (Einoder et al., 2007; Fowler et al., 2009; Fowler et al., 2011; Mosto et al., 2014). Studies that rely solely on DIII justify this choice by DIII being the weight-bearing toe (Glen et al., 2007; Hedrick et al., 2019a), and all but (Kambic, 2008) are concerned with locomotion. Studies on DII–DIV (Hopson, 2001; Zhou, 1999) are similar in concept, disregarding DI as it rarely bears weight during forward motion. Zhou (1999) compared the phalangeal proportions of DII–IV individually and found each digit discriminated between locomotor categories
equally well (his Figures 38–42). Backus et al. (2015) provide a strong argument for the efficacy of the two-dimensional simplification of avian grasping [i.e. to the action of DI and DIII] as such simplification is adequate to create functioning artificial ‘hands’ for robots (Backus, Odhner & Dollar, 2014; Dollar & Howe, 2011). Abourachid et al. (2017), though, note that in non-ansiodactyl pedal arrangements DII and DIV supplement or supplant the role of DI and DIII in grasping. Measuring all digits of the pes acquires the most data possible about its structure but imposes additional complexity in the analysis and time for data collection. Significant interdigital variation is often cited as a reason to avoid measurements of the whole pes (Cobb et al., 2020; Hedrick et al., 2019a), but Fowler et al. (2009; 2011) argue that interdigital variation itself is the diagnostic which separates ecological niches. Given that all of the above-mentioned studies of all four digits were able to discriminate among their chosen ecological groups it seems unlikely that their inclusion is detrimental to analysis, but any benefit from their inclusion over the analysis of a single digit is equivocal.

It is recommended in TM [and GM] studies of ungual phalanges to compare the bony cores of claws rather than the keratin sheathes. Studies measuring both sheathe and core found both to give similar information (Cobb et al., 2020; Hedrick et al., 2019a), and many fossils do not preserve the keratin sheathe. In those that do the keratin stain is likely more deformed than the bone (Saitta et al., 2019). Therefore empirical conversion factors (e.g. Glen et al., 2007; Hedrick et al., 2019a) or direct measurements of the stain give less valid data than measuring the core. Extant avian ungual bones can found in many museum skeletal collections, and remaining keratin can be easily removed from the claws of macerated skeletons by soaking the claws in dilute ammonia (Stephen Rogers, Carnegie Museum of Natural History, pers. com. 2019). Among styles of applying TM, Fowler et al. (2009; 2011) produced the finest scale of discrimination. Their framework delineated not only arboreal/ground and raptor/nonraptor groups, but also the individual hunting guilds among raptors. However, these studies did not employ phylogenetic correction. Thus, they have been proposed as simply grouping talons based on familial relations (Hedrick et al., 2019a), which so happen to correlate with predatory style in extant raptors (Csermely et al., 1998b; Fowler et al., 2009; Goslow, 1972; Sustaita, 2008). More fundamentally, the Fowler et al. studies appear to utilise improper statistical analysis. They apply correspondence analysis, designed to utilise categorical data. Numerical data can be binned and analysed as categorical data (Kim, 2011), but Fowler et al. (2009; 2011) do not make note of doing so in either study. When the more appropriate principal component analysis is applied to these data (see Figure S1) groups inhabit less distinct regions of the morphospace. With that said, they still show more distinction than that of the next most discriminating study, Csermely et al. (2012). It is recommended, then, that any pes-based TM investigation of non-avian avialan diet follow the analytical procedures of Fowler et al. (2009) with phylogenetic correction (see Section V.4.a Phylogenetic Signal).

(c) Geometric Morphometrics

(i) Introduction

Geometric morphometrics [GM] uses digital models, either full 3D models or 2D dorsal/lateral silhouettes, with landmarks placed just as one would with TM (Zelditch et al., 2004). Landmarks are typically supplemented by sliding semi-landmarks, a digitisation of the curve[s] between landmarks (Perez, Bernal & Gonzalez, 2006). The shifts in the relative position of landmarks and semi-landmarks between models can be quantified and analysed digitally (Adams & Otarola-Castillo, 2013).
While GM can be significantly more time-consuming than TM (Rohlf, 1990), GM provides at least as much information about the shape of the element in question as every possible measurement taken between every pair of landmarks (Zelditch et al., 2004 pg. 2–7). With the introduction of semi-landmarks, the information increases beyond that possible in TM (Zelditch et al., 2004 pg. 396). Perez et al. (2006) detail different methods of creating semi-landmarks. Note that at an inter-species or higher level, such as that typically employed in palaeontology, the differences between methods should be negligible. Because GM creates an unbiased representation of form it has proven effective in tracing evolutionary trends (Fernandez Blanco, Cassini & Bona, 2018; Figueirido, MacLeod, Krieger et al., 2011; Miyashita, 2013; Openshaw, D’Amore, Vidal-García et al., 2016; Polly, Stayton, Dumont et al., 2016) but has returned only mixed results in feeding studies (Gailer, Calandra, Schulz-Kornas et al., 2016; Klaczko, Sherratt & Setz, 2016; Meloro, Hudson & Rook, 2015; Samuels, 2009; Tarquini, Chemisquy, Ladevèze et al., 2019).

Another form of GM, outline-based GM, has been introduced as an alternate method of quantifying 2D shape. This method interprets and compares the outlines of a bodies as composites of trigonometric curves [Fourier analysis]. The primary advantage over landmark-based methods is applicability to bodies with few homologous landmarks (Bonhomme, Picq, Gaucherel et al., 2014). While the concept dates back several decades (Kaesler & Waters, 1972) this method has been used very little in vertebrate palaeontology so far (Navarro, Martin-Silverstone & Stubbs, 2018; Schaeffer, Benton, Rayfield et al., 2019) and so by default ‘GM’ will be used in this paper to refer to landmark-based GM. In phylogenetically broad studies in which homology is unclear this method may prove useful in coming years.

(ii) Geometric Morphometrics in Extant Bird Skulls
van der Meij (2004) and Marugán-Lobón and Buscalioni (2004) were the first to apply geometric morphometrics (GM) to bird skulls. van der Meij (2004) combined landmarked pictures of fringillid and estrildid finches into effectively 3D models of the skull. Shape differences in these models were analysed and compared to bite force. Bite force, in turn, was translated into seed husking efficiency and its effect on diet (van der Meij, 2004). This study, then, is also the first to apply GM to diet [albeit indirectly]. Marugán-Lobón and Buscalioni (2004) were the first to apply 2D GM to both extant birds and non-avian theropods, and Kulemeyer et al. (2009) the first to use true 3D models for bird skull GM.

GM Studies of extant avian diet can be divided into those that study only the bill (Button, 2018; Cooney, Bright, Capp et al., 2017; Matsui, Hunt, Oberhofer et al., 2016; Navalón et al., 2018a; Olsen, 2017; Sustaita & Rubega, 2014; van der Meij, 2004), those that treat the beak and cranium as a single unit (Bright et al., 2016; Bright, Marugán-Lobón, Rayfield et al., 2019; Chávez-Hoffmeister, 2020; Felice et al., 2019a; Navalón, 2014; Pecsics et al., 2019; Si et al., 2015; Sun et al., 2018; Tokita, Yano, James et al., 2017), and those that examine each individually (Bright et al., 2016; Felice et al., 2019a; Kulemeyer et al., 2009). Landmarks for the bill tend to be consistent. The bill tip and the base of the frontal are used in nearly every study (Bright et al., 2016; Bright et al., 2019; Button, 2018; Chávez-Hoffmeister, 2020; Kulemeyer et al., 2009; Matsui et al., 2016; Navalón, 2014; Navalón et al., 2018a; Si et al., 2015; Sun et al., 2018; Tokita et al., 2017; van der Meij, 2004) alongside either the rostral extreme of the jugal (Bright et al., 2019; Button, 2018; Chávez-Hoffmeister, 2020; Matsui et al., 2016; Navalón, 2014; Navalón et al., 2018a; Tokita et al., 2017; van der Meij, 2004) or the ventrocranial extreme of the palatine (Kulemeyer et al., 2009; Pecsics et al., 2019; Si et al., 2015; Sun et al., 2018; Tokita et al., 2017). Landmarks of the cranium are less consistent, with only the border of the orbit commonly mapped (Felice et al., 2019a; Kulemeyer et al., 2009; Si et al., 2015; Sun et al., 2018; Tokita et al., 2017). Discrimination of diet is
inconsistent. GM can often discriminate diet in restricted phylogenetic groups [family- to superfamily-level] (Chávez-Hoffmeister, 2020; Kulemeyer et al., 2009; Olsen, 2017; Pecsics et al., 2019; Si et al., 2015; Sun et al., 2018; Sustaita et al., 2014; van der Meij, 2004), but dietary morphospace tends to heavily overlap between groups (Bright et al., 2016; Bright et al., 2019; Tokita et al., 2017) and across birds overall (Button, 2018; Felice et al., 2019a; Navalón, 2014; Navalón et al., 2018a). It seems likely that more distantly-related clades of birds face developmental constraints that either prevent them from attaining converging morphotypes or predispose them towards differing solutions under similar environmental pressures (Gould, 2002). Similar levels of craniofacial integration within most families of land birds [Telluraves] (Navalón, Marugán-Lobón, Bright et al., 2020) implies similar developmental patterns among them. Constraints preventing shape/diet correlation, then, are less expected within Telluraves.

(iii) Geometric Morphometrics in Fossil Theropod Skulls
As stated above, Marugán-Lobón and Buscalioni (2004) were the first to apply GM to non-avian theropods. They focused purely on disparity [quantified difference in shape]. Shychoski and Snively (2008a) published an abstract that is the first use of GM to investigate non-avian theropod feeding. They reported juvenile tyrannosaurs to more resemble non-tyrannosaurid morphotypes than their adult forms, but a full publication of the data is not planned (Eric Snively pers. com. 2020). Brusatte et al. (2012) found oviraptorids and, to a lesser extent, ornithomimosaurians and alvarezsaurians [all proposed as herbivoros (Zanno et al., 2011)] to cluster outside the ‘carnivorous’ morphospace. The lack of any confirmed diets in the dataset limits the validity of the results. Foth and Rauhut (2013) report similar results with a significant correlation between purported diet and shape. They saw more overlap in dietary morphospace and also did not include taxa with known diets. Recoding taxa based on more explicit evidence of diet (Figure S2) provides a division between herbivorous and carnivorous morphospace if Anchiornis and Bambiraptor are excluded [which inhabit a unique region of the morphospace overlapping with herbivores]. This study is the first to include early-diverging avialan taxa in GM analysis (Table S1 in Foth et al., 2013). Schaeffer et al. (2019) are the first to incorporate outline-based GM to study theropod diet, and compare it to both landmark-based GM and discrete characters. The authors found all three approaches to be of similar effectiveness, though it is noteworthy that separation of morphospace via discrete characters appears more vulnerable to changes in sample size (compare their Figures 3C and 7C). When diets are more conservatively assigned (Figure S3) resolution between herbivores/omnivores and small carnivores increases. Their graphs show landmark-based GM as less effective at discriminating between large and small carnivores than outline-based GM (their Figures 3 and 7), though this appears to be due to principal components defining different shapes between the two (their Figure 4). When plotted as PC1 vs PC3 a similar trend is seen in landmark-based GM to that shown for outline-based (their Figure S7 and supplemental files; our Figure S3E). Button (2018) and Navalón (2014) are the only researchers to combine GM analysis of extant avian taxa with known diets and early-diverging theropods. The dietary morphospace of most extant avians in these studies overlap and are often completely enveloped in another morphospace (Figure 33 in Button, 2018; Figure 8 in Navalón, 2014). In both studies almost all fossil taxa either plot in regions of heavy overlap or fall completely outside the dietary morphospace. The exception is two unidentified taxa in (Button, 2018), which plot in a region inhabited only by terrestrial herbivores.

All GM studies of early-diverging theropod diet are performed in two dimensions, all are concerned with the upper jaw except for (Schaeffer et al., 2019; Shychoski et al., 2008a) [on the lower
jaw], and all landmarks are placed in in only lateral view except for in (Button, 2018) [placed in lateral and dorsal view]. Landmarks of theropod skulls are variable. The only landmarks shared between the four studies of the upper jaw are the rostroventral extreme of the premaxilla and the contact between the jugal and maxilla (Brusatte et al., 2012; Button, 2018; Foth et al., 2013; Navalón, 2014). Landmarks used in both studies of the lower jaw (Schaeffer et al., 2019; Shychoski & Snively, 2008b) are the anterodorsal and anteroventral corners of the dentary, the dentary-surangular suture, the dentary-angular suture, and the articular glenoid. None of the studies include any landmarks on teeth, allowing toothed organisms to be examined using the same landmarks as those with varying extents of edentulism (Button, 2018; Wang et al., 2020a). The importance of tooth morphology in lepidosaur (Smith, 1993) and mammal (Bergqvist, 2003; Pineda-Munoz, Lazagabaster, Alroy et al., 2017) diet raises questions of error introduced in this practice. A single study (D’Amore, 2009) has studied theropod teeth in isolation using GM, but focused on penetration angle independent of diet.

(iv) Geometric Morphometrics in Extant Bird Feet
Tinius and Russel (2017) were the first to apply GM methodology to bird claws, finding GM to be the only one of six claw angle measures capable of discriminating locomotor groups in the taxa studied [GM, the aforementioned methods of (Feduccia, 1993; Peters et al., 1992) [though note their execution of (Feduccia, 1993) more closely resembles that of (Fowler et al., 2009)], one method applied to insects (Petie & Muller, 2007), one to lizards (Zani, 2000), and one theorised in but never applied to amniotes (Thompson, 1942)]. Hedrick et al. (2019a) were the first group to investigate dietary signal with geometric morphometrics,. They found neither TM nor GM could discriminate between ecological groups. Abourachid et al. (2017) and Tsang et al. (2019) incorporate three-dimensional models and landmarks into their studies, but (Abourachid et al., 2017) uses them primarily to automate the collection of linear measurements for TM. Tsang et al. (2019) are able to discriminate both between predatory and non-predatory taxa and between sizes of prey predators fed on. This level of precision presents a promising outlook for the future. This is only one study, though. While theoretically 3D GM provides the most accurate representation of claw shape, the merits of the technique have not yet been proven consistent in discrimination of avian ecology.

(v) Discussion
GM studies of theropod taxa both extant and extinct have been highly variable in both methodology and results. 3D GM studies of skulls, presumably capturing the largest amount of data about shape, tend to find strong relationships between form and diet at the family- to superfamily level (Kulemeyer et al., 2009; Olsen, 2017) that disappear when comparing larger-scale trends (Bright et al., 2016; Felice et al., 2019a; Navalón et al., 2018a). GM analysis of non-avian theropods is inhibited by the lack of known diets in the group. Certain groups, in particular oviraptorids, tend to cluster distinctly from other theropods (Brusatte et al., 2012; Foth et al., 2013). A study incorporating both oviraptorids and caenagnathids [both beaked but respectively hypothesised to be herbivorous and carnivorous (Ma, Pittman, Lautenschlager et al., 2020)] may clarify if the segregation in these studies stems from edentulism or a dietary shift. Schaeffer et al. (2019) found considerable overlap of dentary morphospace in herbivorous and small carnivorous taxa. But, they coded all oviraptorosaurs as herbivorous [including caenagnathids] and all troodontids as small carnivorous [including those proposed as omnivorous (Holtz Jr. et al., 1998; Torices et al., 2018)] (Table S5 inSchaeffer et al., 2019). This study highlights the necessity of defining dietary morphospaces with organisms whose diet is not controversial. When assumptions of herbivory in therizinosaurians and carnivory in avialans are discarded the
morphospaces become more distinct (Figure S3C–E). The study also shows landmark- and outline-based GM to provide similar information about skull shape, though comparisons between the two should be proceeded by comparing thin spline plates to ensure the same shape changes are being modelled on each axis (Figure S3E). While Button (2018) successfully combines extant and extinct theropods in skull GM analysis, he reports only landmarks placed in dorsal/ventral view are effective at discriminating diet categories. Even then, his model appears to better separate terrestrial feeders from other groups rather than any particular diet categories (his Figure 33). Regardless, dorsal/ventral placement of skull landmarks excludes most published non-avian avialan specimens (Table 2). Navalón (2014) managed to assign non-avian avialans to a diet category using GM, but only in conjunction with mechanical advantage (see Section V.3.b.iii Lever Models of Fossil Theropods). In sum, skull shape tends to be a poor predictor of diet in extant avians. Studies of non-avian theropod morphospaces are limited by a lack of knowledge about the diet of taxa included, and still provide only mixed results. An attempt to combine avian and non-avian theropods show poor resolution in the dietary morphospace and has limited application to fossil avialans. Therefore, GM of the non-avian avialan skull is recommended as at most a compliment to a functional study (e.g. Navalón et al., 2018a) if it is utilised at all.

Tsang et al. (2019) were able to distinguish nonpredatory taxa [both nonraptors and scavenging raptors] from predatory taxa, and partially distinguish between predators hunting large prey and small prey. Unfortunately, there are few fossil bird claws preserved in three dimensions. Large-scale 2D geometric morphometric analysis of bird claws has only been undertaken by Hedrick et al. (2019a) who failed to discriminate between any ecological groups. By their own admission, their ecological categories may have been too broad to allow for delineation (Hedrick et al., 2019a pg. 9), and that the ratio between the lengths of keratin sheaths and bone cores was a major element of the first principal component in their analysis (Hedrick et al., 2019a pg. 6). It is possible that a similar study landmarking solely bone cores and with a more diverse set of ecological groupings (e.g. the ecological groups of Fowler et al., 2009; Glen et al., 2007; Pigot et al., 2020) may produce more useful results. Therefore, we recommend utilising the techniques of Tsang et al. (2019) where possible and an improved 2D GM framework where not possible.

(3) Functional Studies
(a) Introduction
Of the two styles of functional study described herein, finite element analysis [FEA] is typically the go-to for fossil dietary inference. Lever models, which provide measures of mechanical advantage [MA], are more commonly used as broad approximations that can be calculated easily and quickly. However, recent questions of the validity of FEA results in small animals (see Section V.3.c.ii The Strength Criterion) may apply to non-avian avialans [in which the largest taxa other than Hesperornis (Martin et al., 2008) and possibly Gargantuavis (Mayr, Codrea, Solomon et al., 2020) have a skull length less than 9 cm (Field et al., 2018b)]. Both techniques, then, should be taken into consideration.

Relevant to both techniques are concerns of dimensionality and comparison taxa. In both cases, researchers will likely be restricted to 2D analysis due to the reconstruction issues related to incomplete skull preservation (detailed in Section V.1 Skull Reconstruction). But, if possible, validation studies with smaller sample sizes using both 2D and 3D techniques should be performed. A 3D model of the skull of Ichthyornis dispar is already published (Field et al., 2018b), and the phalanges of Mirarce eatoni are three-dimensionally preserved (Atterholt et al., 2018). Both are prime candidates for such studies.
Both FEA and lever models of fossil taxa are only interpretable in comparison with other models. The choice of comparative taxa, then, is of vital importance. To create a phylogenetic bracket, beyond the obvious extant avians, it is recommended that early-diverging non-avialan paravians with preserved meals (O’Connor et al., 2019) are included. Certain lepidosaurian taxa that share similarities in dentition (Smith, 1993) with toothed avialans may be necessary to include as well.

(b) Lever Modelling

(i) Introduction

The jaw of most animals acts as a third class lever: the joint acts as a fulcrum about which a load - the distal bone - is rotated by the effort - a muscle - attached in between (Figure 3). Because jaws act as levers we can use known mathematical principles to predict their behaviour. Examples include models utilising known muscle vectors to calculate bite vectors (Santana, Dumont & Davis, 2010) or to compare torque generation (Kiltie, 1982). However, when studying fossils, muscle size can often only be very roughly approximated. Instead, they tend to rely on the concept of mechanical advantage [MA].

The basic principle of MA was outlined in antiquity by Archimedes of Syracuse (1897 pg. 192–194): the force exerted on a lever will be multiplied by the distance from it to the fulcrum [the inlever] and divided by the distance from the fulcrum to the load [the outlever]. MA, then, is the useful ratio defined as the inlever divided by the outlever. In practical terms, it can be viewed as the ratio of the output force to the input force of a system; or, as the factor by which the input force is multiplied to determine the output force. When mechanical advantage is lowered, the load is moved across a greater distance in the same amount of time and thus at a higher speed. As a trade-off, the output force is reduced.

In animal jaws, then, the inlever is the distance from the site of adductor muscle attachment to the joint between the cranium and mandible. The outlever is the distance from said joint to the point at which the animal is biting down. The bite point is typically operationalised as the rostralmost or cranialmost point of the occlusal surface [either of the rhamphotheca or apices of teeth] (Ma et al., 2020; Navalón et al., 2018a). More rarely MA will be calculated for each tooth in the row (Cox, 2017; Sakamoto, 2010; Therrien, Quinney, Tanaka et al., 2016). Functionally, MA is seen as the trade-off between speed and power in skull architecture (Adams, Rayfield, Cox et al., 2019; Corbin et al., 2015; Dumont, Samadevan, Grosse et al., 2014; Stayton, 2006), though this trade-off is a simplification and can be circumvented (Corbin et al., 2015; McHenry & Summers, 2011). Organisms feeding on immobile sources, such as plant matter, experience selective pressure for high jaw forces [high MA] that can efficiently process food. In contrast, those hunting mobile prey, such as insects or small vertebrates, experience selective pressure for jaws able to open and close quickly [low MA] in order to capture prey (Adams et al., 2019; Corbin et al., 2015; Stayton, 2006). Some trophic specialisations involving elongation of the snout such as nectarivory (Dumont et al., 2014) or probe-feeding (Navalón et al., 2018a) necessarily also reduce MA.

(ii) Lever Models of Extant Birds

Burger (1978) was the first to record MA in extant birds. They found that higher MA in several South African cormorant [Phalacrocorax] species correlates with capturing larger prey while lower MA correlates with hunting small, fast-moving prey. Similar trends have been found in suliform birds (Carlos, Alvarenga & Mazzochi, 2017). Most subsequent studies in the field focused on “force-velocity trade-offs” by measuring bite force and jaw speed directly (Herrel, Podos, Vanhooydonck et al., 2009). Corbin et al. (2015) returned to mechanical advantage in order to examine trends in bite force across extant avians (especially among passerines), finding that bite force and velocity correlate positively and
negatively with MA respectively. They briefly and qualitatively comment on diet by predicting low MA in insectivorous birds and high MA in granivorous birds (Corbin et al., 2015 pg. 813). When analysed quantitatively the data they provide shows only a weak correlation \([R^2 \approx 0.05]\) between MA and diet. The correlation increases to moderate strength \([R^2 \approx 0.40]\) when restricted to passerine taxa (Figure S4). Olsen (2017) was the first to quantitatively examine the relationship between MA and diet, finding increased MA correlates to increased consumption of leaves in Anseriformes. Navalón et al. (2018a) broadened the scope of this technique by applying it across extant avians, but found MA to only weakly explain dietary components. Their data shows MA better predicting the use of the beak during feeding [UBF], particularly when combined with beak curvature (Navalón et al., 2018a). Further research may translate UBF into a set of possible dietary categories [taxa with tearing UBFs are often raptorial, cracking UBFs at least partly granivorous, etc.]. It is of note that all quantitative dietary analyses of avian skull MA have focused on the upper jaw, with those regarding the lower jaw (Burger, 1978; Carlos et al., 2017) being purely qualitative (but see Figure S4).

