Optimizing Carbon Cycle Parameters Drastically Improves Terrestrial Biosphere Model Underestimates of Dryland Mean Net CO2 Flux and its Inter-Annual Variability

Kashif Mahmud, Joel Biederman, Russ Scott, Marcy Litvak, Thomas Kolb, Tilden Meyers, Praveena Krishnan, Vladislav Bastrikov, and Natasha MacBean

1Indiana University
2USDA-ARS Southwest Watershed Research Center
3United States Department of Agriculture, Agricultural Research Service, Tucson, AZ 85719, USA
4University of New Mexico
5Northern Arizona University
65NOAA/ARL Atmospheric Turbulence and Diffusion Division
7Laboratoire des Sciences du Climat et de l’Environnement, LSCE/IPSL

August 1, 2023

Abstract

Drylands occupy ~40% of the land surface and are thought to dominate global carbon (C) cycle inter-annual variability (IAV). Therefore, it is imperative that global terrestrial biosphere models (TBMs), which form the land component of IPCC earth system models, are able to accurately simulate dryland vegetation and biogeochemical processes. However, compared to more mesic ecosystems, TBMs have not been widely tested or optimized using in situ dryland CO2 fluxes. Here, we address this gap using a Bayesian data assimilation system and 89 site-years of daily net ecosystem exchange (NEE) data from 12 southwest US Ameriflux sites to optimize the C cycle parameters of the ORCHIDEE TBM. The sites span high elevation forest ecosystems, which are a mean sink of C, and low elevation shrub and grass ecosystems that are either a mean C sink or “pivot” between an annual C sink and source. We find that using the default (prior) model parameters drastically underestimates both the mean annual NEE at the forested mean C sink sites and the NEE IAV across all sites. Our analysis demonstrated that optimizing phenology parameters are particularly useful in improving the model’s ability to capture both the magnitude and sign of the NEE IAV. At the forest sites, optimizing C allocation, respiration, and biomass and soil C turnover parameters reduces the underestimate in simulated mean annual NEE. Our study demonstrates that all TBMs need to be calibrated for dryland ecosystems before they are used to determine dryland contributions to global C cycle variability and long-term carbon-climate feedbacks.
Optimizing Carbon Cycle Parameters Drastically Improves Terrestrial Biosphere Model Underestimates of Dryland Mean Net CO₂ Flux and its Inter-Annual Variability

Kashif Mahmud¹, Russell L. Scott², Joel A. Biederman², Marcy E. Litvak³, Thomas Kolb⁴, Tilden P. Meyers⁵, Praveena Krishnan⁵,⁶, Vladislav Bastrikov⁷,⁸, and Natasha MacBean¹

¹Department of Geography, Indiana University, Bloomington, IN 47405, USA
²Southwest Watershed Research Center, United States Department of Agriculture, Agricultural Research Service, Tucson, AZ 85719, USA
³Department of Biology, University of New Mexico, Albuquerque, NM, 87131, USA
⁴School of Forestry, Northern Arizona University, Flagstaff, AZ, 86011, USA
⁵NOAA/ARL Atmospheric Turbulence and Diffusion Division, Oak Ridge, TN, 37830, USA
⁶Oak Ridge Associated Universities, Oak Ridge, TN, 37830, USA
⁷Laboratoire des Sciences du Climat et de l’Environnement, LSCE/IPSL, CEA-CNRS-UVSQ, Université Paris-Saclay, Gif-sur-Yvette, F-91191, France
⁸Now at: Science Partners, Paris, 75010, France

Corresponding author: Kashif Mahmud (kmahmud@iu.edu)

Key Points:

- ORCHIDEE terrestrial biosphere model drastically underestimates dryland mean annual net CO₂ fluxes and their inter-annual variability (IAV)
- Optimizing phenology, carbon allocation, and respiration parameters are crucial for capturing net CO₂ flux mean and IAV
- Models need to be optimized against dryland CO₂ flux data to achieve accurate predictions of dryland’s role in global C cycle variability
Abstract

Drylands occupy ~40% of the land surface and are thought to dominate global carbon (C) cycle inter-annual variability (IAV). Therefore, it is imperative that global terrestrial biosphere models (TBMs), which form the land component of IPCC earth system models, are able to accurately simulate dryland vegetation and biogeochemical processes. However, compared to more mesic ecosystems, TBMs have not been widely tested or optimized using in situ dryland CO₂ fluxes. Here, we address this gap using a Bayesian data assimilation system and 89 site-years of daily net ecosystem exchange (NEE) data from 12 southwest US Ameriflux sites to optimize the C cycle parameters of the ORCHIDEE TBM. The sites span high elevation forest ecosystems, which are a mean sink of C, and low elevation shrub and grass ecosystems that are either a mean C sink or “pivot” between an annual C sink and source. We find that using the default (prior) model parameters drastically underestimates both the mean annual NEE at the forested mean C sink sites and the NEE IAV across all sites. Our analysis demonstrated that optimizing phenology parameters are particularly useful in improving the model’s ability to capture both the magnitude and sign of the NEE IAV. At the forest sites, optimizing C allocation, respiration, and biomass and soil C turnover parameters reduces the underestimate in simulated mean annual NEE. Our study demonstrates that all TBMs need to be calibrated for dryland ecosystems before they are used to determine dryland contributions to global C cycle variability and long-term carbon-climate feedbacks.

Plain Language Summary

Drylands occupy ~40% of the land surface and are thought to dominate the inter-annual variability and long-term trend of the global carbon cycle. Therefore, it is imperative that global terrestrial biosphere models (TBMs) are able to accurately predict dryland vegetation and carbon cycle processes. However, models have not been widely tested or calibrated against in situ dryland ecosystem CO₂ fluxes. Here, we address this gap using a data assimilation system and daily net CO₂ flux data from 12 southwest US Ameriflux sites spanning forest, shrub and grass dryland ecosystems to optimize the carbon cycle related parameters of the ORCHIDEE TBM. We find that before parameter optimization, the model drastically underestimates both the mean annual magnitude and inter-annual variability of net CO₂ flux. By testing different optimization scenarios, we showed that optimizing model parameters related to phenology dramatically
improves the model’s ability to capture the net CO$_2$ flux inter-annual variability. At the high
elevation forested sites, optimizing parameters related to C allocation, respiration and biomass
and soil C turnover reduces the model underestimate in simulated mean annual NEE. Our study
demonstrates that all global TBMs need to be calibrated specifically for dryland ecosystems
before they are used to determine dryland contributions to global carbon cycle variability and
long-term carbon-climate feedbacks.

1 Introduction

Terrestrial ecosystems currently take up ~30% of anthropogenic CO$_2$ emissions, thus
acting as a substantial global carbon (C) sink (Fu et al., 2017) and providing a critical reduction
in the rate of global warming. However, while we know the magnitude of the global C sink to a
good degree of certainty, our knowledge of other components of the global C cycle are more
uncertain. One such knowledge gap is which ecosystems, and/or which processes, are driving
inter-annual variability (IAV) in land net C uptake (Fu et al., 2017). Improving our
understanding of the IAV characteristics of the global terrestrial C cycle is key to being able to
forecast the future of the land C sink and long-term biosphere-climate feedbacks (Cox et al.,
2013; Piao et al., 2019).

Recent studies have pointed to drylands (arid and semi-arid ecosystems) as the dominant
driver of global terrestrial C cycle IAV (Ahlström et al., 2015; Humphrey et al., 2021; Poulter et
al., 2014). High annual variability in net CO$_2$ exchange in response to plant-available moisture is
observed in site-based flux studies in these regions (Biederman et al., 2017; Cleverly et al., 2016;
Haverd et al., 2017; Scott et al., 2015). However, the global terrestrial biosphere models (TBMs)
used in these recent C cycle IAV regional attribution studies (and which form the land
component of the earth system models used in IPCC projections) have often only been
extensively evaluated against data in more mesic ecosystems (e.g. (Peng et al., 2015; Piao et al.,
2013; Raczka et al., 2013; Schaefer et al., 2012)), although studies have evaluated models
against eddy covariance flux data from Australian dryland sites (Whitley et al., 2016; Teckentrup
et al., in review). Similarly, TBM optimization (e.g. parameter calibration) studies have typically
focused more on temperate and boreal site data (Kuppel et al., 2014; Raoult et al., 2016).
Therefore, there remains a relative gap in model benchmarking and optimization using dryland C cycle related data.

Model benchmarking and optimization studies that have been performed in dryland regions indicate considerable model-data discrepancies in vegetation dynamics, C and water fluxes (Dahlin et al., 2015; Exbrayat et al., 2018; Haverd et al., 2013; Lawal et al., 2019; MacBean et al., 2015; Renwick et al., 2019; Trudinger et al., 2016; Whitley et al., 2016; Teckentrup et al., in review; Traore et al., 2014; Yang et al., 2021). Whitley et al. (2016) evaluated six TBMs at five savanna flux tower sites along the Northern Australian Tropical Transect and found that accurately representing both tree and grass phenology in TBMs was crucial for simulating seasonal dynamics of leaf area index (LAI) and gross primary productivity (GPP). Traore et al. (2014) showed that long-term positive trends in GPP, fraction of absorbed photosynthetically active radiation (FAPAR – a measure of vegetation dynamics) and evapotranspiration (ET) were underestimated by the ORCHIDEE TBM across the Sahel and Southern Africa, even with a more mechanistic description of soil hydrology. MacBean et al. (2015) showed that calibrating the phenology parameters of the ORCHIDEE TBM (vAR5) using satellite NDVI at global scales could not account for model errors in dryland region seasonal cycle and long-term trends in vegetation dynamics. Forkel et al. (2019) also showed weaker model-data fit for GPP and FAPAR after parameter optimization in semiarid regions. In contrast, Forkel et al. (2014) used parameter optimization to improve seasonal dynamics and long-term trends in vegetation activity in water-limited (and other) biomes predicted by the LPJmL TBM. However, data-constrained modeled phenology only improved when the traditional phenology model schemes (based on growing degree days and water scaling factors) were replaced with a modified version of the empirical “growing season index” (GSI) model (Jolly et al., 2005) that predicts phenological status based on temperature, short-wave radiation and water availability. A recent model evaluation study by MacBean et al. (2021) demonstrated that all the global TBMs participating in the TRENDY v7 model intercomparison project (which have typically not been confronted against a wider variety of data for parameter calibration) drastically underestimate both the mean annual net ecosystem exchange (NEE) and its IAV at a suite of southwestern (SW) US dryland sites due to weak sensitivity of GPP to changing water availability. This analysis is corroborated by Renwick et al. (2019) who also showed that both model phenology parameter optimization and a new semi-deciduous shrub phenology scheme was necessary to
accurately predict the magnitude of GPP in a mixed shrub-grass dryland ecosystem. SW US hydrology modeling studies have also suggested that parameter calibration is needed to realistically represent semi-arid water fluxes because the default parameters hamper model performance (Hogue et al., 2005; MacBean et al., 2020; Unland et al., 1996). Given the lack of model parameter calibration studies that have included a number of dryland ecosystem sites in their optimizations, it remains to be seen whether model-data discrepancies in dryland ecosystem NEE simulations are due to inaccurate model processes or uncertain parameters. Parameter uncertainty may be higher for dryland ecosystems given parameter values were initially measured in the field and/or optimized for more mesic temperate and boreal ecosystems.

To address the gap in dryland site model parameter optimization, and to determine if parameter optimization can account for dryland model-data discrepancies in NEE observed across all TRENDY v7 TBMs (MacBean et al., 2021), we used a Bayesian data assimilation (DA) framework to optimize the photosynthesis, phenology, C allocation and turnover, and respiration parameters of the ORCHIDEE TBM using 89 site-years of daily NEE observations of 12 Ameriflux sites spanning SW US semi-arid grass, shrub and forest ecosystems. Following Biederman et al. (2017) and MacBean et al. (2021), we categorized sites based on their mean annual NEE: US-Vcm, US-Vcp, US-Mpj, US-Fuf, US-Wjs and US-Ses are mostly tree-dominated C sink sites; shrub and grass-dominated sites US-Wkg, US-SRG, US-Seg, US-SRM, and US-Whs “pivot” between a mean annual C sink and source; and the US-Aud grassland is a mean source of C. We used the well-established DA system designed for ORCHIDEE (ORCHIDAS: https://orchidas.lsce.ipsl.fr) (Kuppel et al., 2014; MacBean et al., 2018; Peylin et al., 2016), in which a cost function that represents the misfit between the model and the data – taking into account uncertainty in both – is iteratively minimized using the genetic algorithm (GA; see Methods and Data). Beyond investigating if the DA system could account for model-data discrepancies in dyland NEE simulations, our second objective was to identify which parameters (therefore, which processes) may be responsible for model errors. To address this objective, we performed multiple optimization tests with combinations of parameters related to different model processes in order to identify which processes were most influential in improving the model mean annual NEE and IAV. We focused in particular on which processes are responsible for model failure to capture NEE IAV. Our focus on improving NEE IAV was partly because of the dominant role dryland ecosystems are thought to play in controlling global
C cycle IAV, and partly because we expected that, with the exception of sites that are a strong C sink, eddy covariance estimates of mean annual NEE may be impacted by uncertainties in CO$_2$ flux partitioning. The methods and data are described in Section 2 and the results are presented in Section 3 and discussed in Section 4.

2 Methods and Data

2.1 Study sites

Twelve semi-arid eddy covariance flux sites in the southwestern US (SW US) have been utilized in this study, with a measurement period ranging between 2003 and 2014. These sites have a range of different vegetation types, climates, elevation and have been described in detail by Biederman et al. (2017), so we only provide a brief description here. We summarize the sites’ description, dominant vegetation species, mean climate and corresponding vegetation plant functional types (PFTs), together with the observation period and disturbance history (Table 1). The sites are listed consecutively based on their mean annual C balance in Table 1. The major regional IGBP vegetation classes represented include evergreen needleleaf forest, woody savanna, open and closed shrubland, and grassland. These sites typically experience monsoon rainfall during July to October, preceded by a hot, dry period in May and June. The SW US is characterized by water limitation at the annual scale, i.e. potential ET is greater than precipitation. The sites have large spatial gradients in mean annual precipitation (MAP 250–724 mm) and temperature (MAT 2.9 to 17.7°C) due to interactions among topography, latitude, wind patterns, and distance from oceans. For further site details, see references in Table 1 and individual site pages on www.ameriflux.lbl.gov.

