Predicting slowdowns in decadal climate warming trends with explainable neural networks

Zachary M. Labe1,1,1 and Elizabeth A. Barnes1,1,1

1Colorado State University

November 30, 2022

Abstract

The global mean surface temperature (GMST) record exhibits both interannual to multidecadal variability and long-term warming due to external climate forcing. To explore the predictability of temporary slowdowns in decadal warming, we apply an artificial neural network (ANN) to climate model data from the Community Earth System Model Version 2 Large Ensemble Project. Here, an ANN is tasked with whether or not there will be a slowdown in the rate of the GMST trend by using maps of ocean heat content at the onset. Through a machine learning explainability method, we find the ANN is learning off-equatorial patterns of anomalous ocean heat content that resemble transitions in the phase of the Interdecadal Pacific Oscillation in order to make slowdown predictions. Finally, we test our ANN on observed historical data, which further reveals how explainable neural networks are useful tools for understanding decadal variability in both climate models and observations.
Predicting slowdowns in decadal climate warming trends with explainable neural networks

Zachary M. Labe and Elizabeth A. Barnes

1 Department of Atmospheric Science, Colorado State University, Fort Collins, CO, USA

Key Points:

• An artificial neural network predicts the onset of slowdowns in decadal warming trends of global mean surface temperature
• Explainable AI reveals the neural network is leveraging tropical patterns of ocean heat content anomalies to make its predictions
• Transitions in the phase of the Interdecadal Pacific Oscillation are frequently associated with warming slowdown predictions in CESM2-LE

Corresponding author: Zachary M. Labe, zmlabe@rams.colostate.edu
Abstract

The global mean surface temperature (GMST) record exhibits both interannual to multidecadal variability and a long-term warming trend due to external climate forcing. To explore the predictability of temporary slowdowns in decadal warming, we apply an artificial neural network (ANN) to climate model data from the Community Earth System Model Version 2 Large Ensemble. Here, an ANN is tasked with whether or not there will be a slowdown in the rate of the GMST trend by using maps of ocean heat content at the onset. Through a machine learning explainability method, we find the ANN is learning off-equatorial patterns of anomalous ocean heat content that resemble transitions in the phase of the Interdecadal Pacific Oscillation in order to make slowdown predictions. Finally, we test our ANN on observed historical data, which further reveals how explainable neural networks are useful tools for understanding decadal variability in both climate models and observations.

Plain Language Summary

Long-term observations reveal that Earth’s average temperature is rising due to human-caused climate change. Along with this warming trend are also variations from year-to-year and even over multiple decades. This temperature variability is often tied to regional patterns of heat in the deep ocean, which can then modulate weather and climate extremes over land. In an attempt to better predict temperature variability on decadal timescales, we use a machine learning method called artificial neural networks and data from a climate model experiment, which was designed to compare climate change and variability. Here, our artificial neural network uses maps of ocean heat to predict the onset of temporary slowdowns in the rate of global warming in both the climate model and in real-world observations. We then use a visualization technique to find which areas of ocean heat that the artificial neural network is using to make its correct predictions, which are found to be mainly across the Pacific Ocean. In agreement with recent research, our study finds that new data science methods, like machine learning, can be useful tools for predicting variations in global climate.

1 Introduction

One of the most recognizable indicators of anthropogenic climate change is the positive trend in global mean surface temperature (GMST) (Hansen et al., 2010; Johnson
et al., 2020). GMST also exhibits interannual to multidecadal variability with periods of accelerations and slowdowns in the rate of decadal trends (Trenberth et al., 2002; Thompson et al., 2009; Dai et al., 2015; Maher et al., 2020). A notable example of one of these GMST slowdowns occurred in the early 2000s (Flato et al., 2013; Fyfe et al., 2013). This temporary warming slowdown ended in the mid-2010s (Mann et al., 2017; Zhang et al., 2019), and more recently, 2020 was one of the three warmest years in the observational record (Dunn et al., 2021). Although the early 2000s was commonly described as a ‘hiatus’ or ‘pause’ in global warming within scientific studies and popular media (Boykoff, 2014; Lewandowsky et al., 2016), we will refer to it here as a ‘slowdown in decadal warming’ (Fyfe et al., 2016), which is more consistent with our understanding of internal variability in the climate system.