(iii) Lever Models of Fossil Theropods
Mazzetta et al. (2009) are the first to measure MA in non-avialan theropods, reporting differences in MA between Carnotaurus and Allosaurus without addressing possible implications of these differences. Sakamoto (2010) and Brusatte et al. (2012) calculated MA across the tooth row for a variety of non-ornithothoracine tetanurans and found lower values of MA in smaller taxa. This was tentatively interpreted as smaller taxa being adapted for hunting more agile prey. Sakamoto (2010 pg. 3330), however, proposes the potential for saw-motion biting in dromaeosaurids feeding on large prey. Noticeable in their figures (Figure S6 in Brusatte et al., 2012; Figure 2b in Sakamoto, 2010) but not commented on in the text is the high MA of oviraptorosaurian, studied in-depth by Ma et al. (2019; 2020; 2017). Oviraptorosaurians consist of two distinct groups, Oviraptoridae and Caenagnathidae (Funston, Mendonca, Currie et al., 2018). Only the Oviraptoridae was included in previous studies (Brusatte et al., 2012; Sakamoto, 2010). Ma et al., first in passing (2017) and later with statistical rigor (2019), note that caenagnathids tend to have a lower MA than oviraptorids. This is proposed to reflect herbivory in oviraptorids and carnivory in caenagnathids. Caenagnathid MA indeed falls within ranges of other theropods, while oviraptorid MA is significantly higher (Ma et al., 2020). Ma et al. (2020) introduce MA measurements of Jeholornis as well as anchiornithines and scansoriopterygids. Button and Zanno (2020) include six measures of MA, five additional mechanical indices, and twenty-two traditional morphometric ratios believed to have functional implications in diet. While they effectively delineate herbivory and carnivory as well as distinct herbivorous strategies, the lack of variance explained by the principal components used is problematic [further discussed in the following section]. Navalón (2014) is the only MA study to focus chiefly on non-avialan avialans. Combining MA with GM, it recovers Confuciusornis and Sapeornis as herbivorous and Eoconfuciusornis as omnivorous. While it presents initial promise, additional MA measurements of the fossil taxa should be taken before broader comparisons are made (Guillermo Navalón pers. com. 2020) and a subsequent study discussed above which expands the avian taxa included (Navalón et al., 2018a) resolved diets much less effectively. This highlights the importance of not only including extant taxa but a wide range of extant taxa for ecological comparisons.

(iv) Discussion
While MA has proven an effective predictor of diet in lepidosaurs (Stayton, 2006) and small mammals (Adams et al., 2019; Dumont et al., 2014), Navalón et al. (2018a) report minimal association between diet
and MA across extant birds. This is likely due to the fact that, as they point out, similar diets can often be associated with radically different foraging strategies (Navalón et al., 2018a pg. 423). In particular, only some granivorous birds crack open the hard outer coating of [de-husk] seeds (Prosser & Hart, 2005). Those that do not de-husk instead crush them in the muscular gizzard (Janzen, 1981). Confuciusornithids and enantiornithines are not believed to possess a gizzard (O’Connor et al., 2019) meaning they would not be susceptible to this source of signal interference. With this trend accounted for, mechanical advantages above 0.15 in Navalón et al. (2018a)’s dataset appear to correspond to herbivory while those below 0.15 correspond to carnivory, nectarivory, and frugivory [though the latter is complicated by the inclusion of nuts as fruits rather than with seeds. For instance, Anodorhynchus has an MA near 0.35 (Fig. 6 in Navalón et al., 2018a) and is coded as 70–100% frugivorous depending on species (Wilman et al., 2014). However these ‘fruits’ are palm nuts (Faria, Guedes, Yamashita et al., 2008) which are hard enough that a close relative has been used as a model for construction materials (Staufenberg, Graupner & Müssig, 2015)]. Together, these factors make MA promisingly informative of diet in confuciusornithids and enantiornithines. MA may still provide insight into other non-avian avialans, but low MA cannot definitely rule out herbivory in these other groups.

The broad scope of the study by Button and Zanno (2020), combining MA with TM and some less commonly-used functional indices, gives good evidence for diet being delineated. Taxa such as ornithopods and sauropods that are well-established as herbivorous occupy a region of the morphospace distant from theropods well-established as carnivorous [e.g. tyrannosaurids]. Their methods, at first, appear promising to apply to non-avian avialans. While Button and Zanno cite their resolution as reason to incorporate large complexes of characters in dietary analyses (Button et al., 2020 pg. 163), the small amount of variance explained by their graphs belies this fact. The authors perform statistical operations within the first three principal components of morphospace which only explains 45.7% of the total variance observed; nine principal components are required to pass 70% explanation (their Data S2) as is the common standard (Jolliffe & Cadima, 2016 pg. 4). PCA functions to reduce the number of dimensions worked within an analysis by creating axes that explain large amounts of the variance. But once data encompasses a large number of dimensions it is unlikely that principal components will be able to explain adequate amounts of variance in the three dimensions humans can easily work in (Brown, 2009). It is therefore recommended here that the number of variables investigated are reduced to reduce the dimensionality of the data (but see Guillerme et al., 2020 for alternatives to dimension reduction). Of the 34 measurements taken by Button and Zanno (2020), only nine [C2–8, 22, 23] can be applied to compression fossils and have proven effective at discriminating diet among extant groups other than ungulates. When only these measurements are used the first three principal components explain more than 70% of the variance while maintaining the same general structure of the morphospace (Figure S5). Data can be further reduced as the mechanical advantages for each individual muscle group have similar influence on principal components (Figure S2A in Button et al., 2020) and so represent redundant information. They can be merged into anterior and posterior jaw-closing MA. Ma et al. (2020) additionally define jaw-opening MA and two other functional indices proven discriminative of diet across a wide range extant taxa. We recommend combining these studies to, in total, three forms of MA and five accompanying functional indices (Figure 4). However, unlike these two studies which measure MA based on the lower jaw, we recommend measurements of the upper jaw after the sensitivity analysis of Brusatte et al. (2012). They found the upper jaw, not the lower jaw, has the greatest effect on the overall MA of the jaw system (their Figure S27). Transition from the lower to upper jaw will necessarily require adaptation of landmarks from which measurements are taken. Landmarks at the anterior and posterior of
the occlusal margin, attachment sites of the adductor muscles, and those for *m. depressor mandibulae* will refer to their locations on the upper jaw rather than the lower jaw. The articular glenoid of the surangular will be replaced with the articular condyle of the quadratojugal (Figure 4B–D). All other landmarks remain unchanged from those in Button and Zanno (2020) and Ma et al. (2020).

(c) Finite Element Analysis

(i) Introduction

Finite Element Analysis [FEA] is a technique originally applied to structural engineering. In it, irregular bodies are partitioned into a mesh of simple shapes, the ‘elements’, in order to predict the response of said body to a given load (Bathe, 2014). Applications in palaeontology began with structural predictions of depth adaptations in cephalopods (Daniel, Helmuth, Saunders et al., 1997). Soon after it was used in its most common palaeontological application today: vertebrate jaws (Rayfield, Norman, Horner et al., 2001). Bright (2014) provides an effective review of techniques up until 2014, but several notable advances have taken place since. The rise of formalised digital reconstruction (Lautenschlager, 2016) augmented by quantification of skeletal asymmetry (Hedrick, Schachner, Rivera et al., 2019c) has opened the door for analysis of specimens previously considered hopeless cases. These techniques may allow for a greater number of studies incorporating both the upper and lower jaw. Studies taking both into account (Adams et al., 2019; Attard, Parr, Wilson et al., 2014; Attard et al., 2016; Lautenschlager, Witmer, Altangerel et al., 2013; Moreno, Wroe, Clausen et al., 2008; Wroe, 2008; Wroe, Clausen, McHenry et al., 2007) find differing peak Von Mises [VM] stress [a summary statistic of distortion energy in a body (Ugural & Fenster, 2012 pg. 189–190)] and differing distribution of VM stresses between the upper and lower jaw. These differences could in theory cause overestimation of jaw strength by only using the upper or lower jaw if the unmeasured element is the limiting factor in jaw strength. To our knowledge no study has been undertaken to explore the potential significance of this error, but no study of the full jaw has reported differing dietary signals between the upper and lower jaws.

Formalisation of applying two-dimensional FEA techniques to organisms (Marcé-Nogué, DeMiguel, Fortuny Terri, Terribas et al., 2013; Neenan, Ruta, Clack et al., 2014) allows FE models to be constructed and analysed much faster with a lower prerequisite of computing power. It also allows for analysis of compression fossils. Simplifying three-dimensional bodies into two-dimensional outlines inherently requires assumptions that will induce error. Most commonly in palaeontology these assumptions are of planar strain, where strain in the excluded dimension is assumed to be negligible, or planar stress, where the stress exerted on the excluded dimension is assumed to be negligible. Planar strain is known to introduce error into shear strain predictions in bone (Verner, Lehner, Lamas et al., 2016). Planar stress requires a known thickness of material (Marcé-Nogué et al., 2013) that will likely vary over models. When thickness is known, creating 3D extrusion models from outlines has proven more valid than 2D assumptions (Morales-García, Burgess, Hill et al., 2019). Plane stress assumptions, then, have little reason for use. For compression fossils, in which thickness is unknown, it is recommended to use planar strain assumptions so that error will be similar across studies. The exception to this recommendation is in groups like ornithopod dinosaurs where significant shear strain is theorised to be involved in feeding (Rybczynski, Tirabasso, Bloskie et al., 2008).

Finally, the comparison of FEA outputs has undergone a major paradigm shift. In the past, FE models have been compared qualitatively (Rayfield, 2005), or their peak (Rayfield, Milner, Xuan et al., 2007) and/or average (Rayfield, 2011b) strength criteria compared quantitatively. Both quantitative
methods, however, are sensitive to the ways the FE model is constructed and require considerable mathematical correction (Marcé-Nogué, de Esteban-Trivigno, Escrig Pérez et al., 2016). The amount of data required for correction renders comparison across studies nearly impossible. Marcé-Nogué et al. (2017) introduced the intervals method as a quantitative comparison robust to model construction. Ultimately, it determines the percentage of the model area/volume which experiences a given interval of stress. These percentages can then be compared directly in a histogram or plotted into principal component space. The intervals method has proven effective in subsequent feeding studies (Coatham, Vinther, Rayfield et al., 2020; Miller et al., In Press; Zhou, Winkler, Fortuny et al., 2019), and is recommended here.

(ii) The Strength Criterion

A strength criterion is the measure of a model by which a researcher judges it. Typically, the lower the value of a strength criterion, the stronger the model. The strength criterion for biological FEA has traditionally been the peak VM stress (Figure 5A), after the recommendation of Dumont et al. (2009). Dumont et al. (2009) justify the use of VM stress to predict failure with a textbook on machine component design (Juvinall & Marshek, 2011). In contrast, studies comparing failure criteria in models of human femora found that maximum principal strain, not VM stress, best predicted the location of and load required for fracture (Schileo, Taddei, Cristofolini et al., 2008; Yosibash, Tal & Trabelsi, 2010). This criterion remains in use in the medical community as the most effective method of predicting fracture risk in patients (Dahan, Trabelsi, Safran et al., 2019). This discrepancy likely originates in the use of a failure criteria for machine components, abiotic metallic objects, to describe the behaviour of bones, living composite ceramic (sensu Carter & Norton, 2007) objects. The textbook takes into account two forms of failure in machine parts, plastic distortion and fracture (Juvinall et al., 2011 pg. 250). Unlike metal, when bones deform plastically they are often capable of quick repair and light use during rest (Vogel, 2013 pg. 342). Therefore, fracture is the more critical component of bone failure. The work of fracture of commercial steel (Tattersall & Tappin, 1966), as one might find in machine components, is nearly 20 times that of bovine femora and still an order of magnitude beyond that of even impact-resistant antler (Currey, 1999). This means that once cracks form in bone they propagate much more readily than in steel.

Here it is proposed that principal strain of finite element models best predicts failure in bone because surficial cracks in bone, indicated by extreme principal strain at the surface, propagate readily to the point of failure under normal loading conditions. This allows principal strain-based FEA (Figure 5B) to predict areas of weakness more precisely (Schileo et al., 2008) and with greater validity (Yosibash et al., 2010) in bones. For these reasons we suggest studies going forward to evaluate the strength of models based on differences in maximum principal strain, not VM stress. The FEA software Abaqus (Dassault Systèmes, France), Ansys (Ansys, Inc., USA), COSMOSWorks (Dassault Systèmes, France), Optistruct (Altair Engineering, Inc., USA), Strand7 (Strand7 Pty. Ltd., Australia), and VOX-FE2 (Banglawala, Bethunel, Fagan et al., 2015) are already capable of this.

It is worth noting that the maximum principal strain criterion may decrease in validity with decreasing body mass, due to the decreasing importance of fracture in smaller organisms. Work of fracture is a relationship between work [energy] and surface area. The effective work done by an animal and the surface area created by breaks scale differently with size. In an isometric scenario one would expect work output to increase linearly with mass [m^3]. It is the product of distance [i.e. length], which scales with m^{33}, and force, which is known to scale with muscle cross-sectional area at m^{66} (Froese, 2006). The surface area of a crack in bone, like any other surface (Froese, 2006), should scale with m^{66}.

As work scales at a higher rate than the surface area it creates in cracks, one would expect cracks in bones to more easily propagate at higher body masses. Conversely at low body masses cracks propagate less readily relative to loading. Thus, in smaller organisms, the formation of cracks via principal strain of the surface may impose only weak selective pressure. McIntosh and Cox (2016 pg. 8) point out a similar trend in VM stress. Small animals working far from the yield strength of bone tend to experience selection towards mechanical efficiency of biting over minimising VM stress in the skull. Mechanical advantage analysis of lever models (see Section V.3.b Lever Modelling) may be more appropriate for dietary inferences in small animals where these pressures hold sway. What size range[s] this shift in selective pressure affects, potential allometric complications [e.g. phylogenetic (Wroe, McHenry & Thomason, 2005) or dietary (van der Meij & Bout, 2004) influences on scaling], and what other measures of feeding efficiency may be applicable [e.g. total strain energy as proposed by Dumont et al. (2009)] all warrant further study.

(iii) Finite Element Analysis in Fossil Theropod Skulls
Contrary to the other methods described herein, FEA of the skull was first codified in non-avialan theropods and only later applied to extant birds. Rayfield et al. (2001) performed FEA on a 3D model of the upper jaw of Allosaurus fragilis. Seeing the skull could withstand stresses greater than predicted bite forces, they proposed the animal fed by slashing its jaws at high velocity into prey. Rayfield (2004) was the first to perform 2D FEA and to utilise the now ubiquitous ‘heat’ maps to chart stress on a single skull. Her follow-up study (Rayfield, 2005) was the first to use FEA to compare stress distributions across taxa, as it is most commonly used today. Rayfield et al. (2007) are the first to combine FEA of extinct and extant taxa, comparing spinosaurid theropods and extant crocodilians. They are also the first to make dietary predictions based on FEA [piscivory in Baryonyx walkeri]. Shychoski and Snively (2008a) are the first to publish preliminary FEA results on lower jaws, finding the mandibles of adult tyrannosaurids to be more resistant to stress than that of juvenile tyrannosaurids or non-tyrannosaurids. These results are not currently in preparation for full publication (Eric Snively pers. com. 2020). Torices et al. (2018) performed FEA on individual theropod teeth. They found Troodon teeth experienced higher stresses than other taxa when loaded nonoptimally [i.e. at an angle other than the scratches observed in dental microwear]. This is interpreted as its teeth being poorly-adapted for struggling prey, and thus Troodon more likely fed on plant matter and/or small animals (Torices et al., 2018). Lautenschlager et al. (2013) are the first to study both the upper and lower jaws of a theropod, finding the lower jaw to display higher VM stress in all loading conditions than the upper jaw. They are also first to incorporate reconstructed rhamphothecae into fossil FEA studies and to apply postcranial forces to the skull, proposing deconstruction powered by the cervical muscles compensated for low bite forces. This was expanded on in the follow-up study (Lautenschlager, 2017) in which loadings were varied in orientation to compare skulls’ adaptation for specific feeding styles. This technique forgoes direct modelling of cervical action and instead simply investigates the resultant forces the jaw would experience in contact with food. Miller et al. (In Press) are the first to incorporate a true fossilised rhamphotheca into an FE model. They are also the first to apply the technique to non-avialan avialans, finding Confuciusornis sanctus to be most similar to a modern sally-striking predator or general herbivore. Cost et al. (2019) present the most complicated dinosaur FE models to date, with beams given ligament properties to connect bones. These were used to compare the skull of T. rex to that of an extant avian and lepidosaur. This study was concerned with presence of absence of cranial kinesis, but the increased accuracy of reconstruction utilised by (Cost et al., 2019) in a manner like (Lautenschlager, 2017; Rayfield et al., 2007) could show promise for illuminating dietary preferences and feeding strategies.
Two FEA studies on the skulls of fossil avians have also been undertaken. Degrange et al. (2010) compared the stress distribution in the upper jaw of Andalgalornis steulleti to those of Haliaeetus albicilla and Cariama cristata. They found Andalgalornis to experience the lowest stresses in models of pull-back feeding, analogous to extant accipiters. Attard et al. (2016) compared five genera of moa [Dinornithiformes] to two extant ratites in a variety of loading conditions to see which they were most well-suited to. They found that loadings with the lowest stress reflected observed feeding styles of the extant ratites, and that those of the moa match consumulite evidence previously reported (Attard et al., 2016 their Figures S6 and S7).

(iv) Finite Element Analysis in Extant Bird Skulls
The first use of FEA to examine extant birds is from Oda et al. (2006), studying the shock absorption of the woodpecker skull. Numerous FEAs have been performed on woodpeckers, reviewed by (Jung, 2019), but none address the topic of diet. Herrel et al. (2010b) and Soons et al. (2010) performed similar FE analyses on the upper jaws of Darwin’s finches. Both found that finches that ate harder foods experienced lower peak stresses, and even that taxa known to feed using the tip or base of the beak experienced lower peak stresses when loaded there. Subsequent studies of Darwin’s finches (Soons et al., 2015) support these initial results and emphasise the role of keratin in stress dissipation and the necessity of including it in FE models. All other applications of FEA to extant birds have been validation studies performed on a Darwin’s Finch (Soons, Lava, Debruyne et al., 2012b), toucan (Seki, Mackey & Meyers, 2012), and ostrich (Cuff, Bright & Rayfield, 2015; Rayfield, 2011a). The Darwin’s finch study is qualitatively evaluated as having a “fairly good correspondence” between the model and physical specimen (Soons et al., 2012b pg. 190). The same is said of the toucan despite the ex vivo stress/strain curves provided appearing disjointed from those predicted by the model (Figure 7 in Seki et al., 2012). Those of the ostrich (Cuff et al., 2015; Rayfield, 2011a) are more thorough in their criticism. In short, they determine that strain patterns [e.g. areas of lower and higher strain and the range of strains experienced] are reflected in FEA but absolute strain and strain angles are not, particularly in the cranial region of the skull. The conclusion these studies support, whether directly or by interpretation of their data in hindsight, is that FEA is effective at showing stress/strain distributions in bird skulls and reflecting dietary habits. However, modelling limitations prevent them from providing any absolute information about in vivo strain states. Similar conclusions when testing extant crocodilians (Porro, Holliday, Anapol et al., 2011; Reed, Porro, Iriarte-Díaz et al., 2011; Sellers, Middleton, Davis et al., 2017) and mammals (Bright & Rayfield, 2011; Godinho, Toro-Ibacache, Fitton et al., 2017; Kupczik, Dobson, Fagan et al., 2007) imply this is true across amniotes.

(v) Finite Element Analysis in Extant Bird Claws
Birn-Jeffery and Rayfield (2009) are the first to apply FEA to bird claws, and report preliminary success with discriminating between both locomotor and predator/nonpredator categories with 2D FEA. A full study has not yet been published. Tsang et al. (2019) were the first to analyse 3D FE models of bird claws. FEA revealed differences in strength that, while not easily pinpointed as variables in geometric morphometric analysis, were diagnostic of the behaviours associated with raptorial predation (Csermely et al., 1998b; Goslow, 1972; Ward et al., 2002). The broad scope and robust results of this study are promising for detection of raptorial behaviour in fossil species. Unfortunately, its application may be limited by the large number of fossil birds known only from compression fossils.
1. Robotic Modelling
While not a form of FEA, the modelling techniques of Backus et al. (2015) more strongly resemble FEA than any other techniques commonly applied in palaeontology. Their technique is herein dubbed ‘robotic modelling’, due to its original application in construction of robotic hands (Backus et al., 2014; Dollar et al., 2011). Their approach models non-ungual phalanges as beams and ungual phalanges as semicircles, with actuators acting as the digital flexor tendons. They evaluate models based on the tensional force exerted in order to maintain a grip with given parameters. Backus et al. (2015) are primarily concerned with the differences in actuation between passerine and non-passerine feet [i.e. passerine birds have digital flexors inserted distally and proximally while non-passerines have only distal digital flexors]. They find both on average to be equally well-equipped for grasping but passerine actuation to be uniquely well-adapted for minimising forces required to perch. While used to compare perching and grasping behaviours in this study, one can easily see the expansion of this technique into more granular studies. Future avenues include comparing adaptations for raptorial behaviour in which prey is completely encircled in the toes [e.g. owls] and held in an open grip [e.g. accipiters] (Fowler et al., 2009), with these results compared to those of fossil taxa.

(vi) Finite Element Analysis in Fossil Theropod Claws

Birn-Jeffery and Rayfield (2009) incorporated maniraptorans - including the early-diverging avialan Archaeopteryx - into their 2D FEA analysis of bird claws. They only report results for Archaeopteryx, with stress regimes aligning with those of arboreal perching taxa. Manning et al. (2009) were the first full study to apply 3D FEA to a theropod claw. They tested an earlier hypothesis based on a practical model (Manning, Payne, Pennicott et al., 2006) that dromaeosaurids utilised their recurved second digit unguals for climbing rather than tearing through flesh. Creating fixed points in a model of a Velociraptor claw to replicate use during climbing, the team found the claw to experience levels of stress well below the yield strength of bone under a loading of the estimated body mass of Velociraptor. Thus, they proposed the animal could have supported its body weight on the claw during climbing (Manning et al., 2009). Unfortunately, validation studies of FEA in animals find that only patterns of stress/strain distribution, not absolute values, are predicted by FEA (Bright et al., 2011; Cuff et al., 2015; Rayfield, 2011a; Stansfield, Parker & O'Higgins, 2018). As such, this interpretation is called into doubt. Furthermore, it is unclear how their climbing load simulation differs from a theoretical simulation of slashing [both would be loaded at a point slightly proximal to the claw apex and in a direction subparallel to the chord of the claw arc]. This work, then, is regarded as inconclusive in its palaeobiological reconstruction. The work of Lautenschlager (2014) on therizinosaurian unguals provides a superior framework for modelling claw use. Manual claws were distinctly loaded as if digging, hooking and pulling, or piercing substrate. The lowest VM stresses were seen in piercing simulations in all but Alxasaurus elesitaiensis. While not linked directly to diet in the study, behavioural optimisation of claws may provide information regarding niche and food available [e.g. fossorial adaptations likely indicate consumption of arthropods (Smith, 1982) or tubers (Andersen, 1987)].