Table 1. Site descriptions, mean climate, observation years and corresponding vegetation plant functional types (PFTs) used in ORCHIDEE optimization. All years of site data were included in the assimilation with the exception of the final year, which was reserved for validation of the optimized parameters and fluxes (Section 2.6). PFT acronyms: BS = Bare soil (PFT=1); TeNE = Temperate Needleleaved Evergreen forest (PFT=4); TeBE = Temperate Broadleaved Evergreen forest (PFT=5); TeBD = Temperate Broadleaved Deciduous forest (PFT=6); C4G = C4 grass (PFT=11). Sites are given in order from largest mean annual C sink (US-Vcm) to mean annual C

<table>
<thead>
<tr>
<th>Site ID</th>
<th>Description</th>
<th>Dominant species</th>
<th>IGBP class</th>
<th>PFT fractions</th>
<th>Köppen climate</th>
<th>Elevation (m)</th>
<th>MAP (mm)</th>
<th>MAT (°C)</th>
<th>Period of site data</th>
<th>Disturbance History</th>
<th>Site reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>US-Vcm</td>
<td>Valles Caldera mixed conifer forest</td>
<td>Picea engelmannii, Picea pungens, Abies lasiocarpa var. lasiocarpa, Abies concolor</td>
<td>Evergreen needleleaf forest</td>
<td>100% TeNE</td>
<td>Dfb 3042</td>
<td>724</td>
<td>2.9</td>
<td>2007–2012</td>
<td>Harvest 1960s</td>
<td>(Anderson -Teixeira et al., 2011)</td>
<td></td>
</tr>
<tr>
<td>US-Vcp</td>
<td>Valles Caldera ponderosa forest</td>
<td>Pinus ponderosa, Quercus gambeli</td>
<td>Evergreen needleleaf forest</td>
<td>100% TeNE</td>
<td>Dfb 2501</td>
<td>547</td>
<td>5.7</td>
<td>2007–2014</td>
<td>-</td>
<td>(Anderson -Teixeira et al., 2011)</td>
<td></td>
</tr>
<tr>
<td>US-Mpj</td>
<td>Heritage Land Conservancy pinyon-juniper</td>
<td>Pinus edulis, Juniperus monosperma</td>
<td>Savanna</td>
<td>20% BS; 60% TeNE; 20% C4G</td>
<td>Bsk 2200</td>
<td>423</td>
<td>9.6</td>
<td>2008–2014</td>
<td>-</td>
<td>(Anderson -Teixeira et al., 2011)</td>
<td></td>
</tr>
<tr>
<td>US-Fuf</td>
<td>Flagstaff unmanaged ponderosa</td>
<td>Pinus ponderosa</td>
<td>Evergreen needleleaf forest</td>
<td>100% TeNE</td>
<td>Cab 2215</td>
<td>607</td>
<td>7.1</td>
<td>2006–2010</td>
<td>Harvest 1910</td>
<td>(Dore et al., 2012)</td>
<td></td>
</tr>
<tr>
<td>US-Wjs</td>
<td>Tablelands juniper savanna</td>
<td>Juniperus monosperma, Bouteloua gracilis</td>
<td>Savanna</td>
<td>15% TeNE; 85% C4G</td>
<td>Bsk 1931</td>
<td>349</td>
<td>10.9</td>
<td>2008–2014</td>
<td>-</td>
<td>(Anderson -Teixeira et al., 2011)</td>
<td></td>
</tr>
<tr>
<td>Study Site</td>
<td>Dominant Vegetation</td>
<td>Soil Type</td>
<td>Organic Carbon (mg kg⁻¹)</td>
<td>Water Content (%)</td>
<td>Drought Period</td>
<td>Management History</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>------------</td>
<td>---------------------</td>
<td>-----------</td>
<td>--------------------------</td>
<td>-------------------</td>
<td>---------------</td>
<td>-------------------</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>US-SRG</td>
<td>Santa Rita grassland</td>
<td>Eragrostis lehmanniana</td>
<td>Savanna</td>
<td>45% BS; 11% TeBD; 44% C4G</td>
<td>Bsh</td>
<td>1292</td>
<td>494</td>
<td>16.7</td>
<td>2009–2014</td>
<td>Mesquite removal 1957, ongoing light grazing</td>
<td>(Scott et al., 2009, 2015)</td>
</tr>
<tr>
<td>US-SRM</td>
<td>Santa Rita mesquite savanna</td>
<td>Prosopis velutina, Eragrostis lehmanniana</td>
<td>Woody savanna</td>
<td>50% BS; 35% TeBD; 15% C4G</td>
<td>Bsk</td>
<td>1122</td>
<td>421</td>
<td>17.7</td>
<td>2004–2014</td>
<td>Light grazing</td>
<td>(Scott et al., 2009)</td>
</tr>
</tbody>
</table>

2.2 ORCHIDEE terrestrial biosphere model

We used the ORCHIDEE (ORganizing Carbon and Hydrology In Dynamic EcosystEms) process-oriented land surface model version 2.2 that has been developed at the IPSL (Institut
Pierre Simon Laplace, France). The model is a state-of-the-art mechanistic terrestrial biosphere model (Krinner et al., 2005) and is the land surface component of the IPSLCM5 Earth System Model (Dufresne et al., 2013). The model describes the exchanges of water, carbon, and energy between biosphere and atmosphere at the smallest time scale (30 min), while the slow components of the terrestrial carbon cycle (including carbon allocation, autotrophic respiration, foliar onset and senescence, mortality and soil organic matter decomposition) are computed on a daily to annual basis. Version 2.2 is virtually identical to version 2.0, which is being used in the ongoing Coupled Modeling Intercomparison Project 6 (CMIP6) simulations, but includes few recent bug corrections and code enhancements. It has been updated since the “AR5” version used in CMIP5 (see Krinner et al., 2005) with the following developments: i) an 11-layer mechanistic description of soil hydrology and associated modifications as described in MacBean et al. (2020); ii) addition of a coupled carbon-nitrogen scheme (Vuichard et al., 2019); iii) an analytical solution for the set of equations for photosynthesis, stomatal conductivity and internal CO$_2$ concentration in the leaf (described in Vuichard et al., 2019), following Yin and Struik (2009); iv) an update of the soil thermal properties and extension of the soil depth for heat diffusion (Wang et al., 2016); v) a 3-layer snow scheme (Wang et al., 2013); vi) a spatially explicit observation-derived estimate for background albedo and optimized vegetation and snow albedo coefficients; vii) a new reconstruction of global land cover history and wood harvest accounting following LUH2v2h maps (Hurtt et al., 2020) and PFT maps based on the European Space Agency Climate Change Initiative Land Cover product (Poulter et al., 2015).

As in most TBMs, the vegetation is grouped into several plant functional types (PFTs), with 14 different types of vegetation plus bare soil in the case of ORCHIDEE v2.2. The original 13 PFTs are reported in Krinner et al. (2005). Since ORCHIDEE v2.0 there are now two extra PFTs included: C3 grasses are now split into three groups - tropical, temperate and boreal. The equations governing individual processes are generic with PFT specific parameters, except for the phenology models (see Appendix A in MacBean et al. (2015)). In this study, ORCHIDEE was mainly used in a “grid-point mode” at each site location and forced with the corresponding local 30-minute gap-filled meteorological forcing data. Before performing the optimizations the modelled C stocks were brought to equilibrium in the spin-up phase by cycling the available site
meteorological forcing over a long period (1300 years) with the default parameters of the model, which ensures a net carbon flux close to zero over annual-to-decadal time scales.

2.3 ORCHIDEE data assimilation system

The ORCHIDEE Data Assimilation System (ORCHIDAS) has been described in detail in previous studies (Bastrikov et al., 2018; Kuppel et al., 2014; MacBean et al., 2018; Peylin et al., 2016), and hence we only briefly define the method here. ORCHIDAS uses a variational data assimilation method to optimize the model parameters, accounting for uncertainties in the observations, the model, and the prior parameters. It relies on a Bayesian framework that uses new information in the observations to update the prior parameter estimates (default values of ORCHIDEE). We find the optimized parameters by minimizing the following cost function \(J(x) \) (Tarantola, 2005):

\[
J(x) = \frac{1}{2} \left[(H(x) - y)^T \cdot R^{-1} \cdot (H(x) - y) + (x - x^b)^T \cdot B^{-1} (x - x^b) \right]
\]

where \(x \) represents the parameters and \(H(x) \) the model contingent on the parameters, and \(y \) the observations. The cost function contains both the misfit between observations and corresponding model outputs (first term on the right hand side of Eq. 1), and the misfit between a priori parameter values \(x^b \) and optimized parameters \(x \) (second term on the right hand side of the Eq. 1). \(R \) is the observation error covariance matrix (including measurement and model errors), and \(B \) is the prior parameter error covariance matrix. Both matrices (\(B \) and \(R \)) are diagonal since observation and model errors are assumed to be uncorrelated in space and time, and parameters are assumed to be independent. The cost function is iteratively minimized using the genetic algorithm (GA), which is a meta-heuristic optimization algorithm and follows the principles of genetics and natural selection (Goldberg et al., 1989; Haupt et al., 2004). The GA algorithm has been applied previously with ORCHIDAS tool and described in details by Bastrikov et al. (2018). Briefly, the algorithm works iteratively and considers the vector of parameters as a chromosome and each parameter as a gene on that chromosome. The method fills a set of \(n \) chromosomes at every iteration, having the starting pool as a randomly perturbed parameter pool. The chromosomes at each subsequent iteration are chosen from randomly selected chromosomes of the previous iteration by either “crossover” or “mutation” process. Santaren et
al. (2014) showed that the performance of the algorithm is highly sensitive to its specific configuration and found the best configuration based on computational efficiency after testing different options. Here, we used the same configuration (i.e. number of chromosomes in the pool total number of parameters optimized; the number of iterations is 40; crossover/mutation ratio is 4:1; the number of gene blocks exchanged during crossover is 2 and the number of genes perturbed during mutation is 1) applied by Santaren et al. (2014) and Bastrikov et al. (2018). The algorithm does not assume prior knowledge of Gaussian probability distribution functions (PDFs) for the observation and parameter uncertainties; however, we do assume Gaussian errors for both R and B in this study. Given we do not fully know the model uncertainty, we set the prior observation uncertainty as the RMSE between the model and the observations following Kuppel et al. (2014). The prior parameter uncertainties are listed in Table S1.

The posterior error covariance matrix of the parameters (A) can be estimated by:

$$A = [H^TR^{-1}H + B^{-1}]^{-1}$$

This computes error correlations between parameters with the assumption of Gaussian prior errors and linearity of the model in the vicinity of the solution.

2.4 Flux tower measurements

At all twelve SW US sites, flux tower instruments collect 30-minutes measurements of meteorological forcing data and eddy covariance measurements of net surface energy and carbon exchanges, which are available from the AmeriFlux data portal (http://ameriflux.lbl.gov). Meteorological forcing data included air temperature and surface pressure, precipitation, incoming long and shortwave radiation, wind speed, and specific humidity. To run the ORCHIDEE model, we partitioned the in-situ precipitation into rain and snowfall using a temperature threshold of 0°C. The site-level meteorological forcing data were gap filled utilizing downscaled and corrected ERA-Interim data following the approach of Vuichard & Papale (2015). Gross primary productivity (GPP) and the ecosystem respiration (R_{eco}) were estimated from the net ecosystem exchange (NEE) via the flux partitioning method described in Biederman et al. (2016). We acknowledge that GPP and R_{eco} are not fully independent data with respect to NEE and are essentially model-derived estimates, but these concerns have been largely discussed
in previous studies e.g., Desai et al. (2008). Note that in this study, negative NEE refers to net CO$_2$ uptake into the ecosystem. In order to exclude the influence of the short-term variations in the fluxes on the model optimization, the daily averaged observations smoothed with a 15-day running mean were used in the assimilation as per Bastrikov et al. (2018).

2.5 Parameters optimized

The full set of parameters included in the assimilations optimized are described in Table S1 with their prior values, prior uncertainty, and upper and lower bounds for different plant functional types based on literature analysis, parameter databases and expert knowledge of the model equations. Prior values are the default parameter values used in all non-optimized ORCHIDEE simulations. In the most past ORCHIDAS studies with previous versions of ORCHIDEE, only subsets of ORCHIDEE C cycle parameters have been optimized (Bastrikov et al., 2018; Kuppel et al., 2012, 2014; MacBean et al., 2015; MacBean et al., 2018; Santaren et al., 2007; Verbeeck et al., 2011). In this study, we considered all possible C cycle related ORCHIDEE parameters to fully explore all sources of parameter uncertainty that is contributing to uncertainties in modeled net and gross CO$_2$ fluxes. We further allowed weak constraints in the DA system (i.e., large prior parameter bounds, albeit within realistic limits) because the main objective of our study was to determine if parameter calibration can improve the model-data fit within the existing model structure and to use our assimilation scenario tests to identify which processes are responsible for model-data errors.