Numerous mechanisms have been proposed to explain the cause of the early 2000s slowdown, as reviewed in Medhaug et al. (2017) and Xie and Kosaka (2017), but it was likely a combination of factors ranging from uncertainties in the observational data record (e.g., Cowtan & Way, 2014; Karl et al., 2015), fluctuations in radiative forcing (Schmidt et al., 2014), cooling in the eastern Pacific associated with a negative phase of the Interdecadal Pacific Oscillation (IPO) (Meehl, Hu, et al., 2013; England et al., 2014; Roberts et al., 2015), anthropogenic aerosol and volcanic forcing (Santer et al., 2014; Smith et al., 2016), changes in deep ocean heat uptake (Watanabe et al., 2013), top-of-atmosphere (TOA) energy imbalance (Meehl et al., 2011; Hedemann et al., 2017), and interactions between modes of climate variability (W. Liu & Xie, 2018). Motivated by the increasing body of literature on the causes and impacts of the early 2000s slowdown, we aim to investigate the predictability of similar temporary GMST slowdowns occurring in a warming climate. While decadal predictability has been explored using other statistical methods (e.g., Mann et al., 2016; Sévellec & Drijfhout, 2018), sensitivity experiments (e.g. Kosaka & Xie, 2013), and hindcasts with initialized state climate modeling frameworks (e.g., Fyfe et al., 2011; Guemas et al., 2013; Meehl et al., 2014; Meehl & Teng, 2014; Boer et al., 2016), we explore this problem through the lens of a machine learning prediction task.

Deep learning methods, such as neural networks, have the ability to extract and leverage nonlinear patterns across data-intensive spatial fields, which make them promising tools for revealing new insights and sources of predictability in climate science (Reichstein et al., 2019; Barnes, Mayer, et al., 2020; Irrgang et al., 2021; Sonnewald et al., 2021). Re-
recent work has demonstrated the utility for neural networks in identifying climate modes, teleconnections, and forecasts of opportunity for a wide variety of timescales (e.g., Wu & Hsieh, 2004; Ham et al., 2019; Toms et al., 2021; Gibson et al., 2021; Gordon et al., 2021; J. Liu et al., 2021; Mayer & Barnes, 2021; Nadiga, 2021; Tang & Duan, 2021). Further, a growing number of explainable artificial intelligence (XAI) methods have been adapted for applications in weather and climate science (McGovern et al., 2019; Toms et al., 2020), which can retrospectively trace the decisions of neural networks and assist scientists in comparing the attribution of input features to known physical mechanisms in the Earth system. Besides evaluating trust and credibility to the machine learning prediction, XAI methods can also be used for physics-guided scientific discovery and hypothesis testing (Ebert-Uphoff & Hilburn, 2020; Toms et al., 2020; Sonnewald & Lguensat, 2021).

In this study, we use an artificial neural network (ANN) to explore the predictability of decadal warming slowdowns due to variability in the upper ocean within a new large ensemble experiment and real-world observations. In addition to slowdown predictability, we also use a complimentary XAI method to investigate the oceanic patterns that may provide insight to these temporary warming slowdowns.

2 Data and Methods

2.1 Climate Model Large Ensemble

For climate model data, we use a large ensemble experiment conducted by the Community Earth System Model Version 2 (CESM2; Danabasoglu et al., 2020) (see Supporting Information for more details). Specifically, we use simulations from the CESM2 Large Ensemble Community Project (CESM2-LE; Rodgers et al., 2021), which includes 100 ensemble members branched from the fully-coupled CESM2 preindustrial control (1850 radiative forcing conditions) using different atmospheric and oceanic initial states. CESM2-LE members follow historical Coupled Model Intercomparison Project Phase 6 (CMIP6) forcing from 1850 to 2014 and thereafter follow the SSP3-7.0 future radiative forcing (high emissions scenario) until 2100 (Eyring et al., 2016; O’Neill et al., 2016). We consider the first 50 ensemble members (1-50), which are prescribed with biomass burning emissions following CMIP6 protocol (Van Marle et al., 2017). In contrast, the second set of 50 ensemble members follow temporally smoothed biomass burning fluxes (51-100).
cussed in Rodgers et al. (2021) and Fasullo et al. (2022), this difference in biomass burning forcing has been shown to affect large-scale climate features, including the GMST record in present day.