(vii) Discussion
Reconstructions of non-avian avialan skulls are recommended to remain in 2D for the time being (see Section V.1 Skull Reconstruction), and so FE models will have to remain 2D as well. However, indications of significant lateroflexion in the neck (see Section II.4.a Landmark-Based Cervical Reconstructions in Fossil Theropods) would suggest that 2D models will not fully capture typical loading. Analysis of these models should, for reasons described above, incorporate planar strain assumptions and
examine principal strain as a failure criterion using the intervals method (Marcé-Nogué et al., 2017). However, strength may be less strongly selected for than efficiency in smaller animals (Dumont et al., 2014; McIntosh et al., 2016). If true, total strain energy may better reflect the efficiency of jaws (Dumont et al., 2009) and thus selection for a given diet. With that said, strength-based FEA of Darwin’s finches, smaller than many non-avian avialans, was able to provide clear dietary signal (Herrel et al., 2010b; Soons et al., 2010). Size concerns, then, may be irrelevant in avialans. It is therefore suggested here that both principal strain and total strain energy be compared to determine which best explains diet among small extant avian taxa. The superior metric can then be applied to fossil avialans. Finally, images of extant avian skulls should ideally be taken as radiographs and modelled with their original keratin thickness so as to model the effects of the rhamphotheca (Soons, Herrel, Genbrugge et al., 2012a). However the precise thickness of the rhamphotheca seems to have little effect on stress/strain distributions or magnitudes in bird mandibles (Figure 7). So, in lieu of radiographs, surface photographs may be used for model construction as well (Miller et al., In Press). When possible, fossilised rhamphotheca (see Section II.4 Soft Tissue) should be modelled directly in FE models of extinct taxa (Miller et al., In Press). Otherwise, hypothetical rhamphotheca can be crafted for extinct taxa as in *Erlikosaurus* (Lautenschlager, Witmer, Altangerel et al., 2014b) with refinement by subsequent studies of beak shape in relation to the underlying bone (Button, 2018; Miller et al., In Press; Urano, Tanoue, Matsumoto et al., 2018). Note the sensitivity analyses of Lautenschlager (2017) and Soons et al. (2012a) find keratin inclusion to affect stress and strain magnitudes but not patterns. Thus, comparisons within a skull, e.g. comparing various theoretical loadings, should not need to incorporate rhamphotheca. They may also then be unnecessary when comparing beaked avialans to one another, and only needed when toothed avialans are examined.

Cranial kinesis plays a major role in feeding in Neognathae (Bhullar et al., 2016; Bout & Zweers, 2001; Zusi, 1984; absent in palaeognaths Gussekloo & Bout, 2005) and thus excluding it will undoubtedly alter the principal strain or total strain energy modelled from the *in vivo* conditions. Conversely, levels of kinesis similar to those in Neognathae are believed to have never been reached in non-neognathous avialans (Bhullar et al., 2016; Hu et al., 2019) with the possible exception of *Gobipteryx* and *Ichthyornis* (Hu et al., 2019 pg. 19576). Incorporating connective structures to allow kinesis to present itself as in (Cost et al., 2019) will in theory increase the validity of models, though attempts to incorporate them into the skull of an enantiornithine have proven troublesome. Jointing of the skull imposes unreasonable dislocation of the jugal, quadrate, and quadratojugal (Figure 6A–B). This may be an inherent flaw either with 2D simplification of the skull or the reconstruction itself, though sensitivity analyses showed a considerable influence of the cross-section and Young’s modulus used for connective tissue in the model (Figure 6C). This issue can only be addressed with further research of suture and ligament physical properties. Avoiding kinesis by loading models of the upper jaw posterior to the bending zone of extant birds would mean loading at the maxilla/jugal contact in many taxa (Figure 1 and Table 1 in Zusi, 1984), well cranial to the tooth row in most toothed avialans. The exclusion of kinesis in Darwin’s finches seemed to have no major repercussions on FEA reflecting diet (Herrel et al., 2010b; Soons et al., 2010) but this likely stems from similar levels of cranial kinesis in all studied groups. To avoid issues in modelling kinesis, comparison between the akinetic lower jaws of taxa is recommended here as a simple solution. While studies including both jaws in FEA (Adams et al., 2019; Attard et al., 2014; Attard et al., 2016; Lautenschlager et al., 2013; Moreno et al., 2008; Wroe, 2008; Wroe et al., 2007) have recovered differing peak VM stresses between the jaws and different stress
distributions [thus making models of both jaws ideal] the information has not conflicted in terms of dietary interpretation.

Application of FEA for determining raptorial use of the pes is promising after the results of Tsang et al. (2019). However, because their predatory groupings differed markedly on dorsal and lateral curvatures (their Figure S2) [not accounted for in 2D FEA and not known in compression fossils], larger 2D FEA studies should be preceded by a comparative analysis of 2D and 3D FE models (see introduction of Section V.3.a Introduction). The reported success of Birm-Jeffery and Rayfield (2009) shows promise for their correspondence, but a lack of published data renders a full proof-of-concept necessary. Refinement of raptorial use type to more precise grips can be achieved by modifying the work of Backus et al. (2015). A pilot study is necessary, though, to determine in extant raptors if their method works using the curvature of ungual bones rather than claw sheathes. If not, reconstructions of keratin sheathes are necessary [from avialans preserving impressions of the sheathe, e.g. AGB-6997 (Wang, Huang, Kundrát et al., 2020b), DNHM D2945/6 (Chiappe, Zhao, O'Connor et al., 2014), GMV-2130 (Chiappe et al., 1999), GSGM-05-CM-004 (O'Connor, Li, Lamanna et al., 2016a), IVPP V18687 (Hu, O'Connor & Zhou, 2015)]. While Lautenschlager (2014) provides an outline for modelling the effectiveness of varying claw uses, the use of claws directly in acquiring food is rare among extant avians. Piscivorous raptors are known to pierce fish with their talons in order to maintain grip (Fowler et al., 2009 pg. 7), so claw FEA may prove useful to test the hypothesis of similar habits in bohaiornithids (Wang et al., 2014c). Digging incorporating the claws plays a major role in foraging in Megapodidae (Friedmann, 1931) and a more minor role in shorebirds (Jacobs, 1982). Beyond these cases, claws tend to play a minor role in prey manipulation compared to the whole toes (Clark, 1973; Csermely et al., 1998b; Sustaita et al., 2013), at most increasing traction (Backus et al., 2015; Fowler et al., 2009; Ramos & Walker, 1998) or elongating the toes to increase grasp reach (Csermely, Bertè & Camoni, 1998a; Fowler et al., 2009). While general strength trends appear useful in parsing raptorial behaviour, the lack of functional importance of claws outside specialised groups renders more specific loading comparisons a lower priority in lieu of established hypotheses to test.

(4) Complications Applicable across Physical Approaches
While eating is a major part of an organism’s survival, a myriad of unrelated factors play into the form and function of body parts. These factors are confounding variables in any palaeodietary reconstruction. Some factors can be corrected for, theoretically negating their influence, but all must be kept in mind when interpreting data from methods described herein. Table 4 provides a convenient reference for which approaches a given complication must be accounted for.

(a) Phylogenetic Signal
It is easy to see how phylogeny can affect shape. Genetics is one of the principal factors controlling shape, and thus in the absence of selection one would assume that the more similar the genetics of two organisms the more similar they will appear (Blomberg, Garland & Ives, 2003). At large enough phylogenetic scales, developmental pathways may even completely prohibit an optimised form, or predispose two organisms to find different functionally optimised forms (Gould, 2002). Thus, morphometric comparisons at any timescale over which evolution is a factor should undergo phylogenetic corrections (de Bello, Berg, Dias et al., 2015). Uyeda et al. (2018) review how to effectively craft hypotheses so that phylogenetic corrections can be made. Adams and Collyer (2018) review the
mathematical methods and assumptions required for these corrections. Guillerme et al. (2020) provide general guidance for the timing of corrections and potential pitfalls of certain evolutionary models.

Over broad enough phylogenetic scales, homologous structures may eventually become functionally incomparable. This is particularly important in the theropod pes due to the evolution of flight. Among coelurosaurian theropods, grasping ability of the manus generally decreases the later a taxon diverges (Hutchinson & Allen, 2008). The proximally-fused metacarpals of Sapeornis and later-diverging avialans (Fig. 4 in Pittman et al., 2020a) likely placed similar constraints of manipulation on them as in living avians, meaning the two groups would have had relied similarly on the pes for grasping. The more refined manual manipulation of some early-diverging paravians (Senter, 2006) means they faced weaker selective pressures for using the pes as a device for manipulation. In this example a comparison of pedal proportions of function among Jeholornithiformes and pygostylians should give meaningful data, but one at the paravian level may not.

(b) Allometric Signal
Different measures of organisms [such as length, surface area, and volume] have different dimensionality. This means they grow at different rates relative to one another. Most organisms would cease to function if they grew isometrically [i.e. with every part scaling the same way as every other part] both through ontogeny and evolution. Thus, nearly all organisms display some form of allometry [i.e. certain components scaling at different rates than others] (Froese, 2006). In other words, body size has an inherent effect on body shape. Klingenberg (2016) reviews methods to quantify and correct for this effect in morphometric studies. Functional effects of allometry have almost exclusively been derived empirically and are known to vary phylogenetically (van der Meij et al., 2004; Wroe et al., 2005). Thus, allometry presents a more confounding influence in functional studies. In addition to influencing the strength or efficiency of structures inherently, size may also determine if strength or efficiency is more strongly selected for (see Section V.3.c.ii The Strength Criterion).

(c) Many-To-One Mapping
Coined by Wainwright et al. (2005), many-to-one mapping describes the ability of systems with different forms to perform the same mechanical function. This means that elements which morphometrics classifies as very different may be operating essentially the same in practice. This aligns with the observation above that GM tends to provide mixed results in feeding studies. GM creates a level of abstraction between the data and how the animal interacts with the world. Identifying a case of many-to-one mapping [via comparison of morphometric and functional studies] can be useful. It can formulate hypotheses of evolutionary constraints on form (Button et al., 2020; Ungar & Hlusko, 2016) or illuminate interference of common behavioural signals [e.g. herbivorous and carnivorous taxa engaging in similar bouts of intrasexual competition for mates, or diving predators and foragers facing similar pressures from long-term submersion].

(d) Liem’s Paradox
Occasionally referred to as one-to-many mapping, Liem’s paradox was originally coined to describe the peculiarity that a set of cichlid fishes with highly specialised jaws seemed to have no particular dietary specialty (Liem, 1980). The prevailing explanation has been that some specialist morphologies minimally inhibit acquiring ‘easy’ resources while aiding in obtaining ‘difficult’ resources [commonly referred to as ‘fallback foods’] when others are scarce (Robinson & Wilson, 1998). Recent ecological evidence supports this theory (Golcher-Benavides & Wagner, 2019; Lambert, Chapman, Wrangham et al., 2004; Wiseman,
Greene, Koo et al., 2019). Essentially, this means that organisms that appear morphologically specialised for a certain diet cannot be precluded from being generalists [or specialists feeding on a different easy-to-acquire food source] overall. This is also the reason dental microwear studies emphasise large sample sizes for analysis, to capture signs of rare but important resource use (Ungar, 2018).

(e) Integration and Modularity
Put simply, integration is when otherwise distinct parts of an organism function and/or evolve as one unit. Modularity is when an organism displays distinct regions [modules] within which integration is high and between which integration is low (Klingenberg, 2014). Farina et al. (2019) provide more rigorous definitions and a review of the concepts. Both extreme modularity and extreme integration can encourage diversification (Hedrick, Mutumi, Munteanu et al., 2019b). In highly modular systems parts are free to evolve independently from one another. This should, in theory, increase adaptation to environmental changes and thus speciation. Highly integrated systems, on the other hand, restrict parts to evolving as a single unit. While limiting form to a single spectrum, it can allow for rapid diversification and speciation along that spectrum (Hedrick et al., 2019b). However, each does not encourage diversification on the same scale. Modularity is associated with diversification overall in high-level clades [class- to subclass-level] (Felice et al., 2018; Felice, Watanabe, Cuff et al., 2019b; Hu, Ghigliotti, Vacchi et al., 2016; Marroig, Shirai, Porto et al., 2009) and at smaller scales in several evolutionary circumstances (Collar, Wainwright, Alfaro et al., 2014; Drake & Klingenberg, 2008; Tokita, Kiyoshi & Armstrong, 2007; Young, Wagner & Hallgrímsson, 2010). Integration, in contrast, is known to lead to diversification when lineages invade habitats with a preponderance of unoccupied niches (Hedrick et al., 2019b; Hu et al., 2016; Navalón et al., 2020).

Integration and modularity are of most concern in a morphometric context. Integration limits disparity to a single continuum (Hedrick et al., 2019b; Navalón et al., 2020). So, highly integrated structures are likely to cluster or spread on a single axis of shape. Modularity also can help prioritise functional studies. More modular structures, with more ability to create unique geometries, are more likely to exhibit many-to-one mapping. Thus, they should be checked for functional convergence with higher priority. Adams and Felice (2014) and Adams (2016) provide techniques for quantifying integration and modularity. Because of the complicated relationship they have with evolutionary trajectories no universal correction for their effect has yet been proposed.

(f) Behavioural Signals
(i) Grooming
The influence of grooming behaviour on morphology has been studied more thoroughly in birds than any other group (Bush & Clayton, 2018). Some anatomical work has been done on specialised dental (Asher, 1998; Gingerich & Rose, 1979; Rose, Walker & Jacobs, 1981) and manual (Bishop, 1962; Dunkel, 2019; Koenigswald, Habersetzer & Gingerich, 2011; Maiolino, Boyer & Rosenberger, 2011) grooming in primates in addition. In birds, destruction of ectoparasites is known to be aided by a short bill (Clayton & Cotgreave, 1994) with a rostral hook (Bush, Villa, Boves et al., 2012; Clayton, Moyer, Bush et al., 2005; Clayton & Walther, 2001). Intraspacific differences in bill shape are known to reflect ectoparasite load in communities (Bardwell, Benkman & Gould, 2001; Moyer, Peterson & Clayton, 2002). Some birds also have a pectinate [“comb”] claw with distinct serrations on the lateral surface thought to play a role in grooming. Studies of its effect, however, have yielded mixed results (Bush et al., 2012; Clayton, Koop, Harbison et al., 2010). It is worth noting that, of these variables, only bill length is always reflected in the
animal’s skeletal morphology. The same is not true of mammalian toothcombs. Toothcombs convergently evolved in lemurs, flying lemurs, tree shrews, and the arctocyonid *Thryptacodon* (Rose et al., 1981). In toothcombs the mandibular incisors and, variably, canines are deflected rostrally. During grooming they are brushed perpendicular to hair shafts to aid in ectoparasite removal (Gingerich et al., 1979; Rose et al., 1981; Schwartz, 1978). This role is augmented or replaced by a specialised, more robust and recurved grooming claw [or, ‘toilet claw’] in non-simian primates and several polyphyletic simians (Koenigswald et al., 2011; Maiolino et al., 2011). Manual grooming has been reported thoroughly in simian primates, but almost exclusively in social (Schino, 2006; Xia, Kyes, Wang et al., 2019) or spatial (Dunbar, 1991; Freeland, 1981) contexts, rather than its effect on morphology. Opposable thumbs have been proposed as the product of selective pressures related to manual grooming (Bishop, 1962), though this theory remains only one of many (Dunkel, 2019).

From these trends in birds and mammals, oral grooming may be expected to select for perpendicularly-oriented structures in the rostrum [beak hook, tooth comb] while manual grooming can be accomplished with more diverse structures [pectinate claw, grooming claw, possibly opposable thumbs]. Each of these structures accompanies grooming behaviour with stresses distinct from that of feeding. In turn, structures experience selective pressure to resist those stresses. To our knowledge only circumstantial notes have been made on how significant these stresses may be. There are notes of beak overhangs breaking (Bush et al., 2012) and enamel microscopically wearing (Rose et al., 1981) from grooming activities. Because wear patterns on tooth combs differ from those of the surrounding teeth, unique wear in teeth has been proposed as indicative of a grooming function in the dromaeosaurid *Saurornitholestes* (Currie et al., 2019).

(ii) Thermoregulation
The size of structures is commonly assumed to relate to their strength or speed, but thermoregulation is known to influence the scale of elements. Joel Asaph Allen famously noted that animals living in warmer climates tend to have larger extremities and *vice versa* (Allen, 1877 pg. 112–119), a trend now referred to as Allen’s rule. The rule is supported by several quantitative studies (Alho, Herczeg, Laugen et al., 2011; Greenberg, Cadenza, Danner et al., 2012; Nudds & Oswald, 2007; Symonds & Tattersall, 2010; Tilkens, Wall-Scheffler, Weaver et al., 2007; contra Stevenson, 1986). More dramatic structures such as goat horns (Taylor, 1966), elephant ears (Phillips & Heath, 1992), and toucan bills (Tattersall, Andrade & Abe, 2009) have all been proposed as tools for active thermoregulation. The size of body parts should then be interpreted with the climate inhabited by the organism in mind, and hypertrophy of body parts [particularly when not accompanied by significant increases in structural strength] may be a sign of active thermoregulation rather than dietary pressure.

(iii) Sensation
Sensory systems are paramount in both feeding (Montuelle et al., 2019) and reproduction (Ptacek, 2000) in living animals. Thus, selective pressure on sensation can be expected to dramatically shape organisms. For instance, enhanced mechanoreception is often associated with elongation and extensive pitting of the skull in amniotes in general (Morhardt, 2009) and birds in particular (Cunningham et al., 2013). In the same vein, an increase of the size of amniote eyes often creates a corresponding reduction in bite force (Fortuny, Marcé-Noguè, De Esteban-Trivigno et al., 2011; Henderson, 2002). Sensory specialisations that parallel those in extant taxa can be understood and tested for by understanding the biology of those taxa. The possibility of novel forms of sensory augmentation present only in extinct taxa, however, renders sensation a true confounding variable.
Sexual Display

Animals have a variety of tools for communication and competition that improve survival and reproductive success. All of these may alter the body in unpredictable ways. Protuberances may serve as intersexual signals (Mayr, 2018) or as bases for intrasexual combat (Clutton-Brock, 1982; Rico-Guevara & Araya-Salas, 2014). Changes in skull morphology can lead to changes in vocalisation (Giraudeau, Nolan, Black et al., 2014; Herrel et al., 2009; Huber & Podos, 2006) or altered ability to detect chemical messages (Rouquier & Giorgi, 2007).

Changes in skull morphology can lead to changes in vocalisation (Giraudeau, Nolan, Black et al., 2014; Herrel et al., 2009; Huber & Podos, 2006) or altered ability to detect chemical messages (Rouquier & Giorgi, 2007). Sexual dimorphism itself can lead to functional differences on small (Verwaijen, Van Damme & Herrel, 2002) or large (Pietsch, 2005) scales. Sexual dimorphism may be able to be detected in the fossil record given an adequate number of samples (Plavcan, 1994), but other forms of sexual display can drive shape and affect function with little evidence left in the fossil record. Thus, sexual display also remains a true confounding variable.

5) Discussion

The broad application of physical approaches across fossil taxa makes them ideal for comparative frameworks, but not all frameworks are appropriate approaches to dietary reconstruction. Neither TM nor GM of theropod skulls appears particularly effective at isolating features of diet across phylogenetically diverse groups. In addition, the lack of consistent landmarks in studies highlights how few measurements there are of the theropod skull that would have an intuitive effect on dietary choice. Both forms of morphometrics are more effective at revealing diet when applied to the pes. This is likely because the pes preforms a smaller variety of roles in the organism (Montuelle et al., 2019) and those other roles are often in service of obtaining food (Fowler et al., 2009; Sustaita et al., 2013). Results have been obtained with both TM and GM analysis of extant avian feet, and so neither is recommended over the other by this review. TM may also prove useful to find dietary signal in teeth due to the large disparity seen across theropods as a whole (Hendrickx et al., 2014; Hendrickx et al., 2020) and Avialae in particular (Huang et al., 2016; O'Connor, 2019; O'Connor et al., 2011b). A lack of prior study in this field leaves this recommendation only tentative. Lizards are the closest related extant taxon with similarly disparate teeth, and quantitative analyses of lizard teeth have already identified characters indicative of durophagy (Estes et al., 1984) and herbivory (Melstrom, 2017) that could be applied to toothed avialans.

In general, this review recommends functional studies over morphometrics due to the fewer complications that influence them (see Table 4). 2D simplifications of functional models appear necessary for the time being, but if possible, comparisons of 2D and 3D models should be undertaken to confirm the former’s validity. Whether more valid dietary signal can be gleaned from lever models of the upper jaw combined with functional indices from (Button et al., 2020; Ma et al., 2020) principal strain-based FEA of the lower jaw is still unclear. The size at which selection for strength transitions to selection for mechanical efficiency (Adams et al., 2019), if such a transition truly exists, is not yet established. Ideally, a study including both approaches could directly compare the two. Separate studies, each focusing on one functional approach, should have results that can be compared nearly as effectively. Incorporating connective tissue into the skull to create kinetic structures is not recommended pending more precise understandings of the physical properties of said connective tissues. Discovery of fossilised rhamphothecae allows for them to be included in models, as is suggested here.

VI. The Framework and Current Knowledge of Non-avian Avialan Diet

In sum, our recommended approaches in Sections II–V combine into a framework for narrowing fossil avialan diet. Figure 8 provides a summary of the techniques described herein, the body parts which need
to be preserved for their use, expected results from their application, and interpretation of said results. A general workflow for applying the framework is provided in Figure 9, from determining specimens of interest to synthesizing test results into a dietary assignment. We provide an example of applying our framework to the extant golden eagle (Aquila chrysaetos), a raptorial vertebrate predator. Figure 10 provides a graphical summary of this example. While Aquila chrysaetos does not have teeth, if it did they should have high surface anisotropy from the repeated tearing of tough meat. Its pull-back method of prey disassembly should select for enlarged attachment sites for dorsiflexive muscles, and finite element models of its lower jaw should have muscular loadings deflected cranially. Its bones should be depleted in 44Ca and its proteins enriched in 15N due to its high trophic level. Its body mass should be above 300g due to vertebrate predation; this is true even in unusually small subspecies (Watson, 2010 pg. 33). Its talons should be highly recurved with a hypertrophied DI due to their raptorial use; this has been reported (Fowler et al., 2009). Its jaws should have a low MA, high tooth recurvature if it had teeth, and high values of the other recommended indices as it hunts agile prey; its jaw MA is low among avians (Navalón et al., 2018a). Its lower jaw should experience relatively high principal strains when loaded in FEA due to the compliance of animal flesh. Finally, its talons should experience relatively low principal strains when loaded in FEA due to their raptorial use; this has been supported (Tsang et al., 2019). Given the current studies which fit into our framework, we would say there are four lines of evidence which would lead to classifying the golden eagle as a raptorial vertebrate predator were it extinct.

While limited by a dearth of quantitative studies, our framework can be used to establish what we currently know of non-avian avialan diet. The scansoriopterygids [possibly early-diverging avialans or non-avian pennarptorans (Pittman et al., 2020a)], Epidexipteryx and Yi appear adapted for carnivory due to low values of mechanical advantage and most of the functional indices recommended herein (Ma et al., 2020). Body mass estimates above 300g in Yi (Dececchi, Roy, Pittman et al., Accepted) specifically point to it being a vertivore. To our knowledge, no quantitative study of anchiornithine [possibly early-diverging avialans or troodontids (Pittman et al., 2020a)] diet has been performed. Preserved fish and lizard meals are known in Anchiornis (Zheng, Wang, Sullivan et al., 2018b), but it is unclear if this represents a typical part of its diet. Evidence of diet in the earliest-diverging unequivocal avialan Archaeopteryx appears contradictory. Studies show dental microwear reminiscent of invertevores (Bestwick et al., 2018), a body mass in the range of vertivores (Serrano et al., 2015), and relatively high jaw MA (Navalón, 2014) expected in herbivores or durophages. The most likely source of this contradiction is the specimens studied. Bestwick (2018) studied microwear of the Munich specimen (Jordan Bestwick pers. com. 2020); Serrano et al. (2015) measured the London, Berlin, Eichstätt, and Thermopolis specimens; and the work of Navalón (2014) was likely based on the reconstruction of (Rauhut, 2014), which was in turn based primarily on the Eichstätt specimen. Considerable morphological disparity has been previously noted within Archaeopteryx (Rauhut, Foth & Tischlinger, 2018) which may yet indicate diverse diets within the genus. Alternatively, the contradictory evidence may be indicative of Liem’s Paradox at work, with fallback food[s] not captured in the small sample size of dental microwear (see Lambert et al., 2004 for a modern equivalent). Five preserved seed meals are currently known in the early-diverging avialan Jeholornis (O’Connor et al., 2019; Zhou & Zhang, 2002b), but it is unknown if other major parts of its diet remain unaccounted for. Due to a sparsity of quantitative data, especially the seemingly contradictory evidence in Archaeopteryx, the ancestral dietary condition in avialans remains unclear.
The early-diverging pygostylian *Confuciusornis* has jaws with both strength (Miller et al., In Press) and MA (Navalón, 2014) consistent with herbivorous avians (Miller et al., In Press; Navalón, 2014). One study applying pedal morphometrics (Cobb et al., 2020) recovered *Confuciusornis* as raptorial, and its body mass estimates are consistent with vertivory (Serrano et al., 2015; Table 2). However, because the morphometric study measured only curvature of unguals and not their relative sizes, we consider that raptorial behaviour is not ruled out, but is not confirmed. This discrepancy can be directly addressed with stable isotope analysis, for which *Confuciusornis* is a prime candidate due to the large number of specimens known. Its close relative *Eoconfuciusornis* has only had MA measurements taken (Navalón, 2014), which we consider inadequate for dietary assignment. No dietary study has been conducted on any member of Jinguofortisidae to our knowledge. We also consider the single line of quantitative MA evidence (Navalón, 2014) favouring granivory in the early pygostylian *Sapeornis* to be inadequate for diet assignment, though it does agree with previously-reported ingested material (O'Connor, 2019; O'Connor et al., 2019; Zheng et al., 2011).