We identified three main groups of parameters: parameters related to 1) phenology; 2) parameters related to photosynthesis; and 3) parameters related to all process calculations that occur after gross C uptake (i.e. C allocation, autotrophic and heterotrophic respiration, biomass and soil C turnover and a scalar on the active soil C pool; hereafter grouped as “post C uptake” parameters). We split the parameters into these three groups because GPP has been shown to be the dominant control on dryland NEE IAV (MacBean et al., 2021); therefore, we expected that optimizing parameters related to one or both of the main two processes controlling GPP (i.e., phenology and photosynthesis) will result in the strongest improvements in NEE IAV. However, optimizing all parameters related to processes that occur after gross C uptake can also influence NEE; therefore, we included these parameters as a third category. The parameters included in
each assimilation scenario are: P1 - all parameters, including all three phenology, photosynthesis
and post C uptake parameters; P2 - phenology and photosynthesis parameters; P3 - phenology
and post C uptake; P4 - photosynthesis and post C uptake; P5 - phenology parameters only; P6 -
photosynthesis only; and P7 - post C uptake only. See Table 2 for a description of all parameters
and to which category they belong.

We selected all 102 parameters related to all of the above mentioned processes and
divided them into four categories. This resulted in 31 parameters related to photosynthesis, 42 to
phenology, 16 to post C uptake (C allocation, respiration, biomass and soil turnover), and 13
related to conductance. In a preliminary study, we tested at several SW US sites (US-Vcp, US-
and R_{eco}) when optimizing all model parameters and when we just optimized subsets of the
parameters related to each of the main processes. This test showed no significant optimization
improvement by adding the conductance related parameters (results not shown here), and thus
we did not include those parameters for all final optimizations presented in this study, leaving a
total of 89 optimized parameters for each site and three process-based parameter categories: 1)
phenology; 2) photosynthesis; and 3) post C uptake. Documentation on the parameters can be
accessed via ORCHIDEE webpage
(https://forge.ipsl.jussieu.fr/orchidee/wiki/Documentation/OrchideeParameters, last access: 04
January 2021). The prior uncertainty was set to 40% of the bounds for each parameter following
previous ORCHIDAS studies (Kuppel et al., 2012; MacBean et al., 2015).

2.6 Assimilation Scenarios

We conducted seven different assimilation scenarios to identify which processes (and
their related parameters) are potentially causing model-data discrepancies (listed in Table 2). We
grouped the optimizations based on various parameters set to optimize. The parameters included
in each assimilation scenario are: P1 - all parameters, including all three phenology,
photosynthesis and post C uptake parameter groups (89 parameters in total), whereas each
consecutive scenario (P2 – P7) optimized different subsets of parameters related to each of the
main C cycle processes (Table 2). P2 - phenology and photosynthesis parameters; P3 -
phenology and post C uptake; P4 - photosynthesis and post C uptake; P5 - phenology parameters
only; P6 - photosynthesis only; and P7 - post C uptake only. See Table 2 for a description of all parameters and to which category they belong. The parameters that were not optimized were set to their default (prior) value. Comparing the P1 to P7 assimilation scenarios allows us to determine which sets of parameters (i.e. specific processes) are contributing most to the improvement in fluxes as a result of the parameter optimizations and therefore provides insight into which model processes may need further modification or development. See Table S1 for groupings of model parameters according to specific processes. We did not include the last year of data for each site in the assimilations and used the final year to validate the impact of the calibrated parameter values on net and gross CO$_2$ fluxes (Section 2.7).

Table 2. Description of the different assimilation scenarios conducted in this study. The included parameter group(s) and numbers of parameters for each assimilation scenario are given. Parameters of each subgroup are listed in Table S1.

<table>
<thead>
<tr>
<th>Optimization</th>
<th>Parameters included</th>
<th>Number of parameters</th>
</tr>
</thead>
<tbody>
<tr>
<td>P1</td>
<td>All parameters (Phenology, Photosynthesis and Post C uptake)</td>
<td>87</td>
</tr>
<tr>
<td>P2</td>
<td>Phenology and Photosynthesis</td>
<td>72</td>
</tr>
<tr>
<td>P3</td>
<td>Phenology and Post C uptake</td>
<td>57</td>
</tr>
<tr>
<td>P4</td>
<td>Photosynthesis and Post C uptake</td>
<td>45</td>
</tr>
<tr>
<td>P5</td>
<td>Phenology only</td>
<td>42</td>
</tr>
<tr>
<td>P6</td>
<td>Photosynthesis only</td>
<td>30</td>
</tr>
<tr>
<td>P7</td>
<td>Post C uptake only</td>
<td>15</td>
</tr>
</tbody>
</table>

2.7 Post-optimization analysis

For all assimilation scenarios we compared the prior simulation (before parameter optimization) to the posterior simulations (after parameter optimization, with different parameter groupings for the different assimilation scenarios) by evaluating the simulations against the site data using standard goodness of fit metrics (root mean square error, RMSE and correlation coefficient, r) at daily, monthly and inter-annual timescales. We further attributed what might be causing model-data misfits by decomposing the daily mean squared deviation (MSD) into its component phase, variance and bias contributions following the approach of Kobayashi and Salam (2000). The bias, variance and phase indicate the mean difference in flux magnitude, the
mismatch in terms of the magnitude of fluctuations, and the seasonality in flux time series, respectively (Kobayashi & Salam, 2000). We calculated the MSD between daily model and observed time series and decompose it following the equation:

\[
MSD = \frac{1}{n} \sum_{i=1}^{n} (x_i - y_i)^2 = (\bar{x} - \bar{y})^2 + (\sigma_x - \sigma_y)^2 + 2\sigma_x\sigma_y(1 - R)
\]

where \(x\) is the model and \(y\) is the observations, \(\sigma\) is the standard deviation and \(R\) is the correlation coefficient. The first term specifies the bias between model simulation and observation (squared). The second “variance” term measures their differences in terms of variability (i.e., the difference between the magnitude of the modeled and observed fluctuations). The third term in Eq. 3 generally demonstrates the lack of correlation between model and observations weighted by their standard deviations, which can be deemed a measure of their disagreement in terms in phase (Bacour et al., 2019; Gauch et al., 2003). We further calculated the contribution of each component (bias, variance and phase) to the overall MSD by dividing each component by the total MSD. Model evaluation metrics are presented in one of three ways: i) for each site; ii) grouped across all sites; and iii) sites grouped according to their mean net annual CO\(_2\) flux characteristics across the observed time period as in Biederman et al. (2017).

We performed a temporal validation at each site and for each assimilation scenario by comparing the modeled and observed daily NEE, GPP and R\(_{eco}\) RMSE and R during the validation window (using the final year of data that was excluded from the assimilation). The impact of the temporal validation tests is presented in Section 3.1 and 3.2. All other model evaluation metrics refer to the assimilation time window. We also evaluated the posterior parameter values using the limited available trait data close to the sites from the TRY database (Kattge et al., 2020. We searched within 0.5° of the latitude and longitude of each site for trait data related to the species present at each site. We found one estimate of SLA for \textit{pinus ponderosa} close to US-Fuf, and \(V_{c,\text{max}}\) and leaf longevity estimates for \textit{larrea tridentata} (creosote...
shrubs) close to US-Ses. The comparison of these trait values to posterior parameter estimates is presented in Section 3.3.

3 Results

3.1 Impact of optimization of all parameters (P1) on model net and gross CO₂ fluxes

Across all sites, the prior ORCHIDEE simulations (i.e. before parameter optimization) fail to capture both the mean annual NEE at mean C sink and source sites and the NEE IAV across all sites (Figure 1a) - as also seen for all TRENDY TBMs in MacBean et al (2021). Across all sites, optimizing all C cycle-related parameters (phenology, photosynthesis and post C uptake - assimilation scenario P1) with NEE data dramatically increases the ability of the model to capture both the mean C source/sink behavior and the IAV (Figure 1b). C sink and source sites show significant improvement in terms of both mean annual NEE and IAV. At the pivot sites there was no strong bias in NEE with either the prior or posterior parameters (given their mean annual NEE is close to zero); therefore the optimisation has impacted the simulation of NEE IAV rather than the mean annual NEE (as represented by the correlation and slope values shown in inset figures in Figures 1a and b).

Improvement of the model-data fit resulting from the assimilation is evident across all sites, with a reduction of daily NEE RMSE between 0.05 to 0.7 gCm⁻²d⁻¹ (Figure S1), with slightly lower reductions in daily GPP and Reco RMSE (Table S2). Moreover, the temporal dynamics are well captured for all the sites: when optimizing all parameters, the median Pearson correlation coefficients (R) increase by 0.45, 0.45, and 0.3 for daily, monthly and annual modeled NEE, respectively and posterior median slope increase by ≥ 0.35 at all timescales (Figure S2a and d). GPP temporal dynamics are also much improved by the P1 assimilation with a higher median value and tighter range in posterior R and slope values at all timescales (Figure S2b and e). In contrast, there is less improvement in Reco temporal dynamics although the median R and slope values are higher after the optimization with the exception of the annual values (Figure S2c and f).

The median daily NEE RMSE and R for the temporal validation analysis indicates that the optimized parameters maintain an improved model-data fit outside the assimilation window when compared to the prior (Figure S3). The median value of daily NEE RMSE is 0.1 higher for
the validation test compared to the assimilation for the P1 assimilation scenario; however, the
maximum to minimum range of RMSE values in the validation is very similar to original
optimization and much less than the prior simulation (Figure S3a). Similarly, the median R of
daily NEE is slightly less for the validation test than the original optimization for P1 (Figure
S3b). The daily GPP RMSE and R show similar model-data fit for the validation analysis of the
P1 optimized parameters as the original optimizations (results not shown). However, the median
daily R_{eco} is the same for the prior, optimization and validation, while there is an increasing
improvements in the median daily R_{eco} R for both the P1 optimization and validation (results not
shown).

Figure 1. Comparison between modeled and observed annual NEE when assimilating NEE data
and optimizing all phenology, photosynthesis and post C uptake parameters (P1) in the same
assimilation. (a) Prior annual NEE simulation before parameter optimization, and (b) Posterior
annual NEE after optimization. The trendline and slope value for the linear regression between
the model and observations (bottom right inset figures) is shown for each site, together with their
Pearson correlation coefficient, R (top left inset figures). The middle of the trend line should sit
on the 1:1 line if the accurate mean annual source/sink behavior for a site is well captured by the
model. A slope value close to or equal to 1 demonstrates the model is better at capturing the
IAV. Colored points and trend lines represent all twelve sites, ordered from the largest mean sink
(US-Vcm) to the largest mean source (US-Aud). The sink sites are: US-Vcm, US-Vcp, US-Mpj,
Whs; and the only source site is: US-Aud.
Across the majority of the sites, the prior model simulates a depressed seasonal NEE amplitude and/or is unable to capture the observed bi-modal seasonality (Figure 2). The NEE amplitude and bi-modal seasonality generally improved when optimizing all parameters (blue curves in Figure 2), although the posterior simulations struggle to reach the exact magnitude of the spring and monsoon NEE troughs (net CO\textsubscript{2} uptake) for several sites (e.g. US-Mpj, US-Wjs, US-Ses, US-Seg, US-Wkg and US-Whs). Accurately capturing the seasonal peaks and troughs is important for replicating observed NEE IAV because variability in summer monsoon season fluxes are the dominant driver of NEE IAV (MacBean et al., 2021). While posterior seasonal NEE peaks and troughs are generally well captured, the assimilation of NEE alone often fails to capture the correct peaks in gross CO\textsubscript{2} fluxes (Figure S4), likely due to compensating errors in both GPP and R\textsubscript{eco}. We note however that the mean seasonal cycle for the gross CO\textsubscript{2} fluxes is generally much improved, especially for low-elevation “pivot” sites with a clear bi-modal growing season (e.g., US-Wkg, US-SRM, US-SRG, and US-Whs: Figure S4). At the C source site (US-Aud) the model also fails to simulate the accurate peak in mean springtime net carbon release (Figure 2). This is due to the fact that at US-Aud, TBMs tend to overestimate spring GPP and underestimate the earlier rise in spring R\textsubscript{eco} (Figure S4). The optimization only partially corrects these model biases, suggesting that other missing processes may ultimately be responsible for the model-data misfit (such as disturbance following a fire that occurred at the site in 2002, which is not implemented in the current version of ORCHIDEE).
Figure 2. Mean monthly NEE seasonal cycles for each site comparing prior (red curve) and posterior (blue curve) ORCHIDEE simulations with observations (black curve). Posterior simulation after assimilation of NEE data and optimization of all parameters: phenology, photosynthesis and post C uptake (P1). The sites are listed in order from largest mean annual C sink (US-Vcm) to mean annual C source (US-Aud).

Decomposing the daily NEE MSD between model and observations into bias, variance and phase components shows that across all sites, all three components contribute to prior NEE model-data discrepancies (Figure 3a left of vertical dashed line). The prior daily NEE MSD at the C sink sites are dominated by both phase and bias components (Figure 3a top panel). The fact that the sink sites’ NEE MSD is also dominated by bias is unsurprising given that at those sites the prior model does not capture the mean annual C sink (Figure 1a). Note that, if we decompose the annual NEE MSD into the constituent bias, phase and variance components then bias overwhelmingly dominates the MSD at sink (and source) sites given their large underestimate of mean annual NEE (Figure S5 top and bottom rows). In contrast, at the C pivot
and source sites, the highest contribution to the prior daily NEE MSD is from the phase component (Figures 3d and g), indicating that the default model does a poor job of representing the timing of dryland C cycle related processes. Across all sites, optimizing all parameters (P1) dramatically reduces the bias, variance and phase components of the daily NEE MSD, with phase remaining the strongest contributor to daily NEE MSD (Figures 3a, d and g right of dashed line).

Figure 3. Daily NEE, GPP and R_{eco} mean square deviation (MSD) decomposition into bias, variance, and phase between simulations and observations for assimilating NEE observations and optimizing all phenology, photosynthesis and post C uptake parameters (P1). Blue, orange and green boxplots for bias, variance and phase components, respectively. Different rows separate the sites as sink (a-c), pivot (d-f) and source (g-i) based on total annual C flux. The sink sites are: US-Vcm, US-Vcp, US-Mpj, US-Fuf, US-Wjs and US-Ses; the pivot sites are: US-Wkg, US-SRG, US-Seg, US-SRM and US-Whs; and the source site is: US-Aud. The x axes display the optimization scenarios (Prior and P1). The box whiskers show the spread of bias, variance and phase for all 12 sites considered in this study. The bias, variance and phase indicate the mean difference in flux magnitude, the mismatch in terms of flux fluctuation magnitude scales with the
mean seasonal amplitude, and the seasonality in flux time series, respectively. Note that the y-axis limits for both gross fluxes (GPP and R_{eco}) are the same.