Among the enantiornithine ornithothoracines, *Shenqiornis* is tentatively proposed here as predatory due to low jaw MA (Navalón, 2014) and raptorial pes morphometrics in its close relatives (Wang et al., 2014c). Its MA is of particular interest for future studies to attempt to replicate due to qualitative assertions of durophagy in the taxon (Wang et al., 2010b). Navalón (2014) additionally reports intermediate values of MA for *Pengornis* and an indeterminate hatchling and low MA for *Rapaxavis*. Again, we consider this single line of evidence inadequate for dietary assignment. One specimen of *Zhouornis* [BMNH Ph 756] has been reported as having claws as straight as modern ground birds (Cobb et al., 2020), which would rule out raptorial behaviour in the taxon. However the claw measured, DIII, is aberrantly straight in this genus with the other claws highly recurved (Zhang, O'Connor, Di et al., 2014; Zhang, Chiappe, Han et al., 2013) so we do not consider raptorial behaviour ruled-out. The holotype of *Eoalulavis* preserves part of a crustacean in its stomach (Sanz et al., 1996), but the lack of a skull or feet in the specimen inhibit investigation of the typical diet of this taxon within our framework.

Finally among non-avian ornithuromorphs, MA values reported in (Navalón, 2014) are congruent with direct evidence of granivory in *Hongshanornis* (Chiappe et al., 2014) and piscivory in *Yanornis* (Zheng et al., 2014; Zhou, Clarke, Zhang et al., 2004). Additionally, *Eogranivora* and *Piscivoravis* have preserved meals that provide evidence of granivory (Zheng et al., 2018a) and piscivory (Zhou, Zhou & O'Connor, 2014a) respectively, but determining whether these were normal parts of their diet requires further study.

The paucity of dietary assignments renders trends in avialan dietary evolution murky. Our framework supports a mixture of carnivory and herbivory/omnivory among both early-diverging non-avian avialans [*Archaeopteryx, Confuciusornis, Sapeornis*] and later-diverging ones [*Shenqiornis, Hongshanornis, Yanornis*]. Therefore, no particular macroevolutionary trends are currently clearly apparent. Dietary diversity seems to increase through time, but this is a preservational bias associated with the predominance of data from the Early Cretaceous Jehol Lagerstätte [all of these taxa save for *Archaeopteryx*]. This also means that relatively little geographic and climatic range is accounted for among currently known non-avian avialan diets. Thus, non-avian avialan material from a wider range of localities should also be prioritized for future study.
VII. Conclusions

(1) Our aim was to build a framework for studying non-avian avialan diet by reviewing techniques that have proven effective in both avians and non-avian theropods and the use this to summarise our current state of knowledge. With this framework in place, we hope this will generate progress in the reconstruction of Mesozoic ecosystems and in our understanding of the ecological history of birds.

(2) Figure 8 provides a convenient summary of the techniques discussed in this review and our recommendations for applying them. Expected outcomes and their general interpretations are also provided. In short, we recommend combining direct evidence of diet, stable isotope geochemistry, body mass estimation, pes morphometrics, and functional analysis to obtain multiple lines of evidence relevant to diet.

(3) Due to a dearth of quantitative studies, current knowledge of non-avian avialan diet is sparse. The ancestral avialan diet remains obscure, in large part due to contradictory evidence concerning the diet of Archaeopteryx. Both carnivory and herbivory/omnivory are present in early-diverging [Archaeopteryx, Confuciusornis, Sapeornis] and later-diverging [Shenqiornis, Hongshanornis, Yanornis] avialans, but no trends in the dietary evolution of non-avian avialans have presented themselves. We believe that new avialan specimens from a wider range of localities covering different geographies and climates will be instrumental to elucidating these trends in the future.

(4) Our review demonstrates the need for establishing links between diet and morphology in avians, reconstructing the often-crushed remains of non-avian avialans, and combining the two in robust quantitative frameworks. Combined with a growing understanding of modern ecology, these will provide a new and exciting picture of earth during some of the most ground-breaking evolutionary transitions known.

VIII. References

Currie P. J. & Evans, D. C. (2019). Cranial anatomy of new specimens of *Sauornitholestes langstoni* (Dinosauria, Theropoda, Dromaeosauridae) from the Dinosaur Park Formation (Campanian) of Alberta. *The Anatomical Record: Advances in Integrative Anatomy and Evolutionary Biology*.

The Science of Nature

new Jurassic theropod from China documents a transitional step in the macrostructure of feathers.

Jurassic sauropodomorph dinosaur revealed by synchrotron FTIR microspectroscopy.

Cranial anatomy of

Common Buzzard enhanced computed tomography scanning to elucidate hard-and soft-tissue anatomy in the evolution of theropod herbivory.

of fossils.

implications for theropod claw evolution.

like Dinosaurs prior to the End

fallback foods.

Reconstructing the past: methods and techniques for the digital restoration of fossils. Royal Society Open Science 3.

Functional niche partitioning in Therizinosauria provides new insights into the evolution of theropod herbivory. Palaeontology 60, 375-387.

Hierarchical multiscale structure–property relationships of the red-bellied woodpecker (Melanerpes carolinus) beak. Journal of the Royal Society Interface 11, 20140274.

Evidence of preserved collagen in an Early Jurassic sauropodomorph dinosaur revealed by synchrotron FTIR microspectroscopy. Nature Communications 8, 14220.

NAVALÓN G. (2014). Reconstructing the palaeobiology of Confuciusornis and other Confuciusornithiformes, University of Bristol.

SANCHEZ J. (2010). Late Cretaceous (Cenomanian) Hesperornithiformes from the Pasquia Hills, Saskatchewan, Canada, Carleton University.

SERRANO F. J. (2020). ERRATUM.

Stevenson R. D. (1986). Allen's rule in North American rabbits (Sylvilagus) and hares (Lepus) is an exception, not a rule. Journal of Mammalogy 67, 312-316.

TSUIHIJI T. (2010). Reconstructions of the axial muscle insertions in the occipital region of dinosaurs: evaluations of past hypotheses on Marginocephalia and Tyrannosauridae using the extant
phylogenetic bracket approach. *The Anatomical Record: Advances in Integrative Anatomy and Evolutionary Biology* 293, 1360-1386.

Fig. 1.
Methods employed in measuring the angle of bird claw curvature. Methods are diagrammed onto the digit I ungual of the enantiornithine *Mirarce eatoni*, as depicted in (Atterholt et al., 2018). (A–B) Inner arc angle (A) as codified by (Feduccia, 1993) and (B) (Fowler et al., 2009). (C) Outer arc angle as codified by (Pike et al., 2004). In all cases, an initial chord (red) is drawn between the tip of the claw and the (A) proximal walking surface of the ungual or the (B) ventroproximal or (C) dorsoproximal extent of the horny sheathe of the claw [visible as inflection points in bony cores]. A perpendicular line (yellow) is drawn from the midpoint of this chord to the ventral (A and B) or dorsal (C) arc of the ungual. Lines connecting the endpoints (green) are drawn, as well as lines perpendicular to the midpoint of these green lines (blue). The intersection of the blue lines defines the centre of a circle approximated by the arc. From this centre, lines (magenta) are drawn to the endpoints of the initial chord, and the angle between the magenta lines is the angle of curvature of the claw arc.
Fig. 2.
Length, width, and height measurements of the avian pes. Length (red), width (green) and height (blue), diagrammed onto the digit I phalanx I and digit I ungual of *Mirarce eatoni* as depicted in (Atterholt *et al.*, 2018). (A–C) Measurements of the non-ungual phalanges in (A) lateral, (B) dorsal, and (C) distal views. (D–E) Measures of the ungual phalanx in (D) lateral and (E) proximal views. Note that most measures refer to the greatest distance measurable in a given dimension, but some such as *w_f* are shown as being less than the greatest measurable distance without explanation in the works in which they are used.
Abbreviations: *l_p*, proximodistal length of phalanx; *l_c*, chord length of ungual; *l_a*, arc length of ungual; *l_f*, proximodistal length of flexor tubercle; *w_p*, mediolateral width of phalanx; *w_h*, mediolateral width of flexor tubercle; *h_p*, dorsoventral height of phalanx; *h_b*, height at the base of the ungual; *h_m*, height at the mid-arc of the ungual; *h_h*, dorsoventral height of the flexor tubercle.
Third-class lever nature of animal jaws. Here a reconstruction of *Shenqiornis* after (O'Connor et al., 2011b) is used as an example. The load (green) is represented as a square of theoretical foodstuff between the teeth. The effort (blue) is represented as a simplification of the *m. adductor mandibulae* complex (see Figure 4A for full reconstruction of attachments). The fulcrum (red) is represented as the circled articulation between the upper and lower jaws.
Fig. 4.
Illustration of the functional measurements used by Ma et al. (2020) as well as characters 22 and 23 from Button and Zanno (2020). Example is a reconstruction of Shenqiornis after (O'Connor et al., 2011b). C2–7 of Button and Zanno (2020) are combined into anterior and posterior jaw-closing MA as defined by Ma et al. (2020). Articular offset is identical between the two. (A) Reconstruction of skull muscle attachments after (Holliday, 2009). Reconstructions of m. adductor mandibulae externus (purple) and m. adductor mandibulae posterior (green) are more certain while reconstruction of m. pterygoideus (orange) is tentative due to the uncertain nature of the pterygoid in enantiornithines (Chiappe et al., 2001; O’Connor et al., 2011b). The yellow star is the centroid of the irregular shape bounding all attachments, treated as the center of force for adduction. Uncertainty of attachment area size precludes more precise weighting of
the attachment centroid. The abductor muscle for the jaw, the *m. depressor mandibulae* (cyan), attaches perpendicular to the viewing plane (Lautenschlager *et al.*, 2014a) and so is represented as a line along the back of the skull. (B–D) Diagrams illustrating inlevers (red) and outlevers (blue) for calculating (B) anterior jaw-closing mechanical advantage, (C) posterior jaw-closing mechanical advantage, and (D) jaw-opening mechanical advantage. (E–G) Illustrations of measurements to calculate. (E) relative articular offset, (F) relative maximum rostral height, and (G) relative average rostral height. See (Ma *et al.*, 2020) for an explanation of calculations. (H–I) Close-up of the premaxilla indicating measurements of (H) C22 tooth angle and (I) C23 tooth slenderness index. See (Data S4 in Button *et al.*, 2020) for explanation of calculations.

Fig. 5.
Comparison of finite element analysis (FEA) failure criteria. Comparisons are made using a reconstruction of the upper jaw of *Shenqiornis* after (O’Connor *et al.*, 2011b). All models use isotropic material properties of ostrich mandible (Rayfield, 2011a), make plane strain assumptions, constrain the articular condyle in all directions, constrain the first premaxillary tooth in dorsoventral translation, and load the skull with an equivalent amount of force. Force was applied using the macro in (Morales-García *et al.*, 2019) which replicates muscle fibres, with attachments based on those pictured in Figure 4. Legends are scaled to make the models look as similar as possible. (A) Von Mises [VM] stress. (B)
principal strain. Note that while both map very similarly onto the model, the region of high distortion at the occipital condyle is smaller in B than A. In human studies, this smaller region represents a narrower margin of error for the location of failure (Schileo et al., 2008; Yosibash et al., 2010). This implies greater validity for principal strain as a strength criterion.

Fig. 6.
Comparison of construction of finite element models with flexible connective tissue using a reconstruction. Comparisons are made using the upper jaw of Shenqiornis after (O'Connor et al., 2011b). Base models were constructed as in Figure 5. Breaks were created in said model and filled with beam elements to replicate connective tissue, after the techniques of (Cost et al., 2019). A bite force of 9.3N
was chosen to be similar to those recorded by (Corbin et al., 2015). (A) Beams using the cross-sectional area and Young’s modulus of rat cranial sutures, as detailed in (Chien et al., 2008). These properties were used by (Cost et al., 2019) to model the flexible components of the skull in *Gekko* and *Psittacus*, animals of similar size to *Shenqiornis*. (B) Beams using the cross-sectional area and Young’s modulus of canine patellar tendon, as detailed in (Haut et al., 1992). These properties were used by (Cost et al., 2019) to model flexible components in the skull of *Tyrannosaurus*. Note that in A the jugal is dislocated ventrally to a biologically unreasonable degree and in B the quadrate is dislocated cranially to a lesser but still unreasonable degree. (C) Beams assigned properties extrapolated from those of a variety of connective tissues reported in the literature and normalized to body mass (Table S1). Note both the lower degree of dislocation and the lower peak principal strains experienced. However, it is unclear how valid this model is. Only three data points are available for calculating cross-section trends. For Young’s Modulus, even after excluding outliers, R² values for a trend line could not be increased above 0.25. Sensitivity analyses show cross-section of beams has a stronger control on excursion; rat suture models can only achieve similar excursion to the scaled property model if tendon cross-sections are 45 times greater or if their Young’s modulus increases 60-fold. In all three models the overall strain experienced is reduced relative to those in Figure 5B, but artificially inflated at the locations of beam attachment [clearest at the jugal/cranium contact] due to singularities.

Fig. 7.
Sensitivity analysis of rhamphotheca thickness in *Buteo jamaicensis*. Comparisons are made using a radiograph of the lower jaw of *Buteo jamaicensis* after (Smith et al., 1990). All models use isotropic material properties of ostrich mandible and rhamphotheca (Rayfield, 2011a), make plane strain assumptions, constrain the articular glenoid in all directions, constrain the rostral tip of the rhamphotheca in dorsoventral translation, and load the mandible with an equivalent amount of force. Force was applied using the macro in (Morales-García et al., 2019) which replicates muscle fibres, with attachments based on (Lautenschlager et al., 2014a). A bite force of 9.0 N was calculated with the regressions of (Sustaita & Hertel, 2010) assuming a body mass of 1kg. Rhamphotheca is highlighted with a red outline. Length of the jaw overall is kept constant with the bone underneath modelled (A) realistically [i.e. as in the radiograph], (B) with greatly thinned rhamphotheca, and (C) with greatly thickened rhamphotheca. Note that the strain magnitude and distribution in each is nearly identical. Thus, precise thickness of the rhamphotheca appears unimportant in constructing 2D FE models of avian lower jaws.
Fig. 8.
Summary chart of our recommended framework for the study of non-avian avialan diet. Approaches are followed by a brief description of specific prescribed techniques, the body part it would be performed on, relevant results, and recommended dietary and/or modelling interpretations of said results.
Fig. 9
Summary workflow for using the framework described in this paper. **Identify Fossil Specimen(s):** Section VI The Framework suggests several taxa of particular interest, and Application/Discussion sections throughout list published specimens with particular promise. **Determine Tests:** See the second column of Figure 8 to find out which preserved body parts are necessary for which tests. Note that while stable isotope analysis can be performed on bones in addition to teeth, this is not recommended as the signatures they give are less reliable. **Test:** Perform a given test [one of the seven listed] on the specimen of interest. Application sections for each technique provide references for methodology. Dashed lines pointing to the test types indicate that not all tests may be possible. The solid lines pointing away from them indicate that any tests which can be performed should have their interpretations contribute to the final synthesis. **Interpret Test Results:** The final column of Figure 8 provides idealised interpretations for test results into a set of potential diets. Section V.4 Complications may also be pertinent to this workflow stage. **Synthesise into Diet Assignment:** Combine test results with those of other tests performed. In the simplest terms, this means finding the common elements between each tests’ interpretations, though the possibility of feeding styles not seen in any extant group may require more creativity at this stage.
Fig. 10.
Summary of our recommended study framework, as applied to the extant golden eagle [Aquila chrysaetos]. Morphometrics and Lever Modelling are transposed from Figure 8 for clarity. Lever modelling shows adaptation for vulnerable and possibly mobile prey, pointing to either predation or molliphagous herbivory. Morphometrics and FEA of the pes provide evidence of raptorial use, and thus refine the lever modelling findings to predation. Given that the animal is carnivorous, then, body mass makes vertebrate consumption much more likely than invertebrate consumption. Thus, these four lines of
evidence point to *Aquila chrysaetos* being a raptorial vertebrate predator, which it indeed is (Watson, 2010).
Tables

Table 1.

Glossary of dietary categories mentioned in this review. Note that these are general classifications that may or may not be mutually exclusive, and may be operationalized differently by different studies. A reference going into more detail about each classification [“Source”] is provided as well. The prefix hyper- is occasionally applied to diet categories, indicating a particularly high percentage of the animal’s diet consists of the relevant food source.

<table>
<thead>
<tr>
<th>Term</th>
<th>Definition</th>
<th>Source</th>
</tr>
</thead>
<tbody>
<tr>
<td>Carnivorous</td>
<td>Energy acquired primarily by consuming animal tissue.</td>
<td>(Ullrey, 2018)</td>
</tr>
<tr>
<td>Durophagous</td>
<td>Consuming hard parts of organisms, or otherwise breaking their hard parts before consumption.</td>
<td>(Crofts & Summers, 2014)</td>
</tr>
<tr>
<td>Frugivorous</td>
<td>Consuming the nutritive tissue ['flesh'] of fruits.</td>
<td>(Jordano, 2000)</td>
</tr>
<tr>
<td>Granivorous</td>
<td>Consuming plant seeds, before or after dispersal.</td>
<td>(Hulme & Benkman, 2002)</td>
</tr>
<tr>
<td>Herbivorous</td>
<td>Energy acquired primarily by consuming plant tissue.</td>
<td>(Karban & Agrawal, 2002)</td>
</tr>
<tr>
<td>Invertivor</td>
<td>Consuming invertebrate animal tissue.</td>
<td>(Thomas, 2014)</td>
</tr>
<tr>
<td>Molliphagous</td>
<td>Consuming food that is soft, i.e. requiring relatively little energy to fracture.</td>
<td>This study</td>
</tr>
<tr>
<td>Nectarivorous</td>
<td>Consuming nectar, a sugary liquid exuded by flowers.</td>
<td>(Nicolson & Fleming, 2014)</td>
</tr>
<tr>
<td>Omnivorous</td>
<td>Consuming a variety of foods, with no one source providing the majority of energy.</td>
<td>(Thompson, Hemberg, Starzomski et al., 2007)</td>
</tr>
<tr>
<td>Osteophagous</td>
<td>Consuming bone or bone marrow.</td>
<td>(Wroe et al., 2005)</td>
</tr>
<tr>
<td>Piscivorous</td>
<td>Consuming 'fish' [non-tetrapod gnathostome] tissue.</td>
<td>(Eklöv & Diehl, 1994)</td>
</tr>
<tr>
<td>Predatory</td>
<td>Consuming tissue of animals killed by the consumer.</td>
<td>(Taylor, 2013)</td>
</tr>
<tr>
<td>Raptorial</td>
<td>Predation in which the pes plays a major role in killing and/or restraining the prey.</td>
<td>(Fowler et al., 2009)</td>
</tr>
<tr>
<td>Scavenging</td>
<td>Consuming tissue of animals not killed by the consumer.</td>
<td>(Turner, Abernethy, Conner et al., 2017)</td>
</tr>
<tr>
<td>Vertivor</td>
<td>Consuming vertebrate animal tissue.</td>
<td>(Garrard, McCarthy, Vesk et al., 2012)</td>
</tr>
</tbody>
</table>
Table 2.
Mass estimates of avian individuals. Input measurements are taken from scaled images in the literature. Estimates are made using the equations of Serrano et al. (2015). The ORNnl equation is less precise and used in cases where a key component in the ENAN or ORPH equations is not preserved. The source text has a typographical error in four of the equations (Serrano, 2020). The corrected equations are:

JEHO: \[-1.933 + 1.486 \text{ HL} + 0.416 \text{ bcL} + 0.965 \text{ dHW} - 0.36 \text{ deHW} - 1.536 \text{ UL} + 0.635 \text{ peUW} - 0.397 \text{ FL} + 0.834 \text{ dFWml} + 0.302 \text{ TL}\]

SAPE: \[-2.876 + 0.952 \text{ HL} + 0.352 \text{ bcL} + 0.424 \text{ dHW} + 0.967 \text{ UL} + 0.615 \text{ deUW} + 0.340 \text{ dUW} - 1.891 \text{ RL} - 0.343 \text{ DCmW} + 0.589 \text{ dFWcc} + 0.878 \text{ TL} - 0.446 \text{ TmL}\]

ENAN: \[-2.626 + 1.528 \text{ HL} + 0.34 \text{ bcL} + 0.828 \text{ dHW} - 1.451 \text{ UL} + 0.811 \text{ dUW} + 0.378 \text{ TL}\]

ORNnl: \[-2.392 + 1.799 \text{ HL} + 0.355 \text{ bcL} + 1.014 \text{ dHW} + 1.003 \text{ dUW} - 1.475 \text{ RL} - 0.363 \text{ DCmW}\]

See (Serrano et al., 2015) for explanation of abbreviations. Body mass correction factors were not included in the original paper and so were back calculated from the reported values; all were very close to 1.

<table>
<thead>
<tr>
<th>Taxon</th>
<th>Specimen</th>
<th>Mean Mass Estimate (kg)</th>
<th>Lower Mass Estimate (kg)</th>
<th>Upper Mass Estimate (kg)</th>
<th>Equation Used</th>
</tr>
</thead>
<tbody>
<tr>
<td>Jeholornithiformes</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Jeholornithiformes indet.</td>
<td>DLNM D2139</td>
<td>1.418</td>
<td>1.173</td>
<td>1.664</td>
<td>JEHO</td>
</tr>
<tr>
<td>Jeholornis curvipes</td>
<td>YFGP-yb2</td>
<td>1.504</td>
<td>1.244</td>
<td>1.764</td>
<td>JEHO</td>
</tr>
<tr>
<td>Jeholornis prima</td>
<td>STM 2-15</td>
<td>1.442</td>
<td>1.193</td>
<td>1.692</td>
<td>JEHO</td>
</tr>
<tr>
<td>Komporsornis longicaudus</td>
<td>AGB-6997</td>
<td>0.952</td>
<td>0.787</td>
<td>1.117</td>
<td>JEHO</td>
</tr>
<tr>
<td>Shenzhouraptor sinensis</td>
<td>LPM 00193</td>
<td>0.883</td>
<td>0.730</td>
<td>1.036</td>
<td>JEHO</td>
</tr>
<tr>
<td>Confuciusornithidae</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Confuciusornis sanctus</td>
<td>IVPP V13313</td>
<td>0.598</td>
<td>0.497</td>
<td>0.700</td>
<td>CONF</td>
</tr>
<tr>
<td>Yangavis confucii</td>
<td>IVPP V18929</td>
<td>0.564</td>
<td>0.468</td>
<td>0.659</td>
<td>CONF</td>
</tr>
<tr>
<td>Sapeornithiformes</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Species</td>
<td>Catalogue</td>
<td>Length</td>
<td>Width</td>
<td>Depth</td>
<td>Classification</td>
</tr>
<tr>
<td>---------------------------------</td>
<td>-------------------</td>
<td>--------</td>
<td>--------</td>
<td>-------</td>
<td>----------------</td>
</tr>
<tr>
<td>Omnivoropteryx sinousaorum</td>
<td>CAGS 02-IG-gausa-3</td>
<td>1.429</td>
<td>1.193</td>
<td>1.665</td>
<td>SAPE</td>
</tr>
<tr>
<td>Enantiornithes</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Alethoalaornis agitornis</td>
<td>LPM 00038</td>
<td>0.158</td>
<td>0.127</td>
<td>0.189</td>
<td>ENAN</td>
</tr>
<tr>
<td>Bohaiornis guoi</td>
<td>IVPP V17963</td>
<td>0.300</td>
<td>0.242</td>
<td>0.358</td>
<td>ENAN</td>
</tr>
<tr>
<td>B. guoi</td>
<td>LPM B00167</td>
<td>0.032</td>
<td>0.026</td>
<td>0.038</td>
<td>ENAN</td>
</tr>
<tr>
<td>Cathayornis yandica</td>
<td>IVPP V9769a/b</td>
<td>0.062</td>
<td>0.050</td>
<td>0.074</td>
<td>ENAN</td>
</tr>
<tr>
<td>Chiappeavis magnapremaxillo</td>
<td>STM 29-11</td>
<td>0.465</td>
<td>0.375</td>
<td>0.556</td>
<td>ENAN</td>
</tr>
<tr>
<td>Dalingheornis liweii</td>
<td>CNU VB2005001</td>
<td>0.008</td>
<td>0.007</td>
<td>0.010</td>
<td>ENAN</td>
</tr>
<tr>
<td>Dapingfangornis sentisorhinus</td>
<td>LPM 00039</td>
<td>0.204</td>
<td>0.164</td>
<td>0.243</td>
<td>ENAN</td>
</tr>
<tr>
<td>Dunhuangia cuii</td>
<td>GSGM-05-CM-030</td>
<td>0.124</td>
<td>0.099</td>
<td>0.149</td>
<td>ORNnl</td>
</tr>
<tr>
<td>Elsornis keni</td>
<td>MPD-b 100/201</td>
<td>1.512</td>
<td>1.206</td>
<td>1.817</td>
<td>ORNnl</td>
</tr>
<tr>
<td>Eopengornis martini</td>
<td>STM 24-1</td>
<td>0.193</td>
<td>0.155</td>
<td>0.230</td>
<td>ENAN</td>
</tr>
<tr>
<td>Fortunguavis xiaotaizicus</td>
<td>IVPP V18631</td>
<td>0.296</td>
<td>0.236</td>
<td>0.356</td>
<td>ORNnl</td>
</tr>
<tr>
<td>Grabauornis lingyuannensis</td>
<td>IVPP V14595</td>
<td>0.127</td>
<td>0.102</td>
<td>0.151</td>
<td>ENAN</td>
</tr>
<tr>
<td>Gracilornis jiufotangensis</td>
<td>PMOL-AB00170</td>
<td>0.027</td>
<td>0.021</td>
<td>0.032</td>
<td>ENAN</td>
</tr>
<tr>
<td>Gretcheniaio sinensis</td>
<td>BMNHC Ph-829</td>
<td>0.455</td>
<td>0.367</td>
<td>0.543</td>
<td>ENAN</td>
</tr>
<tr>
<td>Houornis caudatus</td>
<td>IVPP V10917/1, IVPP V10917/2</td>
<td>0.107</td>
<td>0.086</td>
<td>0.129</td>
<td>ORNnl</td>
</tr>
<tr>
<td>Huoshanornis huji</td>
<td>DNM D2126</td>
<td>0.071</td>
<td>0.057</td>
<td>0.085</td>
<td>ENAN</td>
</tr>
<tr>
<td>Jibeinia luanhera</td>
<td>Drawing in (Hou, 1997), holotype lost</td>
<td>0.065</td>
<td>0.053</td>
<td>0.078</td>
<td>ENAN</td>
</tr>
<tr>
<td>Junornis houi</td>
<td>BMNHC-PH 919a/b</td>
<td>0.074</td>
<td>0.059</td>
<td>0.088</td>
<td>ENAN</td>
</tr>
<tr>
<td>Genus</td>
<td>Specimen Code</td>
<td>Length 1</td>
<td>Length 2</td>
<td>Length 3</td>
<td>Status</td>
</tr>
<tr>
<td>-----------------------</td>
<td>-----------------</td>
<td>----------</td>
<td>----------</td>
<td>----------</td>
<td>---------</td>
</tr>
<tr>
<td>Liaoningornis longidigitris</td>
<td>IVPP V11303</td>
<td>0.180</td>
<td>0.145</td>
<td>0.215</td>
<td>ENAN</td>
</tr>
<tr>
<td>Linyiornis amoena</td>
<td>STM 11-80</td>
<td>0.215</td>
<td>0.173</td>
<td>0.256</td>
<td>ENAN</td>
</tr>
<tr>
<td>Longipteryx chaoyangensis</td>
<td>DNHM D2889</td>
<td>0.751</td>
<td>0.605</td>
<td>0.897</td>
<td>ENAN</td>
</tr>
<tr>
<td>Longusunguis kurochkini</td>
<td>IVPP V17964</td>
<td>0.171</td>
<td>0.137</td>
<td>0.204</td>
<td>ENAN</td>
</tr>
<tr>
<td>L. kurochkini</td>
<td>IVPP V18693</td>
<td>0.237</td>
<td>0.191</td>
<td>0.283</td>
<td>ENAN</td>
</tr>
<tr>
<td>Microenantiornis vulgaris</td>
<td>PMOL AB00171</td>
<td>0.067</td>
<td>0.054</td>
<td>0.080</td>
<td>ENAN</td>
</tr>
<tr>
<td>Monoenantiornis sihedangia</td>
<td>IVPP V20289</td>
<td>0.355</td>
<td>0.286</td>
<td>0.424</td>
<td>ENAN</td>
</tr>
<tr>
<td>Noguerornis gonzalezi</td>
<td>LP.1702.P</td>
<td>0.020</td>
<td>0.016</td>
<td>0.024</td>
<td>ORNnl</td>
</tr>
<tr>
<td>Orienantius ritteri</td>
<td>BMNHC Ph-1154a/b</td>
<td>0.071</td>
<td>0.057</td>
<td>0.085</td>
<td>ENAN</td>
</tr>
<tr>
<td>O. ritteri</td>
<td>BMNHC Ph-1156a/b</td>
<td>0.083</td>
<td>0.067</td>
<td>0.100</td>
<td>ENAN</td>
</tr>
<tr>
<td>Parabohaiornis martini</td>
<td>IVPP V18691</td>
<td>0.221</td>
<td>0.178</td>
<td>0.263</td>
<td>ENAN</td>
</tr>
<tr>
<td>Parapengornis eurycaudatus</td>
<td>IVPP V18687</td>
<td>0.429</td>
<td>0.345</td>
<td>0.512</td>
<td>ENAN</td>
</tr>
<tr>
<td>Paraprotopteryx gracilis</td>
<td>STM V001</td>
<td>0.046</td>
<td>0.037</td>
<td>0.055</td>
<td>ENAN</td>
</tr>
<tr>
<td>Paravis chuxiongensis</td>
<td>IVPP V18586/1, IVPP V18586/2</td>
<td>0.024</td>
<td>0.020</td>
<td>0.029</td>
<td>ENAN</td>
</tr>
<tr>
<td>Piscivorenantiornis inusitatus</td>
<td>IVPP V22582</td>
<td>0.281</td>
<td>0.227</td>
<td>0.336</td>
<td>ENAN</td>
</tr>
<tr>
<td>Protopteryx fengningensis</td>
<td>BMNHC Ph-1060a/b</td>
<td>0.109</td>
<td>0.088</td>
<td>0.130</td>
<td>ENAN</td>
</tr>
<tr>
<td>P. fengningensis</td>
<td>BMNHC Ph-1158a/b</td>
<td>0.088</td>
<td>0.071</td>
<td>0.105</td>
<td>ENAN</td>
</tr>
<tr>
<td>Species</td>
<td>Catalogue</td>
<td>Length (m)</td>
<td>Width (m)</td>
<td>Height (m)</td>
<td>Classification</td>
</tr>
<tr>
<td>---------------------------------</td>
<td>-----------</td>
<td>------------</td>
<td>-----------</td>
<td>------------</td>
<td>----------------</td>
</tr>
<tr>
<td>Pterygornis dapingfangensis</td>
<td>IVPP V20729</td>
<td>0.080</td>
<td>0.064</td>
<td>0.095</td>
<td>ENAN</td>
</tr>
<tr>
<td>Shangyang graciles</td>
<td>IVPP V25033</td>
<td>0.108</td>
<td>0.087</td>
<td>0.129</td>
<td>ENAN</td>
</tr>
<tr>
<td>Shanweiniao cooperorum</td>
<td>DNHM D1878/1, DNHM D1878/2</td>
<td>0.062</td>
<td>0.050</td>
<td>0.074</td>
<td>ENAN</td>
</tr>
<tr>
<td>Shengjingornis yangi</td>
<td>PMOL AB00179</td>
<td>0.340</td>
<td>0.274</td>
<td>0.406</td>
<td>ENAN</td>
</tr>
<tr>
<td>Shenqiornis mengi</td>
<td>DNHM D2950/1</td>
<td>0.340</td>
<td>0.274</td>
<td>0.406</td>
<td>ENAN</td>
</tr>
<tr>
<td>Sulcavis geeorum</td>
<td>BMNH Ph-000805</td>
<td>0.333</td>
<td>0.268</td>
<td>0.397</td>
<td>ENAN</td>
</tr>
<tr>
<td>Yuanjiawaornis viriosus</td>
<td>PMOL AB00032</td>
<td>0.418</td>
<td>0.337</td>
<td>0.499</td>
<td>ENAN</td>
</tr>
<tr>
<td>Zhouornis hani</td>
<td>BMNHCPH 756</td>
<td>0.253</td>
<td>0.204</td>
<td>0.303</td>
<td>ENAN</td>
</tr>
<tr>
<td>Z. hani</td>
<td>CNUVB-0903</td>
<td>0.758</td>
<td>0.611</td>
<td>0.905</td>
<td>ENAN</td>
</tr>
</tbody>
</table>

Non-avian Ornithuromorpha

<table>
<thead>
<tr>
<th>Species</th>
<th>Catalogue</th>
<th>Length (m)</th>
<th>Width (m)</th>
<th>Height (m)</th>
<th>Classification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Archaeorhynchus spathula</td>
<td>IVPP V17075</td>
<td>0.282</td>
<td>0.227</td>
<td>0.336</td>
<td>ORPH</td>
</tr>
<tr>
<td>A. spathula</td>
<td>IVPP V17091</td>
<td>0.153</td>
<td>0.123</td>
<td>0.183</td>
<td>ORPH</td>
</tr>
<tr>
<td>Archaeornithura meemannae</td>
<td>STM 7-145</td>
<td>0.136</td>
<td>0.109</td>
<td>0.162</td>
<td>ORPH</td>
</tr>
<tr>
<td>Bellulia rectusunguis</td>
<td>IVPP V17970</td>
<td>0.778</td>
<td>0.627</td>
<td>0.928</td>
<td>ORPH</td>
</tr>
<tr>
<td>Changziornis ahgm</td>
<td>AGB5840</td>
<td>0.240</td>
<td>0.193</td>
<td>0.286</td>
<td>ORPH</td>
</tr>
<tr>
<td>Dingavis longimaxilla</td>
<td>IVPP V20284</td>
<td>0.526</td>
<td>0.424</td>
<td>0.629</td>
<td>ORPH</td>
</tr>
<tr>
<td>Eogranivora edentulata</td>
<td>STM 35-3</td>
<td>0.291</td>
<td>0.235</td>
<td>0.348</td>
<td>ORPH</td>
</tr>
<tr>
<td>Gansus yumenensis</td>
<td>GSGM-05-CM-014</td>
<td>0.142</td>
<td>0.114</td>
<td>0.169</td>
<td>ORPH</td>
</tr>
<tr>
<td>Hongshanornis longicresta</td>
<td>DNHM D2945</td>
<td>0.075</td>
<td>0.061</td>
<td>0.090</td>
<td>ORPH</td>
</tr>
<tr>
<td>Patagopteryx deferrarii</td>
<td>MACN-N-11</td>
<td>1.130</td>
<td>0.911</td>
<td>1.349</td>
<td>ORPH</td>
</tr>
<tr>
<td>Piscivoravis lii</td>
<td>IVPP V17078</td>
<td>0.849</td>
<td>0.684</td>
<td>1.013</td>
<td>ORPH</td>
</tr>
<tr>
<td>Schizooura lii</td>
<td>IVPP V16861</td>
<td>0.377</td>
<td>0.304</td>
<td>0.450</td>
<td>ORPH</td>
</tr>
<tr>
<td>Species</td>
<td>Catalogue</td>
<td>Length 1</td>
<td>Length 2</td>
<td>Length 3</td>
<td>Status</td>
</tr>
<tr>
<td>----------------------------</td>
<td>-----------</td>
<td>----------</td>
<td>----------</td>
<td>----------</td>
<td>---------</td>
</tr>
<tr>
<td>Tianyuornis cheni</td>
<td>STM 7-53</td>
<td>0.112</td>
<td>0.090</td>
<td>0.133</td>
<td>ORPH</td>
</tr>
<tr>
<td>Xinghaiornis lini</td>
<td>XHPM 1121</td>
<td>0.539</td>
<td>0.434</td>
<td>0.643</td>
<td>ORPH</td>
</tr>
<tr>
<td>Yanornis martini (juvenile?)</td>
<td>IVPP V13358</td>
<td>0.117</td>
<td>0.094</td>
<td>0.140</td>
<td>ORPH</td>
</tr>
<tr>
<td>Yanornis sp.</td>
<td>STM 9-15</td>
<td>0.577</td>
<td>0.465</td>
<td>0.689</td>
<td>ORPH</td>
</tr>
<tr>
<td>Yanornis sp.</td>
<td>STM 9-46</td>
<td>0.984</td>
<td>0.793</td>
<td>1.175</td>
<td>ORPH</td>
</tr>
<tr>
<td>Yumenornis huangii</td>
<td>GSGM-06-CM-013</td>
<td>0.321</td>
<td>0.256</td>
<td>0.386</td>
<td>ORNnl</td>
</tr>
</tbody>
</table>
Table 3.
Listing of published non-avian avialan skulls. Developed from Table 1 of O’Connor and Chiappe (2011b). Here material is described as partial when >50% complete and nearly complete when >75% complete. For preservation, IVPP V1165 (*Protopteryx*) is the standard for poor, DNHM-D2522 (*Rapaxavis*) for good, and IVPP V15336 (*Pengornis*) for excellent. If multiple publications use the same picture the Pictured In column refers to that which has the highest-resolution image. An NA for picturing publication means that a published image of the skull could not be found.

<table>
<thead>
<tr>
<th>Taxon</th>
<th>Specimen Number</th>
<th>Country</th>
<th>Material</th>
<th>View</th>
<th>Preservation</th>
<th>Crushed</th>
<th>Disarticulated</th>
<th>Pictured In</th>
</tr>
</thead>
<tbody>
<tr>
<td>Scansoriopterygidae [probably non-avian pennaraptorans]</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ambopteryx longibrachium</td>
<td>IVPP V24192</td>
<td>China</td>
<td>indistinct</td>
<td>lateral?</td>
<td>poor</td>
<td>X</td>
<td></td>
<td>(Wang, O’Connor, Xu et al., 2019c)</td>
</tr>
<tr>
<td>Epidexipteryx hui</td>
<td>IVPP V15471</td>
<td>China</td>
<td>nearly complete skull</td>
<td>lateral</td>
<td>poor; some voids</td>
<td>X</td>
<td></td>
<td>(Zhang, Zhou, Xu et al., 2008)</td>
</tr>
</tbody>
</table>
| *Scansoriopteryx heilmanni* | CAGS02-IG-gausa-
<pre><code> | China | partial skull | dorsolateral | good | X | X | (Czerkas & Feduccia, 2014) |
</code></pre>
<p>| | /DM 607 | | | | | | | |
| Scansoriopteryx heilmanni | IVPP V12653 | China | frontal, parietal, sclerotic ring, mandible | dorsal | poor; only voids; juvenile | X | | (Zhang, Zhou, Xu et al., 2002) |
| Yi qi | STM 31-2 | China | nearly complete skull | lateral | poor; some voids | | | (Xu et al., 2015) |
| Anchiornithinae [possibly troodontids] | | | | | | | | |
| Anchiornis huxleyi | HGM-41HIII 0404 | China | partial skull | lateral | good; some voids | X | | (Guo, Xu & Jia, 2018) |
| A. huxleyi | HGM-41HIII 0415 | China | nearly complete skull | ventrolateral | good | X | | (Guo et al., 2018) |
| A. huxleyi | BMNHC Ph-804 | China | partial skull | dorsolateral | poor | X | | (Pei, Li, Meng et al., 2017) |
| A. huxleyi | BMNHC Ph-822 | China | partial skull | dorsal | poor | X | | (Pei et al., 2017) |
| A. huxleyi | BMNHC Ph-823 | China | partial skull | dorsolateral | poor | X | | (Pei et al., 2017) |
| A. huxleyi | PKUP V1068 | China | nearly complete skull | lateral | good | X | | (Pei et al., 2017) |</p>
<table>
<thead>
<tr>
<th>Sample</th>
<th>Repository Code</th>
<th>Country</th>
<th>Sample Type</th>
<th>Orientation</th>
<th>Condition</th>
<th>3D Scan</th>
<th>Description</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Anchiornis sp.</td>
<td>STM 0-179</td>
<td>China</td>
<td>partial skull</td>
<td>lateral</td>
<td>poor; some voids</td>
<td>X</td>
<td>(Zheng et al., 2018b)</td>
<td></td>
</tr>
<tr>
<td>Anchiornis sp.</td>
<td>STM 0-224</td>
<td>China</td>
<td>nearly complete skull</td>
<td>lateral</td>
<td>poor</td>
<td>X</td>
<td>(Zheng et al., 2018b)</td>
<td></td>
</tr>
<tr>
<td>Anchiornis sp.</td>
<td>STM A0-4</td>
<td>China</td>
<td>nearly complete skull</td>
<td>lateral</td>
<td>good</td>
<td>X</td>
<td>(Zheng et al., 2018b)</td>
<td></td>
</tr>
<tr>
<td>Aurornis xui</td>
<td>YFGP-T5198</td>
<td>China</td>
<td>partial skull</td>
<td>lateral</td>
<td>poor</td>
<td>X</td>
<td>(Godefroit, Cau, Dong-Yu et al., 2013)</td>
<td></td>
</tr>
<tr>
<td>Eosipnopteryx brevipenna</td>
<td>YFGP-T5197</td>
<td>China</td>
<td>partial skull</td>
<td>dorsolateral</td>
<td>good</td>
<td>X</td>
<td>(Godefroit, Demuynck, Dyke et al., 2013)</td>
<td></td>
</tr>
<tr>
<td>Serikornis sungi</td>
<td>PMOL-AB00200</td>
<td>China</td>
<td>partial skull</td>
<td>lateral</td>
<td>poor; some voids</td>
<td>X</td>
<td>(Lefèvre, Cau, Cincotta et al., 2017)</td>
<td></td>
</tr>
<tr>
<td>Xiaotingia zhengi</td>
<td>STM 27-2</td>
<td>China</td>
<td>partial skull</td>
<td>dorsolateral</td>
<td>good; several voids</td>
<td>X</td>
<td>(Xu et al., 2011)</td>
<td></td>
</tr>
</tbody>
</table>

Archaeopterygidae

<table>
<thead>
<tr>
<th>Sample</th>
<th>Repository Code</th>
<th>Country</th>
<th>Sample Type</th>
<th>Orientation</th>
<th>Condition</th>
<th>3D Scan</th>
<th>Description</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>London Archaeopteryx</td>
<td>BMNH PV OR 37001</td>
<td>Germany</td>
<td>braincase</td>
<td>3D</td>
<td>excellent</td>
<td>X</td>
<td>(Alonso et al., 2004; Whetstone, 1983)</td>
<td></td>
</tr>
<tr>
<td>Berlin Archaeopteryx</td>
<td>MB.Av.101</td>
<td>Germany</td>
<td>nearly complete skull</td>
<td>lateral</td>
<td>excellent</td>
<td></td>
<td>(Christiansen & Bonde, 2004; Wellnhofer, 2010)</td>
<td></td>
</tr>
<tr>
<td>Eichstätt Archaeopteryx</td>
<td>JM 2257</td>
<td>Germany</td>
<td>nearly complete skull</td>
<td>dorsolateral</td>
<td>good</td>
<td>X</td>
<td>(Ostrom, 1976; Whetstone, 1983)</td>
<td></td>
</tr>
<tr>
<td>Solnhofen Archaeopteryx</td>
<td>BMMS 500</td>
<td>Germany</td>
<td>partial skull</td>
<td>lateral</td>
<td>poor; mostly voids</td>
<td>X</td>
<td>(Elzanowski, 2001a)</td>
<td></td>
</tr>
<tr>
<td>Munich Archaeopteryx</td>
<td>BSP 1999 I 50</td>
<td>Germany</td>
<td>nearly complete skull</td>
<td>dorsal</td>
<td>good</td>
<td>X</td>
<td>(Rauhut, 2014)</td>
<td></td>
</tr>
<tr>
<td>Locality</td>
<td>Catalogue Number</td>
<td>Location</td>
<td>Type</td>
<td>Description</td>
<td>Condition</td>
<td>References</td>
<td></td>
<td></td>
</tr>
<tr>
<td>--</td>
<td>---------------------------</td>
<td>-------------------</td>
<td>------------------</td>
<td>---------------------</td>
<td>-----------</td>
<td>--</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Daiting Archaeopteryx</td>
<td>SNSB BSPG VN-2010/1</td>
<td>Germany</td>
<td>partial skull</td>
<td>dorsolateral</td>
<td>poor</td>
<td>(Kundrát, Nudds, Kear et al., 2019)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Thermopolis Archaeopteryx</td>
<td>WDC-CSG-100</td>
<td>Germany</td>
<td>braincase</td>
<td>lateral</td>
<td>good</td>
<td>(Rauhut, 2014)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>11th Archaeopteryx</td>
<td>[private]</td>
<td>Germany</td>
<td>premaxilla, dentary, surangular</td>
<td>dorsal</td>
<td>excellent</td>
<td>(Forth, Tischlinger & Rauhut, 2014)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>12th Archaeopteryx</td>
<td>DNWK 02924 [privately held]</td>
<td>Germany</td>
<td>nearly complete skull</td>
<td>dorsolateral</td>
<td>good</td>
<td>(Rauhut et al., 2018)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Jeholornithiformes