The bias and phase are the dominant contributors to prior daily GPP MSD for the sink sites (left of vertical dashed line in Figure 3b), and phase only for the pivot and source sites (Figures 3e and h). For R_{eco}, a different MSD component is dominant depending on the mean C behavior of a site: bias dominates the prior daily R_{eco} MSD at the sink sites, variance at the pivot sites, and phase at the source sites (Figures 3c, f and i). Overall, assimilating NEE data in the P1 assimilation scenario reduces all gross CO$_2$ flux MSD components (right of dashed line in Figure 3 middle and right columns), with phase remaining the strongest contributor to daily gross CO$_2$ flux MSD at sink and source sites. However, unlike for the NEE, at the C sink sites phase and bias remain strong contributors to posterior GPP MSD (Figure 3b).

3.2 Impact of different processes (assimilation scenarios) on optimization results

Across all sites, modeled annual and seasonal NEE are improved the most in the P1 assimilation scenario, although all scenarios result in some improvement (Figures S6, S7a and d, and seasonal cycles in Figure S8). In general, there is less improvement in R_{eco} compared to NEE and GPP (Figure S7). Examining the daily NEE median RMSE for the temporal validation analysis for the P2 to P7 assimilation scenarios shows that the optimized parameters have improved the model-data fit outside the assimilation window when compared to the prior, with the exception of scenarios that include photosynthesis or post C uptake parameters (e.g., P2, P4, P6 and P7 - Figure S3a). However, the range of RMSE values from the validation tests is similar to the original optimization and much less than the prior simulation for all optimization scenarios. Similarly, the median R between modeled and observed daily NEE for the validation test is higher than the prior for all assimilation scenarios and is close to the optimized median R (within ±0.1) for P2, P3, P5 and P7 (Figure S3b). The 25th percentile of the range in R values is generally higher than the prior for P2, P3, and P5, but not for P4, P6, and P7 (Figure S3b), which, again, are scenarios that include photosynthesis or post C uptake parameters but not parameters related to phenology.
Comparing the MSD decomposition results for the various assimilation scenarios (P1-P7) can help to identify which processes may be causing the prior model-discrepancies in mean annual NEE and NEE IAV. At the source and sink sites, the bias component (blue bars in Figure 4a and c) reduced dramatically (median squared bias across sink sites reduced by 90% and the source site by 80%) by all optimization tests that include the post C uptake parameters related to C allocation, respiration, and aboveground biomass and soil C turnover (P1, P3, P4 and P7). For the sink sites, assimilation scenarios that also include photosynthesis parameters (P2 and P6) also result in a strong reduction in bias (median squared bias reduction of 50%). This decrease in mean bias is also shown by the fact that the midpoints of the linear regression trendline between model and observations at forested sink sites (US-Vcm, US-Vcp, US-Mpj, and US-Fuf) and low-elevation source site (US-Aud) with optimization scenarios P1 to P4, P6 and P7 parameters all lie much closer to the 1:1 (grey dashed) line compared to P5 (Figure S6).

Figure 4. Daily NEE MSD decomposition into bias, variance, and phase components when assimilating NEE observations for different assimilation scenarios (P1-P7). Different panels separate the sites as sink (a), pivot (b) and source (c) based on total annual C flux. The C sink sites are: US-Vcm, US-Vcp, US-Mpj, US-Fuf, US-Wjs and US-Ses; the C pivot sites are: US-Wkg, US-SRG, US-Seg, US-SRM and US-Whs; and the C source site is: US-Aud. The grey dashed boxes highlight results repeated from Figure 3(a,d,g) to have better comparison of different process parameters side-by-side. The parameters included in each optimization are: P1: all parameters; P2: phenology and photosynthesis; P3: phenology and post C uptake; P4: photosynthesis and post C uptake; P5: phenology; P6: photosynthesis and P7: post C uptake. The boxplots show the median and interquartile range of the bias, variance and phase across all 12 sites considered in this study. US-Aud is the only C source site; therefore, the barplots in (c) show the bias, phase, and variance components of the MSD for that one site. The bias, variance and phase indicate the mean difference in flux magnitude, the difference in the magnitude of flux variations, and the difference in the correlations weighted by the standard deviations, respectively (see Methods).
Across all sites the difference in phase between the model and observations (green bars in Figure 4), which, as already noted, is the largest contribution to the prior NEE MSD across all sites, is mostly reduced by assimilation scenarios that include phenology parameters (i.e. P1, P2, P3 and P5). The P4 assimilation (photosynthesis and post C uptake parameters) also does well in reducing phase contributions to NEE MSD at forested C sink sites (Figure 4a). However, the phase component is not reduced as much as the bias in any of the assimilation scenarios; thus, for all sites and all assimilation scenarios the phase remains the largest component of the posterior daily NEE MSD (Figure 4). Including parameters related to photosynthesis or post C uptake with the phenology parameters (i.e. assimilation scenarios P2 and P3) helps to slightly reduce the median phase discrepancy at sink sites compared with phenology parameters alone (P5) (Figure 4a). Examining the spread in slope and R values across all sites, we see that the annual variability (median slope and R values) is improved the most for assimilation scenarios with at least two parameter sets (P1 to P4 - Figure S7a and d). The persistence of phase as the dominant component of the posterior daily NEE suggests further model improvement in processes related to dryland vegetation temporal dynamics (e.g. phenology and all associated processes) is needed before TBMs can correctly reproduce NEE seasonality and IAV.

The variance component of the daily NEE MSD (orange bars in Figure 4), which shows a modest contribution to daily NEE MSD at the sink and source sites, is mostly reduced at the sink sites with assimilation scenarios that include photosynthesis parameters (i.e. P1, P2, P4 and P6 - Figure 4a). At US-Aud, which had a larger prior variance component than bias, the posterior variance was reduced by assimilation scenarios that tended to include photosynthesis or post C uptake parameters (i.e. P1, P3, P4 and P6) (Figure 4c).

While the post C uptake parameters are key for reducing bias in forested sink site NEE, biases in GPP and R_{eco} at these sites are reduced by optimizing photosynthesis parameters (P1, P2, P4, and P6 - blue boxes Figure S9b and c). The GPP and R_{eco} bias components at the sink sites are not reduced as strongly as NEE biases for any assimilation scenario; thus, bias remains a key contributor to posterior gross CO_{2} flux MSD. Similarly to NEE, parameter subsets that include phenology parameters (P1, P2, P3 and P5) are key for reducing the daily GPP MSD sink and phase component at pivot sites (green boxes in Figure S9e; also see median GPP slope and
R values in Figures S7b and c). With the exception of P1 and P2 for GPP, the GPP and R_{eco} variance components are not reduced much by any of the assimilation scenarios and remain a considerable component of the MSD for both GPP and R_{eco} at the pivot sites, and for R_{eco} at the sink sites (Figures S9b,c,e,f).

3.3 Constraint on parameters

For all assimilation scenarios, we found significant parameter deviations from prior values for numerous phenology, photosynthesis and post C uptake related parameters (Figures 5a and S10a), which is consistent with the fact that all parameter subsets are needed to improve model mean annual NEE and IAV. Parameter deviation was calculated using the difference between the posterior and prior parameter value normalized by the total parameter variation used in the optimization. Finally, the median value was taken as the mean deviation from all 12 sites. We did not find that parameters deviate more, or the uncertainty reduction (calculated as $1 - (\text{posterior parameter uncertainty} / \text{prior parameter uncertainty})$) was much different, when only one subset or two parameter subsets were included in the optimization instead of all three (e.g. cf. P2 with P1), although posterior values are different for each assimilation scenario (Figure S10). In particular, most of the post C uptake parameters deviate strongly from the prior median deviations (>20% of total parameter bound). There are also significant uncertainty reductions (>50%) for most of the parameters which show strong deviations from their prior value: for P1 for example there are 10 for phenology (out of 42), 6 for photosynthesis (out of 31) and 8 for post C uptake (out of 16) (denoted by asterisks in Figure S10). By grouping all parameters according to their respective processes we found that phenology and post C uptake parameters had the strongest uncertainty reductions across all assimilation scenarios, while spread in reduction in photosynthesis parameter uncertainty is high (Figure S11). The error correlations between the estimated parameters are usually minimal except for parameters involved in the empirical calculation of the moisture stress function on soil C decomposition (e.g., “moist_coeff_”) (see example for one site in Figure S12).
Figure 5. Optimized median parameter deviations \([(\text{posterior} - \text{prior}) / (\max - \min)]\) (blue bars) and associated median parameter uncertainty reductions (grey bars) for parameters (having deviations > ±0.3 or uncertainty reduction > 50%) controlling phenology, photosynthesis and post C uptake assimilating NEE data (P1-P7). Bars represent the median across all 12 sites. The asterisks above blue bars indicate the parameters that have larger than 50% uncertainty reduction. Each line corresponds to a specific optimization test (shown on the right axis). The parameters are given on the bottom axis. The vertical dashed lines separate the different parameter subsets (phenology, photosynthesis and post C uptake). Table S1 details the prior and posterior parameter values and their uncertainty for all parameters together with the maximum and minimum bounds used in the optimizations.

Certain phenology parameters are important across all assimilation scenarios: i) parameters related to leaf age; ii) a parameter related to the critical temperature threshold for the start of deciduous shrub leaf growth (ncdgdd_temp); iii) moisture thresholds that govern C4 grass senescence (nosenescence_hum); and iv) various parameters that control the time scales used in phenology schemes (e.g. tau_climatology, tau_hum_week) (Figure 5). The phenology models are highly dependent on such empirical parameters, which likely need to be optimized for each site. Key photosynthesis related parameters are SLA, parameters involved in the calculation of $V_{c,max}$ (the maximum carboxylation rate, which has been shown to be a highly sensitive model parameter in previous studies, e.g. Kuppel et al., 2014), and the parameter that
represents the root profile in the empirical calculation of leaf water stress (hydrol_humc),
which downregulates photosynthesis and stomatal conductance in the dry season. The most
important post C uptake parameters are fairly similar across assimilation scenario tests, and are
related to: i) the calculation of the growth and maintenance respiration as a fraction of biomass;
ii) aboveground biomass residence time and various turnover rates for biomass and litter pools;
and finally, iii) the Q10 parameter involved in the temperature dependence of soil C
decomposition (Figure 5). We compared the posterior parameter values for all relevant
assimilation scenarios to the available trait data from the TRY database (Figure S13). The two
photosynthesis traits (SLA for pinus ponderosa close to US-Fuf and \(V_{c,max}\) for larrea tridentata
close to US-Ses were over- and underestimated by the posterior values across all assimilation
scenarios, respectively, whereas the leaf longevity for larrea tridentata measured close to US-
Ses was well captured by the P3 assimilation scenario. There is not enough trait information to
perform a rigorous validation of the posterior parameter values. The existing measurements may
differ from the model due to the fact the traits were not mentioned at the same location.
However, mismatches between the posterior parameter values and traits presented here
highlights that we need to collect more trait data with which to evaluate the optimized
parameters, in addition to using the DA framework to explore how parameters may vary over
space and time. We discuss this further in Section 4.

4 Discussion and Conclusions

4.1 Further testing and developments needed to improve modeling of dryland C cycling

In this study, we have shown that it is possible to account for model discrepancies in both
the mean annual NEE and NEE IAV at a range of semi-arid SW US sites via optimization of C
cycle parameters within a Bayesian DA framework. We used weak prior constraints (i.e. large
prior parameter bounds) to give the assimilation the maximum chance to correct any model
errors. Our goal was not to identify the ideal “correct” set of C cycle parameters for capturing
semi-arid vegetation and C cycle dynamics, but rather to identify whether, within the current
model representation, we could account for model-data mismatches. Looking at the individual
parameter plots for the P1 assimilation scenario (Figure S14), we find that at some sites several
posterior parameters are “edge-hitting” (e.g. soil Q10). Given we chose weak prior constraints in
the assimilation, the fact that some posterior parameters are hitting their bounds suggests that the
optimization may be aliasing model structural error onto the parameters (as demonstrated in MacBean et al., 2016 and Wutzler and Carvalhais, 2014) and/or that the model cannot improve further via parameter optimization. This suggests that further model developments are likely needed to address structural uncertainties and missing processes, which will then need to be followed up with additional parameter DA experiments to ensure increasing complexity does not degrade model skill (Famiglietti et al., 2021). We know for example that certain important processes for sparsely vegetated, mixed shrub- and grass-dominated dryland ecosystems, such as wildfires (Exbrayat et al., 2018; Lasslop et al., 2016; Whitley et al., 2017) and biological soil crust C cycling (Belnap et al., 2016), are currently not represented in most TBMs. Exbrayat et al. (2018) showed using a Bayesian parameter DA experiment that model simulations with fire had faster carbon turnover times and increased C allocation to wood and root pools (rather than foliage) than the simulations without fire – all of which resulted in changes to GPP, net primary productivity, biomass and carbon use efficiency. Their results neatly demonstrate that errors due to missing model processes can be aliased onto the posterior parameter values.