<table>
<thead>
<tr>
<th>Locality</th>
<th>Catalogue Number</th>
<th>Location</th>
<th>Type</th>
<th>Description</th>
<th>Condition</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>Jeholornithiformes indet.</td>
<td>DLNM D2139</td>
<td>China</td>
<td>partial skull</td>
<td>dorsolateral</td>
<td>poor</td>
<td>(Wang et al., 2020b)</td>
</tr>
<tr>
<td>Jeholornis curvipes</td>
<td>YFGP-yb2</td>
<td>China</td>
<td>partial skull</td>
<td>dorsolateral</td>
<td>good</td>
<td>(Lefèvre, Hu, Escuillié et al., 2014)</td>
</tr>
<tr>
<td>Jeholornis palmapenis</td>
<td>SDM 2009.01</td>
<td>China</td>
<td>partial skull</td>
<td>dorsolateral</td>
<td>poor</td>
<td>(O'Connor, 2019)</td>
</tr>
<tr>
<td>Jeholornis palmapenis</td>
<td>SDM 20090109.1/2</td>
<td>China</td>
<td>partial skull</td>
<td>lateral</td>
<td>poor</td>
<td>(O'Connor, Sun, Xu et al., 2012)</td>
</tr>
<tr>
<td>Jeholornis prima</td>
<td>BMNHC Ph-780</td>
<td>China</td>
<td>complete skull</td>
<td>lateral</td>
<td>excellent</td>
<td>(Chiappe et al., 2016 pg. 37)</td>
</tr>
<tr>
<td>J. prima</td>
<td>CDL-02-04-001</td>
<td>China</td>
<td>nearly complete skull</td>
<td>lateral</td>
<td>good</td>
<td>(Chiappe et al., 2016 pg. 34)</td>
</tr>
<tr>
<td>J. prima</td>
<td>IVPP V13274</td>
<td>China</td>
<td>partial skull</td>
<td>lateral</td>
<td>poor; ingested seeds</td>
<td>X</td>
</tr>
<tr>
<td>J. prima</td>
<td>IVPP V13350</td>
<td>China</td>
<td>partial skull</td>
<td>dorsolateral</td>
<td>poor</td>
<td>(O'Connor, 2019)</td>
</tr>
<tr>
<td>J. prima</td>
<td>STM 2-15</td>
<td>China</td>
<td>nearly complete skull</td>
<td>lateral</td>
<td>good; ingested seeds</td>
<td>(O'Connor et al., 2018)</td>
</tr>
<tr>
<td>J. prima</td>
<td>STM 2-31</td>
<td>China</td>
<td>partial skull</td>
<td>lateral</td>
<td>poor; some voids; gastroliths</td>
<td>X</td>
</tr>
<tr>
<td>Species</td>
<td>Catalogue Number</td>
<td>Location</td>
<td>Skull Type</td>
<td>Condition</td>
<td>Notes</td>
<td>References</td>
</tr>
<tr>
<td>------------------------------</td>
<td>------------------</td>
<td>----------</td>
<td>-------------</td>
<td>-----------</td>
<td>--</td>
<td>-----------------------------</td>
</tr>
<tr>
<td>J. prima</td>
<td>STM 2-41</td>
<td>China</td>
<td>partial skull</td>
<td>dorsolateral</td>
<td>poor; ingested seeds</td>
<td>O'Connor et al., 2018</td>
</tr>
<tr>
<td>J. prima</td>
<td>STM 3-28</td>
<td>China</td>
<td>partial skull</td>
<td>lateral</td>
<td>poor; gastroliths</td>
<td>O'Connor et al., 2018</td>
</tr>
<tr>
<td>Jeholornis sp.</td>
<td>IVPP V14978</td>
<td>China</td>
<td>partial skull</td>
<td>lateral</td>
<td>good</td>
<td>Wang, O'Connor & Zhou, 2019b</td>
</tr>
<tr>
<td>Jeholornis sp.</td>
<td>STM 2-51</td>
<td>China</td>
<td>partial skull</td>
<td>lateral</td>
<td>X</td>
<td>Zheng et al., 2013</td>
</tr>
<tr>
<td>Jixiangornis orientalis</td>
<td>CDPC-02-04-001</td>
<td>China</td>
<td>partial skull</td>
<td>dorsolateral</td>
<td>poor</td>
<td>Ji, Ji, Zhang et al., 2002</td>
</tr>
<tr>
<td>Kompornis longicaudus</td>
<td>AGB-6997</td>
<td>China</td>
<td>nearly complete skull</td>
<td>lateral</td>
<td>X</td>
<td>Wang et al., 2020b</td>
</tr>
<tr>
<td>Shenzhouraptor sinensis</td>
<td>LPM 00193</td>
<td>China</td>
<td>partial skull</td>
<td>dorsolateral</td>
<td>poor</td>
<td>Ji, Ji, You et al., 2003</td>
</tr>
<tr>
<td>Early pygostylians</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Zhongornis haoae [possibly scansorianopterygid or early-diverging avialan]</td>
<td>DNHM D2456</td>
<td>China</td>
<td>partial skull</td>
<td>dorsolateral</td>
<td>poor; juvenile</td>
<td>Chiappe et al., 2016 pg. 38</td>
</tr>
<tr>
<td>Confuciusornithidae</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Confuciusornithidae indet.</td>
<td>BMNHC Ph-870</td>
<td>China</td>
<td>partial skull</td>
<td>dorsolateral</td>
<td>poor</td>
<td>Navalón, Meng, Marugán-Lobón et al., 2018b</td>
</tr>
<tr>
<td>Changchengornis hengdaoziensis</td>
<td>GMV 2129</td>
<td>China</td>
<td>partial skull</td>
<td>lateral</td>
<td>poor</td>
<td>Wang et al., 2019b</td>
</tr>
<tr>
<td>Confuciusornis dui</td>
<td>IVPP V11553</td>
<td>China</td>
<td>nearly complete skull</td>
<td>lateral</td>
<td>X</td>
<td>Falk et al., 2019 [cast]</td>
</tr>
<tr>
<td>Confuciusornis sanctus</td>
<td>IVPP V10918</td>
<td>China</td>
<td>partial skull</td>
<td>lateral</td>
<td>poor</td>
<td>Zhou et al., 2002a</td>
</tr>
<tr>
<td>C. sanctus</td>
<td>IVPP V13313</td>
<td>China</td>
<td>nearly complete skull</td>
<td>lateral</td>
<td>good</td>
<td>Dalsätt et al., 2006</td>
</tr>
<tr>
<td>C. sanctus</td>
<td>IVPP V14412</td>
<td>China</td>
<td>partial skull</td>
<td>lateral</td>
<td>poor; mostly voids</td>
<td>(Wang et al., 2019b)</td>
</tr>
<tr>
<td>----------------</td>
<td>-----------------</td>
<td>-------</td>
<td>---------------</td>
<td>---------</td>
<td>-------------------</td>
<td>---------------------</td>
</tr>
<tr>
<td>C. sanctus</td>
<td>BMNHC Ph-766</td>
<td>China</td>
<td>nearly complete skull</td>
<td>dorsolateral</td>
<td>good</td>
<td>X</td>
</tr>
<tr>
<td>C. sanctus</td>
<td>BMNHC Ph-986</td>
<td>China</td>
<td>complete skull</td>
<td>lateral</td>
<td>excellent; rhamphotheca</td>
<td>(Chiappe et al., 2016 pg. 156)</td>
</tr>
<tr>
<td>C. sanctus</td>
<td>BMNHC Ph-987</td>
<td>China</td>
<td>nearly complete skull</td>
<td>lateral</td>
<td>good</td>
<td>X</td>
</tr>
<tr>
<td>C. sanctus</td>
<td>BSP 1999 I 15</td>
<td>China</td>
<td>nearly complete skull</td>
<td>ventrolateral</td>
<td>good</td>
<td></td>
</tr>
<tr>
<td>C. sanctus</td>
<td>DNHM D1874</td>
<td>China</td>
<td>nearly complete skull</td>
<td>lateral</td>
<td>good</td>
<td>X</td>
</tr>
<tr>
<td>C. sanctus</td>
<td>DNHM D2151</td>
<td>China</td>
<td>partial skull</td>
<td>ventral</td>
<td>good</td>
<td>X</td>
</tr>
<tr>
<td>C. sanctus</td>
<td>DNHM D2454</td>
<td>China</td>
<td>nearly complete skull</td>
<td>ventral</td>
<td>good</td>
<td></td>
</tr>
<tr>
<td>C. sanctus</td>
<td>DNHM D2859</td>
<td>China</td>
<td>partial skull</td>
<td>dorsal</td>
<td>good</td>
<td>X</td>
</tr>
<tr>
<td>C. sanctus</td>
<td>GMV 2130</td>
<td>China</td>
<td>nearly complete skull</td>
<td>lateral</td>
<td>poor</td>
<td>X</td>
</tr>
<tr>
<td>C. sanctus</td>
<td>GMV 2131</td>
<td>China</td>
<td>partial skull</td>
<td>lateral</td>
<td>poor</td>
<td>X</td>
</tr>
<tr>
<td>C. sanctus</td>
<td>GMV 2132</td>
<td>China</td>
<td>nearly complete skull</td>
<td>lateral</td>
<td>poor</td>
<td>X</td>
</tr>
<tr>
<td>C. sanctus</td>
<td>GMV 2133</td>
<td>China</td>
<td>nearly complete skull</td>
<td>dorsal</td>
<td>poor</td>
<td>X</td>
</tr>
<tr>
<td>C. sanctus</td>
<td>HGM-41HIII0400</td>
<td>China</td>
<td>partial skull</td>
<td>dorsal</td>
<td>poor</td>
<td>X</td>
</tr>
<tr>
<td>C. sanctus</td>
<td>IVPP V12352</td>
<td>China</td>
<td>complete skull</td>
<td>dorsolateral</td>
<td>excellent; rhamphotheca</td>
<td>X</td>
</tr>
<tr>
<td>------------</td>
<td>-------------</td>
<td>-------</td>
<td>---------------</td>
<td>--------------</td>
<td>-------------------------</td>
<td>---</td>
</tr>
<tr>
<td>C. sanctus</td>
<td>IVPP V13156</td>
<td>China</td>
<td>partial skull</td>
<td>ventral</td>
<td>poor; mostly voids</td>
<td>X</td>
</tr>
<tr>
<td>C. sanctus</td>
<td>IVPP V13168</td>
<td>China</td>
<td>nearly complete skull</td>
<td>dorsolateral</td>
<td>good</td>
<td>X</td>
</tr>
<tr>
<td>C. sanctus</td>
<td>IVPP V13171</td>
<td>China</td>
<td>nearly complete skull</td>
<td>dorsolateral</td>
<td>excellent</td>
<td>X</td>
</tr>
<tr>
<td>C. sanctus</td>
<td>IVPP V13313</td>
<td>China</td>
<td>nearly complete skull</td>
<td>lateral</td>
<td>good; fish pellet?</td>
<td></td>
</tr>
<tr>
<td>C. sanctus</td>
<td>JME 2005/1</td>
<td>China</td>
<td>partial skull</td>
<td>dorsolateral</td>
<td>good</td>
<td>X</td>
</tr>
<tr>
<td>C. sanctus</td>
<td>LPM 0233</td>
<td>China</td>
<td>partial skull</td>
<td>dorsolateral</td>
<td>poor</td>
<td>X</td>
</tr>
<tr>
<td>C. sanctus</td>
<td>LPM 0228</td>
<td>China</td>
<td>nearly complete skull</td>
<td>dorsolateral</td>
<td>good</td>
<td></td>
</tr>
<tr>
<td>C. sanctus</td>
<td>LPM 0229</td>
<td>China</td>
<td>nearly complete skull</td>
<td>ventrolateral</td>
<td>good</td>
<td>X</td>
</tr>
<tr>
<td>C. sanctus</td>
<td>MB.Av.1168</td>
<td>China</td>
<td>complete skull</td>
<td>lateral</td>
<td>excellent</td>
<td></td>
</tr>
<tr>
<td>C. sanctus</td>
<td>MHNF 11186</td>
<td>China</td>
<td>partial skull</td>
<td>ventral</td>
<td>good</td>
<td>X</td>
</tr>
<tr>
<td>C. sanctus</td>
<td>NIGPAS-139379</td>
<td>China</td>
<td>nearly complete skull</td>
<td>ventrolateral</td>
<td>excellent</td>
<td>X</td>
</tr>
<tr>
<td>C. sanctus</td>
<td>NMB Ca. 258</td>
<td>China</td>
<td>partial skull</td>
<td>dorsolateral</td>
<td>good</td>
<td>X</td>
</tr>
<tr>
<td>C. sanctus</td>
<td>PMOL-AB00114</td>
<td>China</td>
<td>partial skull</td>
<td>dorsolateral</td>
<td>poor</td>
<td>X</td>
</tr>
<tr>
<td>C. sanctus</td>
<td>SMF Av 412</td>
<td>China</td>
<td>nearly complete skull</td>
<td>ventrolateral</td>
<td>good</td>
<td>X</td>
</tr>
<tr>
<td>C. sanctus</td>
<td>SMF Av 416</td>
<td>China</td>
<td>nearly complete skull</td>
<td>lateral</td>
<td>excellent</td>
<td>X</td>
</tr>
<tr>
<td>------------</td>
<td>-------------</td>
<td>--------</td>
<td>-----------------------</td>
<td>--------</td>
<td>-----------</td>
<td>---</td>
</tr>
<tr>
<td>C. sanctus</td>
<td>SMF Av 420</td>
<td>China</td>
<td>partial skull</td>
<td>ventrolateral</td>
<td>good</td>
<td>X</td>
</tr>
<tr>
<td>C. sanctus</td>
<td>SMF Av 423</td>
<td>China</td>
<td>partial skull</td>
<td>lateral</td>
<td>good</td>
<td>X</td>
</tr>
<tr>
<td>C. sanctus</td>
<td>STM 13-162</td>
<td>China</td>
<td>partial skull</td>
<td>lateral</td>
<td>poor; rhamphotheca</td>
<td>X</td>
</tr>
<tr>
<td>Confuciusornis sp.</td>
<td>CUGB P1401</td>
<td>China</td>
<td>partial skull</td>
<td>lateral</td>
<td>poor; only voids</td>
<td></td>
</tr>
<tr>
<td>Confuciusornis sp.</td>
<td>IVPP V13156</td>
<td>China</td>
<td>nearly complete skull</td>
<td>dorsal</td>
<td>good</td>
<td>X</td>
</tr>
<tr>
<td>Eoconfuciusornis zhengi</td>
<td>IVPP V11977</td>
<td>China</td>
<td>nearly complete skull</td>
<td>ventrolateral</td>
<td>excellent; rhamphotheca</td>
<td>X</td>
</tr>
<tr>
<td>Eoconfuciusornis sp.</td>
<td>STM 7-144</td>
<td>China</td>
<td>partial skull</td>
<td>lateral</td>
<td>poor</td>
<td>X</td>
</tr>
<tr>
<td>Yangavis confucii</td>
<td>IVPP V18929</td>
<td>China</td>
<td>nearly complete skull</td>
<td>lateral</td>
<td>good</td>
<td>X</td>
</tr>
</tbody>
</table>

Jinguofortisidae

| **Jinguofortis perplexus** | IVPP V24194 | China | partial skull | dorsolateral | good | X | | (Wang, Stidham & Zhou, 2018) |

Sapeornithiformes

<p>| Omnivoropteryx sinusaorum | CAGS 02-IG-gausa-3 | China | complete skull? | lateral? | unprepared | X | | (Pomeroy, 2013) |
| Sapeornis chaoyangensis | BMNH Ph-1067 | China | nearly complete skull | lateral | excellent | X | | (Chiappe et al., 2016 pg 59) |
| S. chaoyangensis | CDL-08-02-01 | China | partial skull | ventral | poor | X | | (Chiappe et al., 2016 pg 60) |
| S. chaoyangensis | CDPC-02-08-001 | China | nearly complete skull | ventral | poor | X | | (Yuan, 2008) |</p>
<table>
<thead>
<tr>
<th>S. chaoyangensis</th>
<th>DNHM D3078</th>
<th>China</th>
<th>partial skull</th>
<th>dorsal</th>
<th>poor</th>
<th>X</th>
<th>(Gao, Chiappe, Zhang et al., 2012)</th>
</tr>
</thead>
<tbody>
<tr>
<td>S. chaoyangensis</td>
<td>DNHM D2523</td>
<td>China</td>
<td>partial skull</td>
<td>lateral</td>
<td>poor</td>
<td>X</td>
<td>(Chiappe et al., 2016 pg. 54)</td>
</tr>
<tr>
<td>S. chaoyangensis</td>
<td>HGM-41HIII0405</td>
<td>China</td>
<td>nearly complete skull</td>
<td>dorsolateral</td>
<td>excellent</td>
<td>X</td>
<td>(Chiappe et al., 2016 pg. 56; Hu et al., 2020a)</td>
</tr>
<tr>
<td>S. chaoyangensis</td>
<td>IVPP V13275</td>
<td>China</td>
<td>partial skull</td>
<td>dorsal</td>
<td>poor</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>S. chaoyangensis</td>
<td>IVPP V13276</td>
<td>China</td>
<td>partial skull</td>
<td>ventral</td>
<td>poor</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>S. chaoyangensis</td>
<td>IVPP V13396</td>
<td>China</td>
<td>partial skull</td>
<td>lateral</td>
<td>good</td>
<td>X</td>
<td>(Chiappe et al., 2016 pg. 61; Provini, Zhou & Zhang, 2009)</td>
</tr>
<tr>
<td>S. chaoyangensis</td>
<td>IVPP V19058</td>
<td>China</td>
<td>partial skull</td>
<td>lateral</td>
<td>poor</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>S. chaoyangensis</td>
<td>LPM B00018</td>
<td>China</td>
<td>nearly complete skull</td>
<td>lateral</td>
<td>poor</td>
<td>X</td>
<td>(Hu, Li, Hou et al., 2010)</td>
</tr>
<tr>
<td>S. chaoyangensis</td>
<td>STM 15-7</td>
<td>China</td>
<td>dentary</td>
<td>lateral</td>
<td>good</td>
<td>X</td>
<td>(Wang, Hu, O'Connor et al., 2017e)</td>
</tr>
<tr>
<td>S. chaoyangensis</td>
<td>STM 15-15</td>
<td>China</td>
<td>nearly complete skull</td>
<td>lateral</td>
<td>good; ingested seeds; gastroliths</td>
<td>X</td>
<td>(O'Connor, 2019)</td>
</tr>
<tr>
<td>S. chaoyangensis</td>
<td>STM 15-29</td>
<td>China</td>
<td>nearly complete skull</td>
<td>lateral</td>
<td>good; ingested seeds; coprolite</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>S. chaoyangensis</td>
<td>STM 16-18</td>
<td>China</td>
<td>partial skull</td>
<td>ventrolateral</td>
<td>good</td>
<td>X</td>
<td>(Wang et al., 2017e)</td>
</tr>
</tbody>
</table>