Hypotheses as to which processes might be responsible for model inability to capture semi-arid CO₂ flux IAV – and therefore which processes need further development in the model – are numerous and will take time to explore fully. MacBean et al. (2021) suggested that the following processes might be causing model errors in capturing semi-arid C cycle dynamics: the lack of drought-deciduous shrub phenology schemes in TBMs (Renwick et al., 2019); the lack of deep tap roots for trees and shrubs that draw up groundwater needed for growth during drier periods (Gibbens and Lenz, 2001; Kerhoulas, et al., 2012); the lack of dynamic root growth or hydraulic redistribution as soil moisture changes with depth (De Kauwe et al., 2015; Fu et al., 2016; Lee et al., 2018; Li et al., 2012; Whitley et al., 2016; 2017); and inaccurate nutrient limitation in dryland ecosystems (Sun et al., 2021; Hooper & Johnson, 1999). Future studies need to systematically test all these options to determine which, if any, can explain the observed model-data discrepancies. Here, we aimed to facilitate our understanding of which processes may be responsible for errors in modeling of semi-arid C fluxes by using the different assimilation scenarios as tests of which parameter sets (and therefore, which processes) most improve the model-data mismatch. The assimilation with all C cycle and vegetation parameters (P1) performed the best in terms of correcting underestimates in modeled mean annual NEE and IAV. However, the additional assimilation scenarios (P2 to P7) further demonstrated that
phenology parameters are likely key for improving semi-arid ecosystem NEE IAV. Issues with semi-arid phenology in TBM models have been documented elsewhere (Traore et al., 2014; Dahlin et al., 2015; MacBean et al., 2015; Renwick et al., 2019; Whitley et al., 2016; Teckentrup et al., in review). In addition, Wu et al. (2018) found that TBM models underestimate vegetation productivity responses to increased precipitation at grassland sites. Further evidence for inadequate TBM phenology schemes comes from MacBean et al. (2020), who noted that while the ORCHIDEE model can capture evapotranspiration (ET) fluxes extremely well, even without parameter optimization, the model simulates a delayed increase in transpiration/ET (T/ET) ratios during the summer monsoon when compared to two independent T/ET estimates. This suggests that the model is getting ET right for the wrong reasons – i.e. the partitioning of ET into its component fluxes of T and bare soil evaporation is incorrect. This lagged response of T to increasing rainfall is consistent with the results of MacBean et al. (2021) who found across a suite of TBM models (TRENDY v7) too weak ecosystem-scale water use efficiency (WUE) – i.e. a too weak response of GPP to increasing ET – during the monsoon was likely the cause of their inability to capture NEE IAV. Put simply, the models simulate too weak a response of vegetation growth to pulses of moisture availability. Thus, the evidence from all these studies, including our results presented here, is pointing to issues with processes controlling seasonal vegetation dynamics such as phenology and plant hydraulics schemes that controls plant water stress.

Another source of error in the model NEE IAV simulations could be related to the fractional cover (fCover) of different PFTs prescribed in the model. Although we used site-based estimates of PFT fCover, these estimates typically represent the spatio-temporal average fCover at each site (as is often the case in coarse-scale (>30m) satellite fCover estimates - Brandt et al., 2016). In contrast, the PFT fCover prescribed in TBM models should be the maximum possible fCover: The models then limit the growth of vegetation based on climate conditions and other resource availability. In the lower elevation sites, the in situ fCover estimates suggest a high fraction of bare soil at each site; however, in years with strong monsoon rainfall, growth of summer annual C4 grasses will fill most of bare soil patches, resulting in a much lower bare soil fCover during those periods. Therefore, the static PFT fCover prescribed in the models based on the in situ estimates from each site likely prevent monsoon season growth of summer annual C4 grasses in the interstitial bare soil patches that can vary year to year depending on monsoon rainfall variability. It is possible that this issue of static PFT fractions based on spatio-temporally
averaged *in situ* estimates explains the model’s inability to capture peak GPP fluxes for some sites, and the fact that even in the posterior simulations, the phase remains the strongest contribution to the NEE MSD. Errors in PFT fractions in sparsely vegetated regions have also been shown to propagate into large model errors in simulated carbon, water and energy fluxes (Hartley et al., 2017). The optimization of numerous phenology parameters with weak constraints in this study could be partially accounting for such a model error in spatially heterogeneous dryland ecosystems. Future simulations across all sites should be run with prescribed fCover that captures the maximum vegetation growth that is possible at the site, which will likely require new vegetation fCover classifications specifically for particularly wet time periods.

The same Bayesian DA system was used by MacBean et al (2015) to correct phenology model issues in a previous version of ORCHIDEE that was nonetheless identical in its representation of phenology. However, while they were able to correct the seasonal leaf dynamics in temperate and boreal ecosystems, they found the parameter optimization was unable to correct for phenology model issues in semi-arid ecosystems. While the data they used were different – normalized difference vegetation index (NDVI) from the MODIS satellite instrument as opposed to the flux tower NEE used here – they also used stronger prior constraints and fewer phenology parameters, suggesting that the additional degrees of freedom in the assimilations in this study (from weaker prior constraints and a greater number of phenology parameters) may have resulted in the improvements from the parameter optimization. In future studies we will test the combination of both NEE and NDVI, in addition to other proxy measurements of GPP such as solar induced chlorophyll fluorescence data, for improving ORCHIDEE vegetation dynamics in drylands. Still, as we noted above, the combination of weak prior constraints and edge-hitting posterior parameters suggests the assimilations are accounting for other structural errors in the model, and phase errors remain a strong source of NEE MSD even after optimization. As also noted, the phenology schemes in these models are highly dependent on a number of empirical parameters that require site calibration and which were typically not developed for dryland ecosystems. Future developments in this area should take account of the variety of different strategies in dryland plants for responding to highly variable water availability and water stress (Smith et al., 2012).
Our assimilation tests also showed that so-called “post C uptake” parameters related to maintenance respiration, biomass and litter turnover, and soil C decomposition are mainly responsible for reducing the strong model underestimate of mean annual NEE, particularly at the higher elevation forested C sink sites. Our key focus was not on correcting the mean annual NEE, and instead was more focused on correcting errors in NEE IAV, because the variability in eddy covariance measurements of NEE are more trusted than the absolute values due to errors in flux partitioning. Furthermore, for the semi-arid sites that pivot between a C source and sink, their mean sink versus source behavior may be a function of a time period involved. In particular, the only mean C source site (US-Aud) is likely a source because of a fire in 2002 from which the site was still recovering during the measurement period (Krishnan et al., 2012). As discussed, we know that even TBMs that include wildfire modules will likely not reproduce the specific impacts of an individual fire. Including an additional “k_{biomass}” parameter in the assimilations that, similar to k_{soilC} for soil C, scales the initial aboveground biomass pools could help to account for the impact unknown disturbances on changes vegetation cover and C flux dynamics. This needs to be tested in future DA experiments. Nevertheless, while we do not focus on the C source site, we do know that the high elevation forested sites in this study are consistently sinks of C, even during the drought period that has been affecting the SW US for most of this century (Scott et al., 2015). It is important that we are able to capture this dryland forested site C sink, particularly given these ecosystems have been shown to contribute to long-term trends in the global C cycle (Ahlstrom et al., 2015). Drylands are vulnerable to future increases in drought, which may reduce the C sink (Bodner and Robles, 2017). On the other hand, drought impacts on dryland vegetation could be mitigated by increases in WUE and vegetation growth under elevated CO$_2$ (e.g. Donohue et al., 2013). Thus, it is an important contribution that parameter optimizations presented here can account for these biases in modeling C sinks at high elevation forested sink sites. MacBean et al. (2021) postulated that TRENDY TBM underestimates in mean annual NEE at these sites was due to underestimates in spring GPP, possibly due to issues with model snow melt not providing enough moisture for spring growth. In contrast, the results presented here suggest that the biases at the high elevation forested sink sites may be more linked to processes that occur after the gross uptake of CO$_2$, such as growth and maintenance respiration, biomass turnover, and temperature limitation on soil C decomposition (Figure S14). It may be that TBMs can accurately capture dryland forested site
mean annual NEE if the parameters related to C respiration, allocation, biomass turnover and decomposition are better adapted for dryland PFTs, which simply requires more careful calibration across a range of dryland forest sites. Additional observations of: i) snow cover and snow melt; ii) autotrophic and heterotrophic respiration; and iii) above and belowground C stocks are needed to assess whether the parameter calibration is accounting for model biases in mean annual NEE. With this additional information we can start to tease apart if the different processes that contribute to the forested site mean C sink are well represented in the model.

4.2 DA for improving our understanding of dryland ecosystem processes

Our posterior parameter analysis points to the parameters that are most important for controlling net CO₂ flux dynamics (Section 3.3). Given the paucity of trait data for the SW US (Section 2.7), these results can guide further field trait data collection efforts that are needed to validate the posterior parameter values. The data assimilation experiments performed in this study can also provide additional information on how traits may vary across dryland species. The spread in posterior parameter values across all sites for each of the main PFTs at each site: evergreen trees, shrubs, and C4 grasses is considerable for almost all parameters (Figure S16), particularly for phenology and post C uptake parameters and also for all C4 grass parameters. The lack of posterior parameter error correlations suggests that for the majority of parameters, unique parameters values have been found by the optimizations. However, before we analyse the spread in posterior values further, synthetic DA experiments and further DA configuration tests (see Section 4.3) are needed to verify if the current DA set-up is able to find the correct posterior parameter values. If the spread in posterior parameter values across PFTs seen in the DA experiments presented here is real, it may mean that traditional PFT categories do not represent dryland species well. Instead, high spread in posterior parameter values grouped by current PFT groupings may indicate that new PFTs need to be developed specifically for dryland species, or that certain parameters vary more across different species, or across biomes, latitudes and continents within each PFT (Dahlin et al., 2017; Yang et al., 2021). In addition, high spread in posterior parameter values may point to temporal variation in traits. Barron-Gafford et al. (2012) demonstrated that maximum photosynthetic capacity and the optimum temperature for photosynthesis differed across seasons for both dryland woody plants and C4 grasses. Likewise, Cable et al. (2012) showed that different PFTs can alter the sensitivity of soil respiration to temperature and moisture. Future DA experiments can assess these different predictions of how
parameters and traits vary across species and over time by performing assimilation experiments grouping different vegetation types and allowing the parameters to vary over given timescales. These studies can in turn point to both soil and vegetative processes that are most important for governing C flux dynamics. For example, Verbeeck et al. (2011) used a time-varying parameter DA experiment to suggest that deep-root water access was crucial for Amazon forests to maintain high productivity during the dry season.

Our assimilation results and temporal validation analysis suggest that processes that control seasonal vegetation dynamics (e.g., phenology and plant water availability) are crucial for capturing NEE IAV (a conclusion shared by Whitley et al., 2017). This analysis mirrors Fu et al. (2019) who showed that, unlike mesic ecosystems in which NEE IAV is dominated by maximum carbon uptake (i.e., peak fluxes), in water-limited ecosystems NEE IAV is dominated more by the carbon uptake period. In other words, changes in the growing season length (GSL) may have an outsized impact on annual net CO$_2$ flux variability. The importance of phenology may be specifically related to the timing of plant growth rather than duration per se (Ogle and Reynolds, 2004). The timing of vegetation growth differs considerably among dryland species given their different strategies for accessing available water (Barron-Gafford et al., 2017; Cleverly et al., 2016; Guo et al., 2018; Krishnan et al., 2012; Reynolds et al., 2004; Scott et al., 2008; Wilcox et al., 2004) in addition to changing responses to rainfall different seasons (Biederman et al., 2018) and lagged effects that are also characteristic of dryland ecosystems (Barnes et al., 2016; Liu et al., 2019; Ogle and Reynolds, 2004; Shen et al., 2016). Clearly, there is a complexity of different vegetation responses to plant available water that need to be explored further and explicitly in terms of their contributions to NEE IAV. The various hypotheses and theoretical models for plant water use and growth (e.g., the “two-layer” and “pulse-reserve hypotheses, “threshold-delay model”, and hierarchical responses to rainfall pulses – Collins et al., 2014; Ogle and Reynolds, 2004; Schwinning and Sala, 2004 – among others) could be systematically tested within a TBM framework that is designed to incorporate the myriad different interacting vegetation, C and water cycle processes that contribute to ecosystem-scale net exchange of CO$_2$ between the surface and atmosphere.

In addition to testing the theoretical frameworks underpinning dryland biogeochemical cycling and vegetation dynamics, more research needs to be conducted into dryland phenology. Phenological drivers are not as well understood or modeled for dryland vegetation as they are for
more mesic ecosystems (Dahlin et al., 2017; Eamus and Prior 2001; Singh and Kushwaha, 2005; Smith et al., 2012). Empirical studies are needed to develop an understanding of which environmental cues are the most important for different dryland species. Research into different strategies for accessing root zone soil moisture is more advanced (Shiqin et al., 2017; Wilcox et al., 2004); however, model developments and further DA experiments could be used to assess how site level understanding of these processes scales to impact ecosystem CO₂ fluxes that are affected more by competition between species in spatially heterogeneous landscapes.

The analysis presented here has focused on site-level CO₂ fluxes. Once further DA system configuration tests have been performed across all flux tower sites in the SW US and other dryland ecosystems worldwide (see Section 4.3), regional-scale DA experiments will provide us with data-constrained posterior simulations that can be used to address questions such as which dryland regions are most responsible for global scale NEE IAV (Haverd et al., 2017), which vegetation types account for the majority of C flux variability across different ecosystem types (Haverd et al., 2013), or which processes dominate the NEE IAV (Haverd et al., 2016; Humphrey et al., 2021).

4.3 Caveats of the DA approach and perspectives for future dryland C cycle DA studies

In this study we focused on correcting parameters related to GPP, partly because MacBean et al. (2021) found that GPP, and particularly summer monsoon season GPP, is the dominant driver of NEE IAV. We also are obliged to focus on GPP parameters because the number of model parameters is higher for GPP. In a follow up study, we are assessing how the number of parameters linked to each different process affects the ability of the optimization to correct for errors in those processes. We may find, for example, that the sheer number of parameters related to phenology that are included here results in those parameters being the most important for correcting NEE IAV. This then becomes an issue of wider model development because we can only include parameters in the optimization that are in the model. Still, the fact that the relatively few “post C uptake” parameters included in the assimilation tests carried out in this study can account for biases in mean annual NEE suggests that the number of parameters linked to each process does not prevent us from identifying which set of parameters (and
processes) are mostly causing model-data discrepancies. It is still possible that those parameters are accounting for other model structural errors, as we have discussed in Section 4.1.

The spin-up procedure used in these assimilations results in the model being at quasi-steady state, which could also explain the model underestimate in mean annual NEE. In future, we will implement a so-called “transient” simulation in the assimilation framework and test the impact on the NEE assimilation and resultant posterior parameter values. The transient simulation would occur after spin-up and before the assimilation and would simulate changing climate, rising CO$_2$, and land use history since the early 20th century. Given the k_{soilC} parameter, which acts as a scalar on the slow and passive C pools, did not change much during any of the assimilation experiments, we do not expect inclusion of a transient simulation would result in a considerable change in soil C. However, we do expect that we might see a stronger C sink at the forest sites due to the increased time since equilibrium conditions that are imposed by the end of the spin-up.

Further tests and validation of different DA configurations and optimizations at these, and other, dryland sites are needed to explore fully the potential of Bayesian DA systems for quantifying and reducing error in dryland ecosystem C fluxes. The specific DA configuration (e.g. type of data included, the number of parameters optimized and to which processes they are related, the data record length, and the model version) can lead to different posterior values and degree of improvement in model-data fit. Previous dryland DA studies have suggested that including hydrology related data streams in the assimilation can be beneficial in improving model root zone soil moisture, vegetation dynamics and C and water flux estimates due to the strong C-water interactions in these ecosystems (Barrett et al., 2005; Haverd et al., 2013; Tian et al., 2019a,b). Raoult et al. (2021) have demonstrated how in situ soil moisture DA can be used to improve model “drydowns” in water availability following rain events, which should help the model to capture C flux dynamics in these characteristically pulse-driven ecosystems (Huxman et al., 2004). However, we note that as we include multiple data streams in the assimilation the computational cost will increase; therefore, there will be a need for sensitivity analyses to select only the parameters to which assimilated variables are most sensitive. Improving estimates of NEE IAV may require additional terms in the cost-function that specifically estimate the model-data misfit at annual timescales (e.g., Desai, 2010), as opposed to evaluating the daily timestep as
we do in the cost function in this study. We also need to find better ways to estimate the
combined observation and model structural errors (R matrix), including assessing observation
temporal autocorrelation and error correlations between different datasets in future multiple data
stream DA experiments. In future SW US C cycle DA studies we will also consider options for
using the available trait information to better estimate prior parameter bounds and off-diagonal
elements of the prior B matrix (e.g., Bloom and Williams, 2015). Few trait data are available for
the wide variety of different plant species in dryland ecosystems (Section 2.7). Collaborative
projects between modelers and empirical scientists could improve that situation, with model
experiments better informing trait data collection needs) as well as additional DA experiments
testing how parameters may vary over time (Barron-Gafford et al., 2012; Downton et al., 1984).
More well-defined prior bounds on the parameters would reduce prior uncertainties and therefore
provide a much stronger constraint on the parameter optimization. The result would be lower
parameter error reductions, but increased efficiency in finding the most optimal parameter
vector. In addition, the impact of posterior parameter error correlations and model equifinality on
modeled dryland C flux uncertainty should be explored further (e.g., Trudinger et al., 2016).
Equifinality – the situation in which multiple different posterior parameter vectors result in the
same reduction in model-data misfit – can be ruled out via synthetic DA experiments. Synthetic
experiments use model runs with default parameters to provide pseudo-observations with which
to test the ability of the inversion to find the known “true” parameter values. Finally, we
ultimately need one set of parameters for each PFT in order to run regional to global scale
simulations; therefore we must test how well a multiple site assimilation that includes all sites for
a given PFT performs in comparison to the single site optimizations (e.g., Kuppel et al., 2012).
However, we may find that multi-site assimilations only perform well once we have developed
new PFTs that can better represent the variety of dryland plant species (Section 4.2).

Despite the need for many more DA system tests at dryland sites, the assimilation
experiments presented here already demonstrate that strong reductions in parameter uncertainty
and dramatic improvements in model-data fit are possible using in situ dryland CO$_2$ fluxes. Our
results clearly show that, in addition to model developments that may be needed for models to
better represent dryland ecosystems, C cycle related parameters likely need optimizing by TBM
groups before they can accurately model dryland CO$_2$ fluxes. Only by addressing these issues

will we be able to reliably use TBMs to accurately simulate regional to global-scale dryland contributions to IAV and long-term trends in the global C cycle.

Acknowledgments

The US-Fuf site was supported by grants from the North American Carbon Program/USDA CREES NRI (2004-35111-15057 and 2008-35101-19076), Science Foundation Arizona (CAA 0-203-08), the Arizona Water Institute, and the Mission Research Program, School of Forestry, Northern Arizona University (McIntire-Stennis/Arizona Bureau of Forestry). KM was funded by Indiana University Prepared for Environmental Change Grand Challenge. We would like to thank the ORCHIDEE team for development and maintenance of the ORCHIDEE code and for providing the ORCHIDEE version used in this study.

Code availability

The ORCHIDEE model is under a free software license (CeCILL; see http://www.cecill.info/index.en.html) and the source code is visible here: https://forge.ipsl.jussieu.fr/orchidee/browser/tags/ORCHIDEE_2_0 (Peylin et al., 2021). The ORCHIDEE model code is written in Fortran 90 and is maintained and developed under an SVN version control system at the Institute Pierre Simon Laplace (IPSL) in France. The ORCHIDAS code is currently in the process of being put on a GitHub repository but for now it is available on request to vladislav.bastrikov@lsce.ipsl.fr.

Data availability
Meteorological forcing data and eddy covariance measurements of net surface energy and carbon exchanges at 30-minute intervals are available from the AmeriFlux data portal (http://ameriflux.lbl.gov). The model outputs from ORCHIDEE simulations and post-processing python scripts for manuscript figures and tables are freely available in a Git repository (https://github.com/kashifmahmud/SW_US_semiarid, last access: 20 September 2021) and on Figshare (Mahmud et al., 2021).

References

Supporting Information for

Optimizing Phenology Parameters Drastically Improves Terrestrial Biosphere Model Underestimates of Dryland Net CO₂ Flux Inter-Annual Variability

Kashif Mahmud¹, Russell L. Scott², Joel A. Biederman², Marcy E. Litvak³, Thomas Kolb⁴, Tilden P. Meyers⁵, Praveena Krishnan⁶, Vladislav Bastrikov⁷,⁸, and Natasha MacBean¹

¹Department of Geography, Indiana University, Bloomington, IN 47405, USA
²Southwest Watershed Research Center, United States Department of Agriculture, Agricultural Research Service, Tucson, AZ 85719, USA
³Department of Biology, University of New Mexico, Albuquerque, NM, 87131, USA
⁴School of Forestry, Northern Arizona University, Flagstaff, AZ, 86011, USA
⁵NOAA/ARL Atmospheric Turbulence and Diffusion Division, Oak Ridge, TN, 37830, USA
⁶Oak Ridge Associated Universities, Oak Ridge, TN, 37830, USA
⁷Laboratoire des Sciences du Climat et de l’Environnement, LSCE/IPSL, CEA-CNRS-UVSQ, Université Paris-Saclay, Gif-sur-Yvette, F-91191, France
⁸Now at: Science Partners, Paris, 75010, France

Contents of this file

Tables S1 to S2
Figures S1 to S16
Table S1. Prior information for all ORCHIDEE parameters optimized in this study: prior value, uncertainty and maximum and minimum bounds for the different plant functional types (temperate needleleaf/broadleaf evergreen (TeNE, TeBE) forests, temperate broadleaf deciduous (TeBD) forest, C4 grassland (GC4)).

<table>
<thead>
<tr>
<th>Parameter Name</th>
<th>Description (Unit)</th>
<th>Plant functional type</th>
</tr>
</thead>
<tbody>
<tr>
<td>Photosynthesis parameters</td>
<td></td>
<td>TeNE</td>
</tr>
<tr>
<td>ARJV</td>
<td>a coefficient of the linear regression (a+bT) defining the Jmax25/Vcmax25 ratio (mu mol e- (mu mol CO₂)-1)</td>
<td>2.59 ± 0.4</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2, 3</td>
</tr>
<tr>
<td>aSJ</td>
<td>a coefficient of the linear regression (a+bT) defining the Entropy term for Jmax (J K⁻¹ mol⁻¹)</td>
<td>659.7 ± 264</td>
</tr>
<tr>
<td></td>
<td></td>
<td>330, 990</td>
</tr>
<tr>
<td>aSV</td>
<td>a coefficient of the linear regression (a+bT) defining the Entropy term for Vcmax (J K⁻¹ mol⁻¹)</td>
<td>668.39 ± 267.6</td>
</tr>
<tr>
<td></td>
<td></td>
<td>334, 1003</td>
</tr>
<tr>
<td>BRJV</td>
<td>b coefficient of the linear regression (a+bT) defining the Jmax25/Vcmax25 ratio (mu mol e- (mu mol O₂)-1)</td>
<td>-0.035 ± 0.028</td>
</tr>
<tr>
<td></td>
<td></td>
<td>-0.07, 0</td>
</tr>
<tr>
<td>bSJ</td>
<td>b coefficient of the linear regression (a+bT) defining the Entropy term for Vcmax (J K⁻¹ mol⁻¹ C⁻1)</td>
<td>-0.75 ± 0.6</td>
</tr>
<tr>
<td></td>
<td></td>
<td>-1.5, 0</td>
</tr>
<tr>
<td>bSV</td>
<td>b coefficient of the linear regression (a+bT) defining the Entropy term for Vcmax (J K⁻¹ mol⁻¹ C⁻1)</td>
<td>-1.07 ± 0.8</td>
</tr>
<tr>
<td></td>
<td></td>
<td>-2, 0</td>
</tr>
<tr>
<td>CN</td>
<td>C/N ratio</td>
<td>40 ± 32</td>
</tr>
<tr>
<td></td>
<td></td>
<td>20, 100</td>
</tr>
<tr>
<td>D_Jmax</td>
<td>Energy of deactivation for Jmax (J/mol)</td>
<td>200000 ± 160000</td>
</tr>
<tr>
<td></td>
<td></td>
<td>180000, 220000</td>
</tr>
<tr>
<td>D_Vcmax</td>
<td>Energy of deactivation for Vcmax (J/mol)</td>
<td>200000 ± 160000</td>
</tr>
<tr>
<td></td>
<td></td>
<td>180000, 220000</td>
</tr>
<tr>
<td>E_gamma_star</td>
<td>Energy of activation for gamma_star (J mol⁻¹)</td>
<td>37830 ± 8000</td>
</tr>
<tr>
<td></td>
<td></td>
<td>27830, 47830</td>
</tr>
<tr>
<td>E_Jmax</td>
<td>Energy of activation for Jmax (J mol⁻¹)</td>
<td>49884 ± 8000</td>
</tr>
<tr>
<td></td>
<td></td>
<td>39884, 59884</td>
</tr>
<tr>
<td>E_KmC</td>
<td>Energy of activation for KmC (J mol⁻¹)</td>
<td>79430 ± 8000</td>
</tr>
<tr>
<td></td>
<td></td>
<td>69430, 89430</td>
</tr>
<tr>
<td>E_KmO</td>
<td>Energy of activation for KmO (J mol⁻¹)</td>
<td>36380 ± 8000</td>
</tr>
<tr>
<td></td>
<td></td>
<td>26380, 46380</td>
</tr>
<tr>
<td>fpsuedo</td>
<td>Fraction of electrons at PSI that follow pseudocyclic transport</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>fpsir</td>
<td>Fraction of PSII e⁻-transport rate partitioned to the C4 cycle</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FRAC_GRO</td>
<td>Fraction of GPP which is lost as growth respiration</td>
<td>0.28 ± 0.064</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0.2, 0.36</td>
</tr>
<tr>
<td>Term</td>
<td>Description</td>
<td>Value</td>
</tr>
<tr>
<td>------</td>
<td>-------------</td>
<td>-------</td>
</tr>
<tr>
<td>T_MIN</td>
<td>Fraction of electrons at reduced plastoquinone that follow the Q-cycle</td>
<td>-</td>
</tr>
<tr>
<td>MOIST_COE</td>
<td>MOIST_COE</td>
<td>-</td>
</tr>
<tr>
<td>ff</td>
<td>MOIST_COE</td>
<td>-</td>
</tr>
<tr>
<td>MIN_LTOLS</td>
<td>Minimum leaf allocation fraction</td>
<td>0.2 ± 0.08 0.1, 0.3</td>
</tr>
<tr>
<td>MAX_LTOLS</td>
<td>Extrema of leaf allocation fraction</td>
<td>0.5 ± 0.08 0.4, 0.6</td>
</tr>
<tr>
<td>MOIST_COE_FF_1</td>
<td>Coefficient to calculate moisture control for litter and soil C decomposition</td>
<td>1.1 ± 0.24 0.8, 1.4</td>
</tr>
<tr>
<td>MOIST_COE_FF_2</td>
<td>Coefficient to calculate moisture control for litter and soil C decomposition</td>
<td>2.4 ± 0.24 2.1, 2.7</td>
</tr>
<tr>
<td>MOIST_COE_FF_3</td>
<td>Coefficient to calculate moisture control for litter and soil C decomposition</td>
<td>0.29 ± 0.232 0.01, 0.59</td>
</tr>
<tr>
<td>MOISTCON_T_MIN</td>
<td>Minimum soil wetness to limit the heterotrophic respiration</td>
<td>0.25 ± 0.2 0.1, 0.6</td>
</tr>
<tr>
<td>HYDROL_H</td>
<td>Root profile (m) in empirical plant water stress function calculation</td>
<td>1 ± 1.5 0.25, 4 0.8 ± 1.12 0.2, 3 0.8 ± 1.12 0.2, 3 1 ± 1.5 0.25, 4</td>
</tr>
<tr>
<td>KmC25</td>
<td>Michaelis-Menten constant of Rubisco for CO2 at 25C (ubar)</td>
<td>404.9 ± 160 204.9, 604.9 404.9 ± 160 204.9, 604.9 404.9 ± 160 204.9, 604.9 650 ± 160 450, 850</td>
</tr>
<tr>
<td>KmO25</td>
<td>Michaelis-Menten constant of Rubisco for O2 at 25C (ubar)</td>
<td>278400 ± 80000 178400, 378400 278400 ± 80000 178400, 378400 278400 ± 80000 178400, 378400 278400 ± 80000 178400, 378400</td>
</tr>
<tr>
<td>kp</td>
<td>Initial carboxylation efficiency of the PEP carboxylase (mol m-2 s-1 bar-1)</td>
<td>-</td>
</tr>
<tr>
<td>LAI_MAX</td>
<td>Maximum LAI (m2/m2)</td>
<td>5 ± 2 3, 8 5 ± 2 3, 8 5 ± 2 3, 8 2.5 ± 0.8 4, 10</td>
</tr>
<tr>
<td>Sco25</td>
<td>Relative CO2 /O2 specificity factor for Rubisco at 25C (bar bar-1)</td>
<td>2800 ± 800 1800, 3800 2800 ± 800 1800, 3800 2800 ± 800 1800, 3800 2590 ± 800 1590, 3590</td>
</tr>
<tr>
<td>SLA</td>
<td>Specific leaf area (m2/gC)</td>
<td>0.00926 ± 0.0005 0.004, 0.02 0.02 ± 0.012 0.01, 0.04 0.026 ± 0.0148 0.013, 0.05 0.026 ± 0.0148 0.013, 0.05 0.026 ± 0.0148 0.013, 0.05 0.026 ± 0.0148 0.013, 0.05 0.026 ± 0.0148 0.013, 0.05</td>
</tr>
<tr>
<td>theta</td>
<td>Convexity factor for response of J to irradiance</td>
<td>0.7 ± 0.18 0.5, 0.95 0.7 ± 0.18 0.5, 0.95 0.7 ± 0.18 0.5, 0.95 0.7 ± 0.18 0.5, 0.95 0.7 ± 0.18 0.5, 0.95 0.7 ± 0.18 0.5, 0.95 0.7 ± 0.18 0.5, 0.95 0.7 ± 0.18 0.5, 0.95 0.7 ± 0.18 0.5, 0.95 0.7 ± 0.18 0.5, 0.95 0.7 ± 0.18 0.5, 0.95</td>
</tr>
<tr>
<td>TPHOTO_MAX</td>
<td>Maximum photosynthesis temperature (deg C)</td>
<td>55 ± 4 50, 60 55 ± 4 50, 60 55 ± 4 50, 60 55 ± 4 50, 60 55 ± 4 50, 60</td>
</tr>
<tr>
<td>TPHOTO_MIN</td>
<td>Minimum photosynthesis temperature (deg C)</td>
<td>-4 ± 4 -9, 1 -4 ± 4 -9, 1 -4 ± 4 -9, 1 -4 ± 4 -9, 1 -4 ± 4 -9, 1 -4 ± 4 -9, 1 -4 ± 4 -9, 1 -4 ± 4 -9, 1 -4 ± 4 -9, 1</td>
</tr>
<tr>
<td>VCMAX25</td>
<td>Maximum rate of Rubisco activity-limited carboxylation at 25C (micromol/m2/s)</td>
<td>35 ± 10 19, 51 45 ± 16 25, 65 55 ± 20 30, 80 70 ± 25 38, 102</td>
</tr>
<tr>
<td>VMAX_OFF_SET</td>
<td>Offset (minimum relative vcmax)</td>
<td>0.3 ± 0.048 0.24, 36</td>
</tr>
</tbody>
</table>