Enantiornithes
<table>
<thead>
<tr>
<th>Enantiornithes indet.</th>
<th>NIGPAS-130723</th>
<th>China</th>
<th>nearly complete skull</th>
<th>lateral</th>
<th>poor; juvenile</th>
<th>X</th>
<th>(Chiappe et al., 2016 pg. 115; Hou et al., 1999a)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Enantiornithes indet.</td>
<td>PVL 4698</td>
<td>Argentina</td>
<td>right mandibular ramus</td>
<td>3D</td>
<td>excellent</td>
<td>X</td>
<td>(Chiappe & Walker, 2002)</td>
</tr>
<tr>
<td>Enantiornithes indet.</td>
<td>STM 29-8</td>
<td>China</td>
<td>partial skull</td>
<td>lateral</td>
<td>poor</td>
<td>X</td>
<td>(O'Connor et al., 2014)</td>
</tr>
<tr>
<td>Enantiornithes indet.</td>
<td>??</td>
<td>Brazil</td>
<td>premaxilla</td>
<td>3D</td>
<td>excellent</td>
<td>X</td>
<td>Work in press (William Roberto Nava pers. com. 2019; described in Nava, Alvarenga, Chiappe et al., 2015)</td>
</tr>
<tr>
<td>Enantiornithes indet.</td>
<td>??</td>
<td>Brazil</td>
<td>premaxilla</td>
<td>3D</td>
<td>excellent</td>
<td>X</td>
<td>Work in press (William Roberto Nava pers. com. 2019; described in Nava et al., 2015)</td>
</tr>
<tr>
<td>Bohaiornithidae indet.</td>
<td>BMNHC Ph-1204</td>
<td>China</td>
<td>nearly complete skull</td>
<td>lateral</td>
<td>good</td>
<td>X</td>
<td>(Chiappe et al., 2016 pg. 91)</td>
</tr>
<tr>
<td>Bohaiornithidae indet.</td>
<td>CUGB P1202</td>
<td>China</td>
<td>partial skull</td>
<td>lateral</td>
<td>poor</td>
<td>X</td>
<td>(Peteya et al., 2017)</td>
</tr>
<tr>
<td>Alethoraornis agitornis</td>
<td>LPM 00009</td>
<td>China</td>
<td>partial skull</td>
<td>ventrolateral</td>
<td>poor</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>A. agitornis</td>
<td>LPM 00038</td>
<td>China</td>
<td>nearly complete skull</td>
<td>lateral</td>
<td>good</td>
<td>X</td>
<td>(Li et al., 2007)</td>
</tr>
<tr>
<td>A. agitornis</td>
<td>LPM 00040</td>
<td>China</td>
<td>partial skull</td>
<td>dorsal</td>
<td>poor</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Bohaiornis guoi</td>
<td>IVPP V17963</td>
<td>China</td>
<td>nearly complete skull</td>
<td>lateral</td>
<td>good; gastroliths?</td>
<td>X</td>
<td>(Li, Zhou, Wang et al., 2014)</td>
</tr>
<tr>
<td>Species</td>
<td>Catalogue Number</td>
<td>Country</td>
<td>Description</td>
<td>View</td>
<td>Preparedness</td>
<td>Status</td>
<td>Reference</td>
</tr>
<tr>
<td>---------------------------------</td>
<td>------------------</td>
<td>---------</td>
<td>-------------------------------</td>
<td>--------</td>
<td>--------------</td>
<td>--------</td>
<td>--</td>
</tr>
<tr>
<td>B. guoi</td>
<td>LPM B00167</td>
<td>China</td>
<td>nearly complete skull</td>
<td>lateral</td>
<td>poor</td>
<td>X</td>
<td>(Hu, Li, Hou et al., 2011)</td>
</tr>
<tr>
<td>Boluochia zhengi</td>
<td>IVPP V9770</td>
<td>China</td>
<td>premaxilla, maxilla, nasal, dentary</td>
<td>lateral?</td>
<td>poor; only voids</td>
<td>X</td>
<td>(O'Connor, Zhou & Zhang, 2010c)</td>
</tr>
<tr>
<td>Cathayornis yandica</td>
<td>IVPP V9769a/b</td>
<td>China</td>
<td>nearly complete skull</td>
<td>lateral</td>
<td>good</td>
<td>X</td>
<td>(Wang & Liu, 2016a)</td>
</tr>
<tr>
<td>Chiappeavis magnapremaxillo</td>
<td>STM 29-11</td>
<td>China</td>
<td>complete skull</td>
<td>lateral</td>
<td>good</td>
<td>X</td>
<td>(O'Connor et al., 2016c)</td>
</tr>
<tr>
<td>Cratoavis cearensis</td>
<td>UFRJ-DG 031Av</td>
<td>Brazil</td>
<td>partial skull</td>
<td>lateral</td>
<td>poor; primarily voids</td>
<td>X</td>
<td>(Carvalho, Novas, Agnolin et al., 2015)</td>
</tr>
<tr>
<td>Cruralispennia multidonta</td>
<td>IVPP V21711</td>
<td>China</td>
<td>premaxilla, maxilla, nasal, frontal, jugal, surangular, dentary</td>
<td>dorsal</td>
<td>poor</td>
<td>X</td>
<td>(Wang, O’Connor, Pan et al., 2017b)</td>
</tr>
<tr>
<td>Cuspirostrornis houi</td>
<td>IVPP V10897</td>
<td>China</td>
<td>premaxilla, nasal, frontal, dentary</td>
<td>lateral</td>
<td>?</td>
<td>X</td>
<td>(Hou, 1997) [drawing]</td>
</tr>
<tr>
<td>Dalingheornis liweii</td>
<td>CNU VB2005001</td>
<td>China</td>
<td>nearly complete skull</td>
<td>dorsal</td>
<td>poor</td>
<td>X</td>
<td>(Zhang, Hou, Yoshikasu et al., 2006)</td>
</tr>
<tr>
<td>Dapingfangornis sentisorhinus</td>
<td>LPM 00039</td>
<td>China</td>
<td>nearly complete skull</td>
<td>ventrolateral</td>
<td>good; poorly prepared</td>
<td>(Li, Duan, Hu et al., 2006)</td>
<td></td>
</tr>
<tr>
<td>Eocathayornis walkeri</td>
<td>IVPP V10916</td>
<td>China</td>
<td>partial skull</td>
<td>lateral</td>
<td>poor; primarily voids</td>
<td>X</td>
<td>(Wang et al., 2016a)</td>
</tr>
<tr>
<td>Eoenantiornis buhleri</td>
<td>IVPP V11537</td>
<td>China</td>
<td>nearly complete skull</td>
<td>dorsal</td>
<td>good</td>
<td>X</td>
<td>(Zhou, Chiappe & Zhang, 2005)</td>
</tr>
<tr>
<td>Genus</td>
<td>Repository Code</td>
<td>Location</td>
<td>Description</td>
<td>Orientation</td>
<td>Condition</td>
<td>X</td>
<td>Notes</td>
</tr>
<tr>
<td>-----------------------</td>
<td>-----------------</td>
<td>------------</td>
<td>------------------------------------</td>
<td>--------------</td>
<td>--------------------</td>
<td>----</td>
<td>-------------------------------------</td>
</tr>
<tr>
<td>Eopengornis martini</td>
<td>STM 24-1</td>
<td>China</td>
<td>nearly complete skull</td>
<td>ventral</td>
<td>good</td>
<td>X</td>
<td>(Wang et al., 2014e)</td>
</tr>
<tr>
<td>Fortunguavis xiaotaizicus</td>
<td>IVPP V18631</td>
<td>China</td>
<td>nearly complete skull</td>
<td>ventral</td>
<td>poor</td>
<td>X</td>
<td>(Wang, O'Connor & Zhou, 2014b)</td>
</tr>
<tr>
<td>Gobipipus reshetovi</td>
<td>PIN 4492 3</td>
<td>Mongolia</td>
<td>partial skull</td>
<td>3D</td>
<td>?; embryo</td>
<td></td>
<td>(Kurochkin et al., 2013) [drawing]</td>
</tr>
<tr>
<td>Gobiptyrx minuta</td>
<td>IGM-100/1011</td>
<td>Mongolia</td>
<td>rostral half of skull</td>
<td>3D</td>
<td>excellent</td>
<td></td>
<td>(Chiappe et al., 2001)</td>
</tr>
<tr>
<td>G. minuta</td>
<td>PIN 4492</td>
<td>Mongolia</td>
<td>partial skull</td>
<td>3D</td>
<td>excellent</td>
<td></td>
<td>(Chiappe et al., 2001)</td>
</tr>
<tr>
<td>G. minuta</td>
<td>ZPAL MgR 1/12</td>
<td>Mongolia</td>
<td>partial skull</td>
<td>3D</td>
<td>poor</td>
<td></td>
<td>(Elzanowski, 1977)</td>
</tr>
<tr>
<td>G. minuta</td>
<td>ZPAL MgR 1/32</td>
<td>Mongolia</td>
<td>partial skull</td>
<td>3D</td>
<td>poor</td>
<td></td>
<td>(Elzanowski, 1977)</td>
</tr>
<tr>
<td>G. minuta</td>
<td>ZPAL MgR-I/33</td>
<td>Mongolia</td>
<td>partial skull</td>
<td>3D</td>
<td>poor; recrystallized; embryo</td>
<td></td>
<td>(Elzanowski, 1981)</td>
</tr>
<tr>
<td>G. minuta</td>
<td>ZPAL MgR-I/34</td>
<td>Mongolia</td>
<td>partial skull</td>
<td>3D</td>
<td>poor; embryo</td>
<td>X</td>
<td>(Elzanowski, 1981)</td>
</tr>
<tr>
<td>G. minuta</td>
<td>ZPAL MgR-I/88</td>
<td>Mongolia</td>
<td>partial skull</td>
<td>3D</td>
<td>good; embryo</td>
<td></td>
<td>(Elzanowski, 1981)</td>
</tr>
<tr>
<td>Grabauornis lingyuanensis</td>
<td>IVPP V14595</td>
<td>China</td>
<td>nearly complete skull</td>
<td>lateral</td>
<td>poor; only voids</td>
<td></td>
<td>(Dalsätt, Ericson & Zhou, 2014)</td>
</tr>
<tr>
<td>Gracilornis jiufotangensis</td>
<td>PMOL-AB00170</td>
<td>China</td>
<td>partial skull</td>
<td>lateral</td>
<td>good</td>
<td></td>
<td>(Li & Hou, 2011)</td>
</tr>
<tr>
<td>Gretcheniaow sinensis</td>
<td>BMNH Ph-829</td>
<td>China</td>
<td>partial skull</td>
<td>lateral</td>
<td>good</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Holbotia ponomarenkoi</td>
<td>PIN 3147-200</td>
<td>China</td>
<td>premaxilla, maxilla?, dentary</td>
<td>medial</td>
<td>poor; several voids</td>
<td>X</td>
<td>(Zelenkov & Averianov, 2016)</td>
</tr>
<tr>
<td>Houornis caudatus</td>
<td>IVPP V10917</td>
<td>China</td>
<td>premaxilla, frontal, parietal, dentary</td>
<td>dorsolateral</td>
<td>poor; several voids</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Huoshanornis huji</td>
<td>DNHM D2126</td>
<td>China</td>
<td>partial skull</td>
<td>lateral</td>
<td>poor</td>
<td>X</td>
<td>(Wang, Zhang, Gao et al., 2010a)</td>
</tr>
<tr>
<td>Species</td>
<td>Repository/Reference</td>
<td>Location</td>
<td>Bone Description</td>
<td>View</td>
<td>Condition</td>
<td>Remarks</td>
<td></td>
</tr>
<tr>
<td>-------------------------</td>
<td>----------------------</td>
<td>----------</td>
<td>------------------</td>
<td>--------</td>
<td>-----------</td>
<td>--</td>
<td></td>
</tr>
<tr>
<td>Junornis houi</td>
<td>BMNHC Ph-919</td>
<td>China</td>
<td>Partial skull</td>
<td>Lateral</td>
<td>Poor</td>
<td>(Liu, Chiappe, Serrano et al., 2017)</td>
<td></td>
</tr>
<tr>
<td>Largirostrornis sexdentoris</td>
<td>IVPP V10531</td>
<td>China</td>
<td>Partial skull</td>
<td>Ventral</td>
<td>?</td>
<td>(Hou, 1997) [drawing]</td>
<td></td>
</tr>
<tr>
<td>Linyiornis amoena</td>
<td>STM 11-80</td>
<td>China</td>
<td>Partial skull</td>
<td>Dorsolateral</td>
<td>Good</td>
<td>(Wang et al., 2016d)</td>
<td></td>
</tr>
<tr>
<td>Longchengornis sanyanensis</td>
<td>IVPP V10530</td>
<td>China</td>
<td>Frontal, parietal, dentary</td>
<td>Lateral</td>
<td>Poor; only voids</td>
<td>(Hou, 1997) [drawing]</td>
<td></td>
</tr>
<tr>
<td>Longipteryx chaoyangensis</td>
<td>BMNHC Ph-1071</td>
<td>China</td>
<td>Nearly complete skull</td>
<td>Lateral</td>
<td>Good</td>
<td>(Chiappe et al., 2016 pg. 89)</td>
<td></td>
</tr>
<tr>
<td>L. chaoyangensis</td>
<td>BMNHC Ph-826</td>
<td>China</td>
<td>Partial skull</td>
<td>Lateral</td>
<td>Good</td>
<td>(Chiappe et al., 2016 pg. 27)</td>
<td></td>
</tr>
<tr>
<td>L. chaoyangensis</td>
<td>BMNHC Ph-930B</td>
<td>China</td>
<td>Nearly complete skull</td>
<td>Lateral</td>
<td>Good</td>
<td>(Chiappe et al., 2016 pg. 176)</td>
<td></td>
</tr>
<tr>
<td>L. chaoyangensis</td>
<td>DNHM D2566</td>
<td>China</td>
<td>Nearly complete skull</td>
<td>Lateral</td>
<td>Good</td>
<td>NA</td>
<td></td>
</tr>
<tr>
<td>L. chaoyangensis</td>
<td>DNHM D2889</td>
<td>China</td>
<td>Complete skull</td>
<td>Lateral</td>
<td>Excellent</td>
<td>(Wang et al., 2015c)</td>
<td></td>
</tr>
<tr>
<td>L. chaoyangensis</td>
<td>HGM-41HI0319</td>
<td>China</td>
<td>Nearly complete skull</td>
<td>Lateral</td>
<td>Good</td>
<td>(Chiappe et al., 2016 pg. 88)</td>
<td></td>
</tr>
<tr>
<td>L. chaoyangensis</td>
<td>IVPP V11309</td>
<td>China</td>
<td>Nearly complete skull</td>
<td>Lateral</td>
<td>Poor</td>
<td>(Chiappe et al., 2016 pg. 86; Hou et al., 2004)</td>
<td></td>
</tr>
<tr>
<td>L. chaoyangensis</td>
<td>IVPP V12325</td>
<td>China</td>
<td>Nearly complete skull</td>
<td>Lateral</td>
<td>Good</td>
<td>(Wang et al., 2015c)</td>
<td></td>
</tr>
<tr>
<td>L. chaoyangensis</td>
<td>IVPP V12552</td>
<td>China</td>
<td>Nearly complete skull</td>
<td>Lateral</td>
<td>Good; juvenile</td>
<td>(O'Connor et al., 2010c) [drawing]</td>
<td></td>
</tr>
<tr>
<td>L. chaoyangensis</td>
<td>SG2005-B1</td>
<td>China</td>
<td>Nearly complete skull</td>
<td>Lateral</td>
<td>Good; several voids</td>
<td>X</td>
<td>(Li, Gong, Zhang et al., 2010)</td>
</tr>
<tr>
<td>Longusunguis kurochkini</td>
<td>IVPP V17964</td>
<td>China</td>
<td>partial skull</td>
<td>lateral</td>
<td>excellent</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>-------------------------------</td>
<td>-------------</td>
<td>-------</td>
<td>---------------</td>
<td>--------</td>
<td>-----------</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>L. kurochkini</td>
<td>IVPP V18693</td>
<td>China</td>
<td>nearly complete skull</td>
<td>dorsal</td>
<td>good</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Microenantiornis vulgaris</td>
<td>PMOL-AB00171</td>
<td>China</td>
<td>nearly complete skull</td>
<td>lateral</td>
<td>poor</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Monoenantiornis sihedangia</td>
<td>IVPP V20289</td>
<td>China</td>
<td>partial skull</td>
<td>ventrolateral</td>
<td>good</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Neuquenornis volans</td>
<td>MUCPv-142</td>
<td>Argentina</td>
<td>braincase</td>
<td>3D</td>
<td>good</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Orienantius ritteri</td>
<td>BMNHC Ph-1154</td>
<td>China</td>
<td>partial skull</td>
<td>lateral</td>
<td>poor</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>O. ritteri</td>
<td>BMNHC Ph-1156</td>
<td>China</td>
<td>partial skull</td>
<td>lateral</td>
<td>poor</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Parabohaiornis martini</td>
<td>IVPP V18690/1</td>
<td>China</td>
<td>partial skull</td>
<td>lateral</td>
<td>good</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Parapengornis eurycaudatus</td>
<td>IVPP V18687</td>
<td>China</td>
<td>nearly complete skull</td>
<td>lateral</td>
<td>excellent</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Paraprotopteryx gracilis</td>
<td>STM V001</td>
<td>China</td>
<td>partial skull</td>
<td>lateral</td>
<td>poor</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Paravis chuxiongensis</td>
<td>IVPP V18586</td>
<td>China</td>
<td>exoccipital, surangular</td>
<td>cranial</td>
<td>poor; primarily voids</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Pengornis houi</td>
<td>IVPP V15336</td>
<td>China</td>
<td>complete skull</td>
<td>lateral</td>
<td>excellent</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Piscivorenantiornis inusitatus</td>
<td>IVPP V22582</td>
<td>China</td>
<td>premaxilla, frontal, quadrate, braincase, dentary</td>
<td>various</td>
<td>good; fish pellet?</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Protopteryx fengningensis</td>
<td>BMNHC Ph-1060</td>
<td>China</td>
<td>partial skull</td>
<td>lateral</td>
<td>poor</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Species</td>
<td>Code</td>
<td>Location</td>
<td>Remarks</td>
<td>Measure</td>
<td>Condition</td>
<td>Literature</td>
<td></td>
</tr>
<tr>
<td>--------------------------</td>
<td>---------------</td>
<td>-----------</td>
<td>--</td>
<td>----------</td>
<td>-----------</td>
<td>----------------------------------</td>
<td></td>
</tr>
<tr>
<td>P. fengningensis</td>
<td>BMNH Ph-1158</td>
<td>China</td>
<td>nearly complete skull</td>
<td>lateral</td>
<td>poor</td>
<td>(Chiappe et al., 2019a)</td>
<td></td>
</tr>
<tr>
<td>P. fengningensis</td>
<td>IVPP V1165</td>
<td>China</td>
<td>nearly complete skull</td>
<td>lateral</td>
<td>poor</td>
<td>(Chiappe et al., 2019a)</td>
<td></td>
</tr>
<tr>
<td>Pterygornis dapingfangensis</td>
<td>IVPP V16363</td>
<td>China</td>
<td>partial skull</td>
<td>dorsolateral</td>
<td>good</td>
<td>(Wang, Li & Zhou, 2017a)</td>
<td></td>
</tr>
<tr>
<td>P. dapingfangensis</td>
<td>IVPP V20729</td>
<td>China</td>
<td>maxilla, nasal, jugal, quadratojugal, quadrate, angular, surangular</td>
<td>medial</td>
<td>good</td>
<td>(Wang et al., 2017a)</td>
<td></td>
</tr>
<tr>
<td>Rapaxavis pani</td>
<td>DNHM D2522</td>
<td>China</td>
<td>nearly complete skull</td>
<td>dorsolateral</td>
<td>good</td>
<td>(Morschhauser et al., 2009)</td>
<td></td>
</tr>
<tr>
<td>Shangyang graciles</td>
<td>IVPP V25033</td>
<td>China</td>
<td>partial skull</td>
<td>dorsal</td>
<td>poor</td>
<td>(Wang & Zhou, 2019e)</td>
<td></td>
</tr>
<tr>
<td>Shanweiniao cooperorum</td>
<td>DNHM D1878/1</td>
<td>China</td>
<td>partial skull</td>
<td>lateral</td>
<td>poor</td>
<td>(O'Connor et al., 2009)</td>
<td></td>
</tr>
<tr>
<td>Shengjoringis yangi</td>
<td>PMOL-AB00179</td>
<td>China</td>
<td>nearly complete skull</td>
<td>lateral</td>
<td>poor</td>
<td>(Li, Wang, Zhang et al., 2012)</td>
<td></td>
</tr>
<tr>
<td>Shenqiornis mengi</td>
<td>DNHM D2950/1</td>
<td>China</td>
<td>nearly complete skull</td>
<td>lateral</td>
<td>good</td>
<td>(Wang et al., 2010b)</td>
<td></td>
</tr>
<tr>
<td>Sinornis santensis</td>
<td>BPV 538a/b</td>
<td>China</td>
<td>partial skull</td>
<td>lateral?</td>
<td>poor</td>
<td>(O'Connor & Dyke, 2010a)</td>
<td></td>
</tr>
<tr>
<td>Sulcavis geeorum</td>
<td>BMNH Ph-805</td>
<td>China</td>
<td>partial skull</td>
<td>lateral</td>
<td>good; several voids</td>
<td>(O'Connor et al., 2013)</td>
<td></td>
</tr>
<tr>
<td>Vescornis hebeiensis</td>
<td>NIGPAS-130722</td>
<td>China</td>
<td>nearly complete skull</td>
<td>ventral</td>
<td>good; several voids</td>
<td>(Zhang et al., 2004)</td>
<td></td>
</tr>
<tr>
<td>Zhouornis hani</td>
<td>BMNH Ph-756</td>
<td>China</td>
<td>partial skull</td>
<td>lateral</td>
<td>excellent; juvenile</td>
<td>(Zhang et al., 2014)</td>
<td></td>
</tr>
<tr>
<td>Species</td>
<td>Institution</td>
<td>Location</td>
<td>Description</td>
<td>Preservation</td>
<td>Reference (Year)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>-------------------------</td>
<td>-------------</td>
<td>----------</td>
<td>--------------------------------------</td>
<td>--------------</td>
<td>------------------------------</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Z. hani</td>
<td>CNU VB0903</td>
<td>China</td>
<td>partial skull; lateral; good</td>
<td>X</td>
<td>(Zhang et al., 2013)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Non-avian Ornithuromorpha</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Apsaravis ukhaana</td>
<td>IGM 100/1017</td>
<td>Mongolia</td>
<td>orbit, dentary, jugal?; lateral; good; gastroliths</td>
<td>X</td>
<td>(Clarke & Norell, 2002)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Archaeorhynchus spathula</td>
<td>IVPP V14287</td>
<td>China</td>
<td>partial skull; ventral; gastroliths</td>
<td>poor</td>
<td>(Zhou & Zhang, 2006)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>A. spathula</td>
<td>IVPP V17075</td>
<td>China</td>
<td>nearly complete skull; dorsal; gastroliths</td>
<td>X</td>
<td>(Zhou et al., 2013)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>A. spathula</td>
<td>IVPP V17091</td>
<td>China</td>
<td>partial skull; dorsolateral; good</td>
<td>X</td>
<td>(Zhou et al., 2013)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>A. spathula</td>
<td>IVPP V20312</td>
<td>China</td>
<td>frontal, dentary, surangular; dorsolateral; gastroliths</td>
<td>X</td>
<td>(Wang & Zhou, 2016b)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>A. spathula</td>
<td>STM 7-11</td>
<td>China</td>
<td>partial skull; dorsolateral; good</td>
<td>X</td>
<td>(Wang, O’Connor, Maina et al., 2018)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Archeornithura meemannae</td>
<td>STM 7-145</td>
<td>China</td>
<td>basicranium; cranial?; poor</td>
<td>X</td>
<td>(Wang et al., 2015b)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>A. meemannae</td>
<td>STM 7-163</td>
<td>China</td>
<td>basicranium; cranial?; poor</td>
<td>X</td>
<td>(Wang et al., 2015b)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Baptornis advenus</td>
<td>AMNH 5101</td>
<td>USA</td>
<td>frontal, quadrate; 3D; excellent</td>
<td>X</td>
<td>(Martin et al., 1976) (lost according to Bell et al., 2020)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>B. advenus</td>
<td>FMNH 395</td>
<td>USA</td>
<td>mandible; 3D; excellent</td>
<td>X</td>
<td>(Martin et al., 1976)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dingavis longimaxilla</td>
<td>IVPP V20284</td>
<td>China</td>
<td>nearly complete skull; lateral; poor; gastroliths</td>
<td>X</td>
<td>(O'Connor, Wang & Hu, 2016b)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Enaliornis barretti</td>
<td>SMC B54404</td>
<td>UK</td>
<td>braincase; 3D; excellent</td>
<td>X</td>
<td>(Bell et al., 2020; Elzanowski et al., 1991)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Species</td>
<td>Catalogue Number</td>
<td>Location</td>
<td>Bone/Region</td>
<td>3D Rating</td>
<td>Description</td>
<td>Presence</td>
<td>Reference</td>
</tr>
<tr>
<td>------------------------------</td>
<td>------------------</td>
<td>----------</td>
<td>------------------------------</td>
<td>-----------</td>
<td>--</td>
<td>----------</td>
<td>---</td>
</tr>
<tr>
<td>E. barretti</td>
<td>YORYM 585</td>
<td>UK</td>
<td>braincase</td>
<td>poor</td>
<td></td>
<td>X</td>
<td>(Elzanowski et al., 1991)</td>
</tr>
<tr>
<td>Eogranivora edentulata</td>
<td>STM 35-3</td>
<td>China</td>
<td>premaxilla, nasal, frontal, dentary</td>
<td>dorsolateral</td>
<td>poor; ingested seeds; gastroliths</td>
<td>X</td>
<td>(Zheng et al., 2018a)</td>
</tr>
<tr>
<td>Hesperornis regalis</td>
<td>KUVP 71012</td>
<td>USA</td>
<td>nearly complete skull</td>
<td>3D</td>
<td>excellent</td>
<td>X</td>
<td>(Bell et al., 2020)</td>
</tr>
<tr>
<td>H. regalis</td>
<td>USNM V 4978</td>
<td>USA</td>
<td>partial skull</td>
<td>3D</td>
<td>excellent</td>
<td>X</td>
<td>(Elzanowski, 1991)</td>
</tr>
<tr>
<td>H. regalis</td>
<td>USNM V 6622</td>
<td>USA</td>
<td>premaxilla</td>
<td>3D</td>
<td>excellent</td>
<td>X</td>
<td>(Elzanowski, 1991)</td>
</tr>
<tr>
<td>H. regalis</td>
<td>YPM VP 903</td>
<td>USA</td>
<td>mandible</td>
<td>3D</td>
<td>excellent</td>
<td>X</td>
<td>NA</td>
</tr>
<tr>
<td>H. regalis</td>
<td>YPM VP 1206</td>
<td>USA</td>
<td>premaxilla, maxilla, nasal, dentary</td>
<td>3D</td>
<td>excellent</td>
<td>X</td>
<td>(Dumont et al., 2016; Gingerich, 1973)</td>
</tr>
<tr>
<td>H. regalis</td>
<td>YPM VP 1207</td>
<td>USA</td>
<td>skull fragments including braincase</td>
<td>3D</td>
<td>good</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>cf. Hesperornis</td>
<td>NUVF 286</td>
<td>Canada</td>
<td>teeth</td>
<td>3D</td>
<td>excellent</td>
<td>X</td>
<td>(Wilson, Chin & Cumbaa, 2016)</td>
</tr>
<tr>
<td>Hongshanornis longicresta</td>
<td>DNHM D2945/6</td>
<td>China</td>
<td>partial skull</td>
<td>lateral</td>
<td>poor; gastroliths</td>
<td>X</td>
<td>(Chiappe et al., 2014)</td>
</tr>
<tr>
<td>H. longicresta</td>
<td>IVPP V14533</td>
<td>China</td>
<td>partial skull</td>
<td>lateral</td>
<td>poor</td>
<td>X</td>
<td>(Zhou & Zhang, 2005)</td>
</tr>
<tr>
<td>Ichthyornis dispar</td>
<td>ALMNH 3316</td>
<td>USA</td>
<td>premaxilla, maxilla, mandible</td>
<td>3D</td>
<td>excellent</td>
<td>X</td>
<td>(Field et al., 2018b)</td>
</tr>
<tr>
<td>I. dispar</td>
<td>BHI 6421</td>
<td>USA</td>
<td>quadrate, quadratojugal, mandible</td>
<td>3D</td>
<td>excellent</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>I. dispar</td>
<td>FHSN VP-18702</td>
<td>USA</td>
<td>partial skull</td>
<td>3D</td>
<td>good</td>
<td>X</td>
<td>X</td>
</tr>
</tbody>
</table>