Post C uptake parameters - autotrophic and heterotrophic respiration, C allocation, biomass and soil C turnover

<table>
<thead>
<tr>
<th>Term</th>
<th>Description</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>HCRRIT_LITT ER</td>
<td>Scaling depth for litter humidity (m)</td>
<td>0.08 ± 0.192 0.02, 0.5</td>
</tr>
<tr>
<td>KSOILC</td>
<td>Scalar on the active soil C pool content (to account for uncertainty in spin-up)</td>
<td>1 ± 0.6 0.5, 2</td>
</tr>
<tr>
<td>MAINT_RES P_COEFF</td>
<td>Coefficient to calculate maintenance respiration as a fraction of biomass</td>
<td>1.4 ± 0.84 0.7, 2.4</td>
</tr>
<tr>
<td>MAINT_RES P_SLOPE_C</td>
<td>Slope of maintenance respiration coefficient (1/K), constant c of aT^n2+bT+c, tabulated</td>
<td>0.16 ± 0.064 0.08, 0.24 0.16 ± 0.064 0.08, 0.24 0.16 ± 0.064 0.08, 0.24 0.16 ± 0.064 0.08, 0.24 0.16 ± 0.064 0.08, 0.24 0.16 ± 0.064 0.08, 0.24</td>
</tr>
<tr>
<td>MAX_LTOLS</td>
<td>Extrema of leaf allocation fraction</td>
<td>0.5 ± 0.08 0.4, 0.6</td>
</tr>
<tr>
<td>MIN_LTOLS</td>
<td>Extrema of leaf allocation fraction</td>
<td>0.2 ± 0.08 0.1, 0.3</td>
</tr>
<tr>
<td>MOIST_COE_FF_1</td>
<td>Coefficient to calculate moisture control for litter and soil C decomposition</td>
<td>1.1 ± 0.24 0.8, 1.4</td>
</tr>
<tr>
<td>MOIST_COE_FF_2</td>
<td>Coefficient to calculate moisture control for litter and soil C decomposition</td>
<td>2.4 ± 0.24 2.1, 2.7</td>
</tr>
<tr>
<td>MOIST_COE_FF_3</td>
<td>Coefficient to calculate moisture control for litter and soil C decomposition</td>
<td>0.29 ± 0.232 0.01, 0.59</td>
</tr>
<tr>
<td>MOISTCON_T_MIN</td>
<td>Minimum soil wetness to limit the heterotrophic respiration</td>
<td>0.25 ± 0.2 0.1, 0.6</td>
</tr>
<tr>
<td>Parameter</td>
<td>Description</td>
<td>Value</td>
</tr>
<tr>
<td>---------------------------</td>
<td>---</td>
<td>--</td>
</tr>
<tr>
<td>RESIDENCE_TIME</td>
<td>Residence time of trees (years)</td>
<td>40 ± 24 30, 90 40 ± 24 30, 90 40 ± 24</td>
</tr>
<tr>
<td>SOIL_Q10</td>
<td>Temperature dependency factor for heterotrophic respiration</td>
<td>0.69 ± 0.44 0.69 ± 0.44 0.69 ± 0.44</td>
</tr>
<tr>
<td>TAU_FRUIT</td>
<td>Fruit lifetime (days)</td>
<td>90 ± 24 60, 120 90 ± 24 60, 120 90 ± 24</td>
</tr>
<tr>
<td>TAU_META_BOLIC</td>
<td>A coefficient to calculate residence times in metabolic litter pools (days)</td>
<td>0.066 ± 0.0112 0.052, 0.08</td>
</tr>
<tr>
<td>TAU_SAP</td>
<td>Sapwood heartwood conversion time (days)</td>
<td>730 ± 144 550, 910 730 ± 144 550, 910</td>
</tr>
<tr>
<td>TAU_STRUCT</td>
<td>A coefficient to calculate residence times in structural litter pools (days)</td>
<td>0.245 ± 0.04 0.2, 0.3</td>
</tr>
<tr>
<td>Phenology parameters</td>
<td></td>
<td></td>
</tr>
<tr>
<td>GDD_THRE_SHOLD</td>
<td>Temperature threshold used in the calculation of number of growing degree day, GDD (days)</td>
<td>5 ± 0.8 4, 6</td>
</tr>
<tr>
<td>GDDNCD_CURVE</td>
<td>Constant in the computation of critical GDD (days)</td>
<td>0.0091 ± 0.0011 0.0072, 0.01</td>
</tr>
<tr>
<td>GDDNCD_OFFSET</td>
<td>Constant in the computation of critical GDD (days)</td>
<td>64 ± 11.2 50, 78</td>
</tr>
<tr>
<td>HUM_FRAC</td>
<td>Critical humidity (relative to min/max) for phenology (%)</td>
<td>- - - 0.5 ± 0.2 0.25, 0.75</td>
</tr>
<tr>
<td>HUM_MIN_TIME</td>
<td>Minimum time elapsed since moisture minimum (days)</td>
<td>- - - 35 ± 12 20, 50</td>
</tr>
<tr>
<td>LAI_MAX_T_O_HAPPY</td>
<td>Threshold of LAI below which plant uses carbohydrate reserves</td>
<td>0.5 ± 0.14 0.35, 0.7 0.5 ± 0.14 0.35, 0.7</td>
</tr>
<tr>
<td>LEAF_AGE_CRIT_COEF_1</td>
<td>A coefficient to calculate critical leaf age (days)</td>
<td>1.5 ± 0.24 1.2, 1.8</td>
</tr>
<tr>
<td>LEAF_AGE_CRIT_COEF_2</td>
<td>A coefficient to calculate critical leaf age (days)</td>
<td>0.75 ± 0.12 0.6, 0.9</td>
</tr>
<tr>
<td>LEAF_AGE_CRIT_COEF_3</td>
<td>A coefficient to calculate critical leaf age (days)</td>
<td>10 ± 1.6 12, 8</td>
</tr>
<tr>
<td>LEAF_AGE_CRIT_TREF</td>
<td>Reference temperature used to calculate of critical leaf age (days)</td>
<td>20 ± 4 15, 25</td>
</tr>
<tr>
<td>LEAFAGE_FIRSTMAX</td>
<td>Leaf age at which vmax attains vcmax_opt (in fraction of critical leaf age)</td>
<td>0.03 ± 0.0048 0.024, 0.036</td>
</tr>
<tr>
<td>LEAFAGE_LASTMAX</td>
<td>Leaf age at which vmax falls below vcmax_opt (in fraction of critical leaf age)</td>
<td>0.5 ± 0.08 0.4, 0.6</td>
</tr>
<tr>
<td>LEAFAGECRIT</td>
<td>Critical leaf age, tabulated (days)</td>
<td>910 ± 200 610, 1210 730 ± 192 490, 970</td>
</tr>
<tr>
<td>LEAFFALL</td>
<td>Length of death of leaves, tabulated (days)</td>
<td>- - 10 ± 4 5, 15</td>
</tr>
<tr>
<td>LEAFLIFE_TAB</td>
<td>Leaf longevity (years)</td>
<td>0.33 ± 0.1 0.2, 0.75</td>
</tr>
<tr>
<td>MAX_TURN_OVER_TIME</td>
<td>Maximum turnover time for grass (days)</td>
<td>- - - 80 ± 4 75, 85</td>
</tr>
<tr>
<td>MIN_GROW_THINIT_TIME</td>
<td>Minimum time since last beginning of a growing season (days)</td>
<td>300 ± 24 270, 330</td>
</tr>
<tr>
<td>MIN_LEAF_AGE_FOR_S_ENESCENCE</td>
<td>Minimum leaf age to allow senescence (days)</td>
<td>- - 90 ± 8 80, 100 30 ± 4 25, 35</td>
</tr>
<tr>
<td>MIN_TURN_OVER_TIME</td>
<td>Minimum turnover time for grass (days)</td>
<td>- - - 10 ± 4 5, 15</td>
</tr>
<tr>
<td>Parameter</td>
<td>Description</td>
<td>Value Range</td>
</tr>
<tr>
<td>-----------</td>
<td>-------------</td>
<td>-------------</td>
</tr>
<tr>
<td>NCD_MAX_YEAR</td>
<td>A coefficient to calculate maximum possible number of chilling days (NCD)</td>
<td>3 ± 0.8, 2, 4</td>
</tr>
<tr>
<td>NCDGDD_TEMP</td>
<td>Critical temperature for the ncd vs. gdd function in phenology (C)</td>
<td>- - 5 ± 4, 0, 10 -</td>
</tr>
<tr>
<td>NOSENESCE</td>
<td>Relative moisture availability above which there is no humidity-related senescence</td>
<td>- - 0.3 ± 0.12, 0.15, 0.45 -</td>
</tr>
<tr>
<td>PHENO_GD_D_CRIT_A</td>
<td>Critical gdd tabulated constant a</td>
<td>- - 0 ± 0, 0, 0</td>
</tr>
<tr>
<td>PHENO_GD_D_CRIT_B</td>
<td>Critical gdd constant b</td>
<td>- - 0 ± 0, 0, 0</td>
</tr>
<tr>
<td>PHENO_GD_D_CRIT_C</td>
<td>Critical gdd constant c</td>
<td>- - 400 ± 64, 320, 480</td>
</tr>
<tr>
<td>PHENO_MOI_GDD_T_CRI</td>
<td>Average temperature threshold for C4 grass used (C)</td>
<td>- - 22 ± 8, 12, 32</td>
</tr>
<tr>
<td>SENESECE_HUM</td>
<td>Critical relative moisture availability for senescence</td>
<td>- - 0.2 ± 0.08, 0.1, 0.3</td>
</tr>
<tr>
<td>SENESECE_TEMP_A</td>
<td>Critical temperature for senescence (C), constant a of aT^2+bT+c, tabulated</td>
<td>- - 0 ± 0, 0, 0</td>
</tr>
<tr>
<td>SENESECE_TEMP_B</td>
<td>Critical temperature for senescence (C), constant b of aT^2+bT+c, tabulated</td>
<td>- - 0 ± 0, 0, 0</td>
</tr>
<tr>
<td>SENESECE_TEMP_C</td>
<td>Critical temperature for senescence (C), constant c of aT^2+bT+c, tabulated</td>
<td>- - 12 ± 8, 2, 22</td>
</tr>
<tr>
<td>TAU_CLIMATOLOGY</td>
<td>Tau for climatologic variables (days)</td>
<td>20 ± 8, 10, 30, 40 ± 16, 20, 60</td>
</tr>
<tr>
<td>TAU_GDD</td>
<td>Time scales for phenology and other processes (days)</td>
<td>6 ± 1, 5, 7, 20 ± 8, 10, 30, 6 ± 1, 5, 7</td>
</tr>
<tr>
<td>TAU_GPP_WEEK</td>
<td>Time scales for phenology and other processes (days)</td>
<td>10 ± 10, 5, 30, 10 ± 10, 5, 30, 10 ± 10, 5, 30, 10 ± 10, 5, 30</td>
</tr>
<tr>
<td>TAU_NGD</td>
<td>Time scales for phenology and other processes (days)</td>
<td>50 ± 20, 25, 75, 20 ± 8, 10, 30, 20 ± 8, 10, 30, 6 ± 1, 5, 7</td>
</tr>
<tr>
<td>TAU_SOILH_MONTH</td>
<td>Time scales for phenology and other processes (days)</td>
<td>20 ± 8, 10, 30, 20 ± 8, 10, 30, 6 ± 1, 5, 7</td>
</tr>
<tr>
<td>TAU_T2M_MONTH</td>
<td>Time constant for the “monthly” 2-meter temperature (days)</td>
<td>20 ± 8, 10, 30, 6 ± 1, 5, 7</td>
</tr>
<tr>
<td>TAU_T2M_WEEK</td>
<td>Time constant for the “weekly” 2-meter temperature (days)</td>
<td>20 ± 8, 10, 30</td>
</tr>
<tr>
<td>TAU_TSOIL_MONTH</td>
<td>Time constant for the “monthly” soil temperature (days)</td>
<td>20 ± 8, 10, 30</td>
</tr>
</tbody>
</table>