(Elzanowski, 1991)
<table>
<thead>
<tr>
<th>Species</th>
<th>Catalogue Number</th>
<th>Country</th>
<th>Specimen Parts</th>
<th>Imaging Type</th>
<th>Quality</th>
<th>Authors</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>I. dispar</td>
<td>KUVP 119673</td>
<td>USA</td>
<td>jugal, quadrate, mandible</td>
<td>3D</td>
<td>excellent</td>
<td>X</td>
<td>(Field et al., 2018b)</td>
</tr>
<tr>
<td>I. dispar</td>
<td>YPM VP 1450</td>
<td>USA</td>
<td>cranium, nasal, lacrimal, mandible</td>
<td>3D</td>
<td>good</td>
<td>X</td>
<td>(Field et al., 2018b)</td>
</tr>
<tr>
<td>I. dispar</td>
<td>YPM VP 1459</td>
<td>USA</td>
<td>premaxilla</td>
<td>3D</td>
<td>excellent</td>
<td>X</td>
<td>(Field et al., 2018b)</td>
</tr>
<tr>
<td>I. dispar</td>
<td>YPM VP 1728</td>
<td>USA</td>
<td>cranium, nasal, frontal</td>
<td>3D</td>
<td>good</td>
<td>X</td>
<td>(Field et al., 2018b)</td>
</tr>
<tr>
<td>I. dispar</td>
<td>YPM VP 1735</td>
<td>USA</td>
<td>mandible</td>
<td>3D</td>
<td>good</td>
<td>X</td>
<td>(Clarke, 2004)</td>
</tr>
<tr>
<td>I. dispar</td>
<td>YPM VP 1749</td>
<td>USA</td>
<td>quadrate</td>
<td>3D</td>
<td>excellent</td>
<td>X</td>
<td>(Field et al., 2018b)</td>
</tr>
<tr>
<td>I. dispar</td>
<td>YPM VP 1761</td>
<td>USA</td>
<td>mandible</td>
<td>3D</td>
<td>good</td>
<td>X</td>
<td>(Clarke, 2004)</td>
</tr>
<tr>
<td>I. dispar</td>
<td>YPM VP 1775</td>
<td>USA</td>
<td>mandible</td>
<td>3D</td>
<td>excellent</td>
<td>X</td>
<td>(Field et al., 2018b)</td>
</tr>
<tr>
<td>I. dispar</td>
<td>YPM VP 6264</td>
<td>USA</td>
<td>mandible</td>
<td>3D</td>
<td>good</td>
<td>X X</td>
<td>(Clarke, 2004)</td>
</tr>
<tr>
<td>Iteravis huchzermeyeri</td>
<td>BMNHC Ph-1318</td>
<td>China</td>
<td>nearly complete skull</td>
<td>lateral</td>
<td>good; gastroliths</td>
<td></td>
<td>(Chiappe et al., 2016 pg. 104)</td>
</tr>
<tr>
<td>I. huchzermeyeri</td>
<td>BMNHC Ph-1343</td>
<td>China</td>
<td>nearly complete skull</td>
<td>dorsolateral</td>
<td>poor</td>
<td>X</td>
<td>(Chiappe et al., 2016 pg. 106)</td>
</tr>
<tr>
<td>I. huchzermeyeri</td>
<td>BMNHC Ph-1392</td>
<td>China</td>
<td>partial skull</td>
<td>dorsolateral</td>
<td>good</td>
<td>X</td>
<td>(Chiappe et al., 2016 pg. 187)</td>
</tr>
<tr>
<td>Jianchangornis microdonta</td>
<td>IVPP V16708</td>
<td>China</td>
<td>nearly complete skull</td>
<td>lateral</td>
<td>poor</td>
<td>X</td>
<td>(Zhou, Zhang & Li, 2009)</td>
</tr>
<tr>
<td>Longicrusavis houi</td>
<td>PKUP V1069</td>
<td>China</td>
<td>partial skull</td>
<td>ventrolateral</td>
<td>poor</td>
<td>X X</td>
<td>(O'Connor et al., 2010b)</td>
</tr>
<tr>
<td>Parahesperornis alexi</td>
<td>KUVP 2287</td>
<td>USA</td>
<td>complete skull</td>
<td>3D</td>
<td>poor</td>
<td>X</td>
<td>(Bell et al., 2020)</td>
</tr>
<tr>
<td>Pasquiaornis tankei</td>
<td>RSM P2831.18</td>
<td>Canada</td>
<td>angular</td>
<td>3D</td>
<td>good</td>
<td>X</td>
<td>(Sanchez, 2010)</td>
</tr>
<tr>
<td>P. tankei</td>
<td>RSM P2831.52</td>
<td>Canada</td>
<td>quadrate</td>
<td>3D</td>
<td>excellent</td>
<td>X</td>
<td>(Sanchez, 2010)</td>
</tr>
<tr>
<td>P. tankei</td>
<td>RSM P2831.6</td>
<td>Canada</td>
<td>dentary</td>
<td>3D</td>
<td>good</td>
<td>X</td>
<td>(Sanchez, 2010)</td>
</tr>
<tr>
<td>Species</td>
<td>Catalogue</td>
<td>Location</td>
<td>Part(s) Described</td>
<td>Fossil Orientation</td>
<td>Quality</td>
<td>Notes/References</td>
<td></td>
</tr>
<tr>
<td>-------------------------------</td>
<td>-----------</td>
<td>----------</td>
<td>-------------------</td>
<td>-------------------</td>
<td>---------</td>
<td>--</td>
<td></td>
</tr>
<tr>
<td>P. tankei</td>
<td>RSM P2957.12</td>
<td>Canada</td>
<td>frontal</td>
<td>3D</td>
<td>good</td>
<td>X (Sanchez, 2010)</td>
<td></td>
</tr>
<tr>
<td>P. tankei</td>
<td>RSM P2985.10</td>
<td>Canada</td>
<td>dentary</td>
<td>3D</td>
<td>good</td>
<td>X (Sanchez, 2010)</td>
<td></td>
</tr>
<tr>
<td>P. tankei</td>
<td>RSM P2985.9</td>
<td>Canada</td>
<td>splenial</td>
<td>3D</td>
<td>good</td>
<td>X (Sanchez, 2010)</td>
<td></td>
</tr>
<tr>
<td>P. tankei</td>
<td>RSM P2986.2</td>
<td>Canada</td>
<td>angular</td>
<td>3D</td>
<td>good</td>
<td>X (Sanchez, 2010)</td>
<td></td>
</tr>
<tr>
<td>P. tankei</td>
<td>RSM P2988.11</td>
<td>Canada</td>
<td>dentary</td>
<td>3D</td>
<td>good</td>
<td>X (Sanchez, 2010)</td>
<td></td>
</tr>
<tr>
<td>P. tankei</td>
<td>RSM P2988.25</td>
<td>Canada</td>
<td>quadrate</td>
<td>3D</td>
<td>excellent</td>
<td>X (Sanchez, 2010)</td>
<td></td>
</tr>
<tr>
<td>P. tankei</td>
<td>RSM P2989.19</td>
<td>Canada</td>
<td>articular, prearticular, surangular</td>
<td>3D</td>
<td>good</td>
<td>X (Sanchez, 2010)</td>
<td></td>
</tr>
<tr>
<td>P. tankei</td>
<td>RSM P2989.21</td>
<td>Canada</td>
<td>articular, prearticular, surangular</td>
<td>3D</td>
<td>excellent</td>
<td>X (Sanchez, 2010)</td>
<td></td>
</tr>
<tr>
<td>P. tankei</td>
<td>RSM P2995.4</td>
<td>Canada</td>
<td>frontal</td>
<td>3D</td>
<td>excellent</td>
<td>X (Bell et al., 2020)</td>
<td></td>
</tr>
<tr>
<td>P. tankei</td>
<td>RSM P2995.5</td>
<td>Canada</td>
<td>maxilla</td>
<td>3D</td>
<td>excellent</td>
<td>X (Sanchez, 2010)</td>
<td></td>
</tr>
<tr>
<td>Patagopteryx deferrariisi</td>
<td>MACN-N-11</td>
<td>Argentina</td>
<td>braincase, mandible</td>
<td>3D</td>
<td>excellent</td>
<td>X (Chiappe, 2002)</td>
<td></td>
</tr>
<tr>
<td>Piscivoravis lii</td>
<td>IVPP V17078</td>
<td>China</td>
<td>dentary, quadrate, surangular</td>
<td>lateral</td>
<td>excellent; ingested fish</td>
<td>(Zhou, Zhou & O'Connor, 2014b)</td>
<td></td>
</tr>
<tr>
<td>Potamornis skutchi</td>
<td>UCMP 73103</td>
<td>USA</td>
<td>quadrate</td>
<td>3D</td>
<td>excellent</td>
<td>X (Bell et al., 2020)</td>
<td></td>
</tr>
<tr>
<td>Schizooura lii</td>
<td>IVPP V16861</td>
<td>China</td>
<td>complete skull</td>
<td>lateral</td>
<td>good</td>
<td>X (Zhou et al., 2012)</td>
<td></td>
</tr>
<tr>
<td>Songlingornis linghensis</td>
<td>IVPP V10913</td>
<td>China</td>
<td>premaxilla, dentary</td>
<td>lateral</td>
<td>?</td>
<td>X X (Hou, 1997) [drawing]</td>
<td></td>
</tr>
<tr>
<td>Tianyuornis cheni</td>
<td>STM 7-53</td>
<td>China</td>
<td>partial skull</td>
<td>lateral</td>
<td>poor; juvenile</td>
<td>X (Zheng et al., 2014)</td>
<td></td>
</tr>
<tr>
<td>Xinghaiornis lini</td>
<td>XHPM 1121</td>
<td>China</td>
<td>complete skull</td>
<td>dorsolateral</td>
<td>excellent</td>
<td>(Wang, Chiappe, Teng et al., 2013)</td>
<td></td>
</tr>
<tr>
<td>Yanornis martini</td>
<td>BMNHC Ph-1043</td>
<td>China</td>
<td>nearly complete skull</td>
<td>lateral</td>
<td>good</td>
<td>(Chiappe et al., 2016 pg. 100)</td>
<td></td>
</tr>
<tr>
<td>Y. martini</td>
<td>BMNHC Ph-928</td>
<td>China</td>
<td>nearly complete skull</td>
<td>lateral</td>
<td>poor</td>
<td>X (Chiappe et al., 2016pg. 102)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>----------------</td>
<td>----------------</td>
<td>----------</td>
<td>----------------</td>
<td>----------</td>
<td>----------</td>
<td>----------</td>
<td>----------</td>
</tr>
<tr>
<td>Y. martini</td>
<td>DNHM D3069</td>
<td>China</td>
<td>partial skull</td>
<td>ventrolateral</td>
<td>poor</td>
<td>X</td>
<td>(Chiappe et al., 2016 pg. 166)</td>
</tr>
<tr>
<td>Y. martini</td>
<td>IVPP V12558</td>
<td>China</td>
<td>partial skull</td>
<td>lateral</td>
<td>poor</td>
<td>X</td>
<td>(O'Connor, 2019)</td>
</tr>
<tr>
<td>Y. martini</td>
<td>IVPP V13358</td>
<td>China</td>
<td>nearly complete skull</td>
<td>lateral</td>
<td>poor; gastroliths</td>
<td>X</td>
<td>(Zhou et al., 2004)</td>
</tr>
<tr>
<td>Y. martini</td>
<td>STM 9-15</td>
<td>China</td>
<td>nearly complete skull</td>
<td>lateral</td>
<td>good; ingested fish</td>
<td>X</td>
<td>(Zheng et al., 2014)</td>
</tr>
<tr>
<td>Y. martini</td>
<td>XHPM 1205</td>
<td>China</td>
<td>nearly complete skull</td>
<td>lateral</td>
<td>good</td>
<td>X</td>
<td>(Chiappe et al., 2016 pg. 168)</td>
</tr>
<tr>
<td>Yixianornis grabaui</td>
<td>IVPP V12631</td>
<td>China</td>
<td>partial skull</td>
<td>dorsal</td>
<td>good</td>
<td>X</td>
<td>(Chiappe et al., 2016 pg. 101)</td>
</tr>
<tr>
<td>Y. grabaui</td>
<td>IVPP V13631</td>
<td>China</td>
<td>partial skull</td>
<td>ventral</td>
<td>poor</td>
<td>X</td>
<td>(Clarke et al., 2006)</td>
</tr>
<tr>
<td>Zhongjianornis yangi</td>
<td>IVPP V15900</td>
<td>China</td>
<td>nearly complete skull</td>
<td>dorsolateral</td>
<td>poor</td>
<td>X</td>
<td>(Zhou et al., 2010)</td>
</tr>
</tbody>
</table>

Table 4.

Summary table of which physical approaches a given complication has considerable effect upon. Complications with an asterisk (*) are those for which methods to mathematically correct for are established.

<table>
<thead>
<tr>
<th></th>
<th>Phylogenetic Signal*</th>
<th>Allometric Signal*</th>
<th>Many-To-One-Mapping</th>
<th>Liem’s Paradox</th>
<th>Integration</th>
<th>Modularity</th>
<th>Behavioural Signals</th>
</tr>
</thead>
<tbody>
<tr>
<td>Traditional Morphometrics</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td></td>
<td>Geometric Morphometrics</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>--------------------------</td>
<td>-------------------------</td>
<td>------</td>
<td>------</td>
<td>------</td>
<td>------</td>
<td>------</td>
<td>------</td>
</tr>
<tr>
<td></td>
<td></td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td></td>
<td>Lever Modelling</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>X</td>
<td></td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
</tbody>
</table>
Supplement for: The Diet of Early Birds Based on Modern and Fossil Evidence and a New Framework for its Reconstruction

Supplemental Figures
Each of the figures herein are comparisons between key graphs from the literature [redrawn] and revised versions produced using reanalysed data. The figures mimic the aesthetics of the original graphs to make comparisons easier. Specifics are described in each figure caption.
Fig. S1.
Principal Component Analysis [PCA] of avian pedal measurements. Fowler et al. (2009; 2011) use Correspondence Analysis [CA], designed to analyse discrete data, to analyse the continuous length measurements of the avian pes. (A) The original CA of Fowler et al. (2011) is provided, excluding
samples of *Deinonychus*. It generally resembles that of Fowler et al (2009) but has several additional strigiform samples included. This is contrasted to (B) PCA of the data used in (Fowler et al., 2011) excluding *Deinonychus*. Note relative occupations of the morphospace by each group remains somewhat constant, but several differences are pertinent between the CA and PCA plots. In PCA: Pandionidae inhabits the same region of the morphospace as Strigiformes; Phasianidae, Piciformes, and Cathartidae cluster more closely to each other than any other groups; and in the set of Accipitridae, Falconidae, and Passeriformes, Passeriformes replaces Falconidae as the intermediary region and all three cluster more closely together.

Fig. S2.
Principal Component Analysis of theropod skulls. The analysis of (A,B) Foth and Rauhut (2013) [convex hulls added] defines nine taxa as carnivorous, herbivorous, or omnivorous that this study considers indeterminate. In addition, their study does not scale the variance of the inputs when computing principal components. (C,D) Reanalysis with these taxa labelled as indeterminate and input variances scaled maintains most carnivores in their own region of the morphospace and lessens the overlap between carnivore and herbivore taxa (though the extreme morphologies of *Anchiornis* and *Bambiraptor* cause the convex hulls of the two to overlap broadly). No hull is generated for omnivores as the only taxon included with convincing evidence of omnivory is *Lesothosaurus* (Sciscio, Knoll, Bordy et al., 2017). Note that the Y-axis of (A,C) and both axes of (B,D) are inverted relative to the original publication as the sign of principal components calculated with the prcomp function in R is arbitrary (R Core Team 2019).
Fig. S3.
Principal Component Analysis of theropod skulls. (A,B) The analysis of Schaeffer et al. (2019) defines 14 taxa as herbivorous/omnivorous or as small carnivores that this study considers indeterminate. (C,D) Reanalysis with these taxa labelled as indeterminate decreases the overlap between herbivores/omnivores...
and small carnivores primarily by removing therizinosaurs and avialans, respectively, from their
groups. The total morphospace occupied by herbivores/omnivores is also greatly reduced by excluding
oviraptorids which occupy their own unique area of the morphospace. PC1 and PC3 of landmark results
are also plotted (E) to display their similarity to (A) and (C). This similarity is because PC3 of the
landmark data describes similar shape variation to PC2 of the outline data (Figure 4 in Schaeffer et al.,
2019).
Fig. S4.
Relationship between mechanical advantage and plant consumption in Passerines. Plot based on the appendix of Corbin et al. (2015), (A) including and (B) excluding Zenaida macroura. Z. macroura is the
only columbiform bird included in the otherwise passerine data set. Correlation including this point included is weak to nonexistent, but of moderate strength when the data is restricted to passerine taxa.

Fig. S5.
Biomechanical morphospace of Dinosauria. (A) The analysis of Button and Zanno (2020) incorporates 34 functional metrics to examine the affinities of various dinosaur groups in order to investigate convergence in dietary adaptation. Their observed trends are maintained in (B) an analysis incorporating only nine of their measured indices which have both theoretical validity and are shown to discriminate diet among extant animals [their C2–8, 22, and 23]. The most noteworthy difference in trends is that in (B) there is more separation in the morphospace between edentulous theropods [Ornithomimosauria and Oviraptorosauria] and sauropods along the PC2 axis. Note also that (B) accounts for a much higher proportion of the variance in the first two principal components [60.4% as opposed to 32.2% in (A)].
Both axes of the graphs are inverted relative to the original publication. An interactive three-dimensional graph of the data can be generated from the supplemental R code.
Supplemental Tables
The following are tables to assist in interpreting the details of this review. Specifics are given with each table caption.

Table S1.
Calculation of cranial connective properties of *Shenqiornis*. Connective tissue properties recorded in the literature are compiled and used to estimate connective tissue properties for *Shenqiornis*. Regressions of cross-sectional area [X-Sect] and Young’s Modulus [E] were made vs. [body mass]$^{0.33}$ using a polynomial [Poly] and power [Pow] fit to the properties of cranial sutures. As Cost et al. (2019) considered dog patellar tendon as a potential model, an additional power-fit regression using the full sample [PowFS] was also made. Macaques were excluded from all regressions as outliers. The properties of the Pow regression are used in Figure 6C; Poly and PowFS properties produced dislocation similar to Figure 6A and B.

<table>
<thead>
<tr>
<th>Animal</th>
<th>Part</th>
<th>Mass (g)</th>
<th>X-Sect (mm2)</th>
<th>E (MPa)</th>
<th>Source</th>
<th>Mass Source</th>
</tr>
</thead>
<tbody>
<tr>
<td>Human Child</td>
<td>Cranial suture</td>
<td>27260.90</td>
<td>14.06</td>
<td>1100.00</td>
<td>(Davis, Loyd, Shen et al., 2012)</td>
<td>(Davis et al., 2012)</td>
</tr>
<tr>
<td>Human Infant</td>
<td>Cranial suture</td>
<td>10714.29</td>
<td></td>
<td>381.48</td>
<td>(Wang, Zou, Li et al., 2014)</td>
<td>WHO weight-for-age 50th percentile at 18 months, weighted by gender</td>
</tr>
<tr>
<td>Human Postnatal</td>
<td>Cranial suture</td>
<td>8650.00</td>
<td></td>
<td>0.60</td>
<td>(Grau, Daw, Patel et al., 2006)</td>
<td>WHO weight-for-age 50th percentile at 9 months</td>
</tr>
<tr>
<td>Macaque (male)</td>
<td>Cranial suture</td>
<td>5360.00</td>
<td></td>
<td>7700.00</td>
<td>(Kupczik, Dobson, Fagan et al., 2007)</td>
<td>(Smith & Jungers, 1997)</td>
</tr>
<tr>
<td>Macaque (female)</td>
<td>Cranial suture</td>
<td>3590.00</td>
<td></td>
<td>1900.00</td>
<td>(Kupczik et al., 2007)</td>
<td>(Smith et al., 1997)</td>
</tr>
<tr>
<td>Mouse</td>
<td>Cranial suture</td>
<td>24.00</td>
<td>0.13</td>
<td>0.58</td>
<td>(Chien, Wu, Chao et al., 2008)</td>
<td>(Chien et al., 2008)</td>
</tr>
<tr>
<td>Lewis Rat</td>
<td>Cranial suture</td>
<td>250.50</td>
<td>0.51</td>
<td>2.35</td>
<td>(Chien et al., 2008)</td>
<td>(Chien et al., 2008)</td>
</tr>
<tr>
<td>Animal</td>
<td>Suture Type</td>
<td>Length</td>
<td>Width</td>
<td>Regressions</td>
<td></td>
<td></td>
</tr>
<tr>
<td>--------------</td>
<td>-------------------</td>
<td>--------</td>
<td>-------</td>
<td>--------------------------------------</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Wistar Rat</td>
<td>Cranial suture</td>
<td>62.12</td>
<td>1.08</td>
<td>(McLaughlin, Zhang, Pashley et al., 2000) (Extrapolated from Novelli, Diniz, Galhardi et al., 2007)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rabbit</td>
<td>Facial suture</td>
<td>1590.57</td>
<td>1.27</td>
<td>(Radhakrishnan & Mao, 2004) (Jones, Bielby, Cardillo et al., 2009)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Goat</td>
<td>Nasal suture</td>
<td>46900.00</td>
<td>400.00</td>
<td>(Farke, 2008) (Jones et al., 2009)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Camel</td>
<td>Nuchal ligament</td>
<td>488000.00</td>
<td>850.00</td>
<td>0.55</td>
<td>(Dimery, Alexander & Deyst, 1985)</td>
<td></td>
</tr>
<tr>
<td>Deer</td>
<td>Nuchal ligament</td>
<td>20000.00</td>
<td>51.60</td>
<td>0.61</td>
<td>(Dimery et al., 1985)</td>
<td></td>
</tr>
<tr>
<td>Sheep</td>
<td>Nuchal ligament</td>
<td>21000.00</td>
<td>84.00</td>
<td>0.57</td>
<td>(Dimery et al., 1985)</td>
<td></td>
</tr>
<tr>
<td>Pig</td>
<td>Palatal suture</td>
<td>84500.00</td>
<td>462.71</td>
<td>47.43</td>
<td>(Savoldi, Xu, Tsoi et al., 2018) (Jones et al., 2009)</td>
<td></td>
</tr>
<tr>
<td>Dog</td>
<td>Patellar tendon</td>
<td>26700.00</td>
<td>0.24</td>
<td>30.80</td>
<td>(Haut, Lancaster & DeCamp, 1992)</td>
<td></td>
</tr>
<tr>
<td>Reptile (validated in Sphenodon?)</td>
<td>Suture</td>
<td>195.29</td>
<td>10.00</td>
<td>(Curtis, Jones, Evans et al., 2013)</td>
<td>(Average of Herrel, Moore, Bredeweg et al., 2010 Supplement 1)</td>
<td></td>
</tr>
<tr>
<td>Shenqiornis Poly</td>
<td></td>
<td>340.00</td>
<td>0.63</td>
<td>2.76</td>
<td>Regressions Table 1, this review</td>
<td></td>
</tr>
<tr>
<td>Shenqiornis Pow</td>
<td></td>
<td>340.00</td>
<td>7.07</td>
<td>2.86</td>
<td>Regressions Table 1, this review</td>
<td></td>
</tr>
<tr>
<td>Shenqiornis PowFS</td>
<td></td>
<td>340.00</td>
<td>0.68</td>
<td>2.51</td>
<td>Regressions Table 1, this review</td>
<td></td>
</tr>
</tbody>
</table>
Supplemental References