Conductance parameters - included in initial optimization sensitivity test but not in final optimizations

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Value Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>A1</td>
<td>Empirical factor involved in the calculation of fvpd</td>
<td>0.85 ± 0.04, 0.8, 0.9, 0.85 ± 0.04, 0.8, 0.9, 0.85 ± 0.04, 0.8, 0.9, 0.85 ± 0.04, 0.8, 0.9</td>
</tr>
<tr>
<td>B1</td>
<td>Empirical factor involved in the calculation of fvpd</td>
<td>0.14 ± 0.032, 0.1, 0.18, 0.14 ± 0.032, 0.1, 0.18, 0.14 ± 0.032, 0.1, 0.18, 0.14 ± 0.032, 0.1, 0.18</td>
</tr>
<tr>
<td>CHOISNEL_RSOL_CSTE</td>
<td>Constant in the computation of resistance for bare soil evaporation (s/m2)</td>
<td>3.3E4 ± 19400, 1.75E4, 6.6E4</td>
</tr>
<tr>
<td>CONDVEG_Z0</td>
<td>Surface roughness (m)</td>
<td>0.15 ± 0.12, 0, 0.3</td>
</tr>
<tr>
<td>DEFC_MUL</td>
<td>Constant in the computation of surface resistance (KW^-1)</td>
<td>1.5 ± 0.9, 0.75, 3</td>
</tr>
<tr>
<td>DEFC_PLUS</td>
<td>Constant in the computation of surface resistance (KW^-1)</td>
<td>0.023 ± 0.016, 0.003, 0.043</td>
</tr>
<tr>
<td>Site</td>
<td>Daily root mean square error (RMSE)</td>
<td></td>
</tr>
<tr>
<td>--------</td>
<td>-----------------------------------</td>
<td>---</td>
</tr>
<tr>
<td></td>
<td>GPP</td>
<td>R(_{\text{eco}})</td>
</tr>
<tr>
<td></td>
<td>Prior</td>
<td>Posterior</td>
</tr>
<tr>
<td>US-Vcm</td>
<td>1.402</td>
<td>1.473</td>
</tr>
<tr>
<td>US-Vcp</td>
<td>1.803</td>
<td>1.26</td>
</tr>
<tr>
<td>US-Mpj</td>
<td>1.294</td>
<td>0.917</td>
</tr>
<tr>
<td>US-Fuf</td>
<td>0.989</td>
<td>0.789</td>
</tr>
<tr>
<td>US-Wjs</td>
<td>1.046</td>
<td>0.77</td>
</tr>
<tr>
<td>US-Ses</td>
<td>0.272</td>
<td>0.308</td>
</tr>
<tr>
<td>US-Wkg</td>
<td>1.08</td>
<td>0.524</td>
</tr>
<tr>
<td>US-SRG</td>
<td>1.298</td>
<td>0.887</td>
</tr>
<tr>
<td>US-Seg</td>
<td>0.689</td>
<td>0.485</td>
</tr>
<tr>
<td>US-SRM</td>
<td>1.167</td>
<td>0.64</td>
</tr>
<tr>
<td>US-Whs</td>
<td>0.65</td>
<td>0.547</td>
</tr>
<tr>
<td>US-Aud</td>
<td>1.092</td>
<td>0.817</td>
</tr>
</tbody>
</table>

Table S2. Daily GPP and ecosystem respiration (R\(_{\text{eco}}\)) model-data fit when assimilating NEE observations with all parameters (P1) in terms of prior and posterior root mean square error (RMSE) for all twelve sites. The reduction in daily GPP RMSE varies between 0 to 0.55 gCm\(^{-2}\)d\(^{-1}\), and the reduction in daily R\(_{\text{eco}}\) RMSE varies between 0 to 0.5 gCm\(^{-2}\)d\(^{-1}\). The sites are listed in order from largest mean annual C sink (US-Vcm) to mean annual C source (US-Aud).
Figure S1. Comparison of NEE observations (grey) with corresponding ORCHIDEE model simulations before (red line) and after assimilation (blue line) for assimilating NEE observations with all parameters (P1). The vegetation types are listed within brackets for each site. The RMSE measures the fit of the model prior and posterior simulations with the corresponding observations. Across all sites, the prior and posterior NEE RMSEs vary between 0.291-1.377 and 0.196-0.788, respectively. The sites are listed in order from largest mean annual C sink (US-Vcm) to mean annual C source (US-Aud).
Figure S2. Daily, monthly and annual NEE (a, d), GPP (b, e) and \(R_{\text{eco}} \) (c, f) prior and posterior Pearson correlation coefficients (R) and slope values for the linear regression between model and observed fluxes for assimilating NEE observations and optimizing all phenology, photosynthesis and post C uptake parameters (P1). The R between observed and modeled NEE at daily, monthly and annual timescales for optimizing all parameters (P1) increase by up to 0.50, 0.55, 0.65 respectively. Note that the y axis limits for both R and slope are the same and therefore 3 sites fall outside the y-axis upper limit for the \(R_{\text{eco}} \) slope.
Figure S3. Comparison between the posterior RMSE and R for both optimization (orange bars) and validation (green bars) simulations of daily NEE. The prior RMSE and R values are also shown in blue bars. The last year of NEE time series for each site is used for the validation purpose. The box-whiskers indicate the spread of RMSE and R ratios for all 12 sites.
Figure S4. Seasonal cycle with mean monthly total fluxes. Comparison of flux observations with corresponding ORCHIDEE model simulations (prior and posterior) for assimilating NEE observations and optimizing all phenology, photosynthesis and post C uptake parameters (P1). The sites are listed from left to right according to C sink to source.
Figure S5. Annual NEE, GPP and R_{eco} mean square deviation (MSD) decomposition into bias, variance, and phase between simulations and observations for assimilating NEE observations and optimizing all phenology, photosynthesis and post C uptake parameters (P1). Different rows separate the sites as sink (a-c), pivot (d-f) and source (g-i) based on total annual C flux. The sink sites are: US-Vcm, US-Vcp, US-Mpj, US-Fuf, US-Wjs and US-Ses; the pivot sites are: US-Wkg, US-SRG, US-Seg, US-SRM and US-Whs; and the source site ia: US-Aud. The x axes display the optimization scenarios (Prior and P1). The box whiskers show the spread of bias, variance and phase for all 12 sites considered in this study. The bias, variance and phase indicate the mean difference in flux magnitude, the mismatch in terms of flux fluctuation magnitude scales with the mean seasonal amplitude, and the seasonality in flux time series, respectively. Note that the y axis limits are different for all fluxes and site types.
Figure S6. Annual NEE scatter plots for prior and all posterior simulations for assimilating NEE observations with various parameter sets (P1-P7). Different colour legends represent various sites, ordered from the largest mean sink (US-Vcm) to the largest mean source (US-Aud). The middle of the trend line should sit on the 1:1 line if the accurate mean annual source/sink behavior for a site is well captured by the model. A slope value close to or equal to 1 demonstrates the model is better at capturing the IAV. The sink sites are: US-Vcm, US-Vcp, US-Mpj, US-Fuf, US-Wjs and US-Ses; the pivot sites are: US-Wkg, US-SRG, US-Seg, US-SRM and US-Whs; and the source site is: US-Aud.
Figure S7. NEE (a, d), GPP (b, e) and R_{eco} (c, f) annual anomaly prior and posterior Pearson correlation coefficients (R) and slope values for the linear regression between model and observed fluxes across all assimilation scenarios with different parameter combinations (P1-P7). The legend represents various assimilation scenarios (Prior - blue bars, and posterior P1-P7 - orange bars).
Figure S8. Mean monthly seasonal cycles comparing observations (thick black dashed curve), prior (red curve), and posterior simulations for assimilation scenarios (P1 to P7 – blue to magenta curves) for NEE (left column), GPP (middle column), and RECO (right column) averaged across site C balance types (sink – top row; pivot – middle row; and the source site, US-Aud, on the bottom row).
Figure S9. Daily NEE, GPP and R_{eco} mean square deviation (MSD) decomposition into bias, variance, and phase between simulations and observations for assimilating NEE observations with various parameter sets (P1-P7). Different rows separate the sites as sink (a-c), pivot (d-f) and source (g-i) based on total annual C flux. The sink sites are: US-Vcm, US-Vcp, US-Mpj, US-Fuf, US-Wjs and US-Ses; the pivot sites are: US-Wkg, US-SRG, US-Seg, US-SRM and US-Whs; and the only source site is: US-Aud. The x axes display various optimization scenarios (Prior, P1-P7). The parameters included in each optimization are: P1: all parameters; P2: phenology and photosynthesis; P3: phenology and post C uptake; P4: photosynthesis and post C uptake; P5: phenology; P6: photosynthesis and P7: post C uptake. The box whiskers show the spread of bias, variance and phase for all 12 sites considered in this study. The bias, variance and phase indicate the mean difference in flux magnitude, the mismatch in terms of flux fluctuation magnitude scales with the mean seasonal amplitude, and the seasonality in flux time series, respectively. Note that the y axis limits for both gross fluxes are the same.
Figure S10. Optimized median parameter deviations $[(\text{posterior} - \text{prior}) / (\text{max} - \text{min})]$ (blue bars) and associated median parameter uncertainty reductions (grey bars) for all parameters controlling phenology, photosynthesis and post C uptake assimilating NEE data (P1-P7). Bars represent the median across all 12 sites. The asterisks above blue bars indicate the parameters that have larger than 50% uncertainty reduction. Each line corresponds to a specific optimization test (shown on the right axis). The parameters are given on the bottom axis. The vertical dashed lines separate the different parameter subsets (phenology, photosynthesis and post C uptake).
Figure S11. Uncertainty reductions of posterior parameters related to phenology, photosynthesis, and post C uptake across all assimilation scenarios (P1 – P7) shown in x axis.
Figure S12. Parameter posterior error covariance matrix for US-Vcm for various assimilation scenarios (P1–P7).
Figure S13. Comparison of posterior parameters against the available trait data from the TRY database. Three comparable traits data are available within 0.5° of the latitude and longitude of each site. These are i) SLA (specific leaf area, unit: m²/g) for *Pinus ponderosa* close to US-Fuf, ii) V_{c,max} (Maximum rate of Rubisco activity-limited carboxylation at 25°C, unit: µmol/m²/s) and iii) leaf longevity (LEAFLIFE_TAB, unit: years) for *Larrea tridentata* (creosote shrubs) close to US-Ses. Note that all three posterior parameters have values (blue dots) from four assimilation scenarios (both SLA and VCMAX25 are photosynthesis parameters and are included only in P1, P2, P4 and P6 (Tables 2, S1); LEAFLIFE_TAB is a phenology parameter and is included only in P1, P2, P3 and P5 (Tables 2, S1).
Figure S14. Values of all optimized parameters related to phenology, photosynthesis and post C uptake when assimilating NEE and optimizing all parameters (P1) for all 12 sites. For each parameter, the range of variation (corresponding to yellow arrows), the prior and the posterior values are provided for all sites. For the mixed-PFT sites, only the parameters for the majority PFT fraction are presented, although the other PFT parameters are also optimized. For example, this figure shows the parameters associated with PFT=4 (TeNE) for site US-Mpj, however the optimization is performed with all the parameters of both PFT=4 (TeNE) and 11 (C4G). Note that the soil Q10 parameter is the exponent of the actual Q10 value used to calculate heterotrophic respiration temperature sensitivity (see Table S1 for more information).
Figure S15. Optimized median parameter deviations \([(\text{posterior} - \text{prior}) / (\text{max} - \text{min})]\) (blue bars) and associated median parameter uncertainty reductions (grey bars) for all parameters controlling phenology, photosynthesis and post C uptake assimilating NEE data (P1-P7). Bars represent the median across all sink sites.
Figure S16. Posterior parameters across 12 sites for each of the main PFTs at each site. Only the parameters with magnitude of deviation > 0.15 and uncertainty reduction of > 50% are listed here with their associated groups (phenology, photosynthesis, and post C uptake). The PFTs are shown in x axes: evergreen needleleaf trees (ENT), shrubs (Shr), and C4 grasses (C4G).