Due to limited data availability at the time of our analysis, we analyze only 40 ensemble members within the first subset of CESM2-LE (1-50). From these 40 members, we use monthly outputs of near-surface air temperature (T2M) and sea surface temperature (SST). We also utilize monthly ocean heat content (OHC), which is derived as the vertical heat content integral between three distinct depth layers (0–100 m, OHC100; 0–300 m, OHC300; 0–700 m, OHC700); although we focus on maps of OHC100 for the actual training of our ANN. We then apply a bilinear interpolation to all variables so that they share a common (slightly coarser) latitude by longitude grid (1.9° x 2.5°). We calculate annual means from the monthly data and use the period from 1990 to 2099 to classify slowdowns in decadal warming. To focus on warming slowdowns driven by internal variability, we remove the 40-member ensemble mean from each individual ensemble in every year and grid box for SST and OHC (Phillips et al., 2020; Maher et al., 2021).

2.2 Observations

To evaluate our ANN trained on CESM2-LE for predicting the early 2000s warming slowdown in the historical record, we use SST and T2M from the European Centre for Medium-Range Weather Forecasts (ECMWF) ERA5 reanalysis (Hersbach et al., 2020) and OHC from the Institute of Atmospheric Physics (IAP) ocean gridded product (Cheng & Zhu, 2016; Cheng et al., 2017) (both data sets referred to here as “observations”). SSTs from ERA5 are an interpolated product between HadISST2 (Titchner & Rayner, 2014) from January 1979 to August 2007 and OSTIA (Donlon et al., 2012) from September 2007 to present. Overall, both regional and global mean time series of SST and T2M are consistent with other observational data sets (Hersbach et al., 2020; Bell et al., 2021), including decadal trends (Figure S1). Gridded upper OHC from IAP also compares well with in situ measurements and is based on temperature data from the World Ocean Database (WOD; Boyer et al., 2013), which is then further bias-corrected, interpolated, and quality controlled (Li-Jing et al., 2015; Cheng et al., 2017).

In all observations, we use monthly output and bilinearly interpolate these fields onto the same 1.9° x 2.5° grid as CESM2-LE before calculating annual means. We lin-
early detrend each grid point (over 1979 to 2020) for SST and OHC predictors to remove
long-term warming signals and thus focus on patterns of interannual variability for slowdown predictions.

2.3 Defining Slowdowns in Decadal Warming

Figure 1 shows an example of how we define warming slowdown events in CESM2-LE and observations. While there have been numerous definitions and data sets used for identifying warming slowdown (or so-called hiatus/pause) events (e.g., Risbey et al., 2018; Wei et al., 2021), they are often classified as a near-zero or negative 10-20 year linear trend of the GMST. Recent studies show that the frequency of slowdown events in CMIP5 models decreases substantially by the end of the 21st century using a negative 10-year linear trend definition (e.g., Maher et al., 2014; Li & Baker, 2016; Sévellec et al., 2016). Their frequency could also decrease due to increasing climate sensitivity (Modak & Mauritzen, 2021). Yet, internal variability is still projected to affect regional and global climate trends even under higher future emission scenarios (Easterling & Wehner, 2009; Li & Baker, 2016; Cassou et al., 2018; Maher et al., 2020). Here, we take a GMST slowdown threshold using decadal (10-year) trends (e.g., Meehl et al., 2011; Maher et al., 2014), which is on the shorter end of previously used timescales and focus on the influence of oceanic internal variability.

First, to classify slowdown events in observations, we compute the area-weighted GMST and calculate 10-year moving linear trends beginning in 1990. We start our analysis in 1990 to avoid any multidecadal slowdown events earlier in the 20th century when the influence of the forced climate change signal may not have fully emerged (Delworth & Knutson, 2000; Papalexiou et al., 2020; Hawkins et al., 2020). We then calculate the mean of all 10-year trends between 1990 and 2020 and take one standard deviation below this mean as our threshold for slowdown events in observations (equating to about +0.01°C/yr, or 0.44 of the mean observational trends) (black dashed line in Figure 1b). We identify four consecutive slowdown events in observations, which begin in 2002. These years are consistent with previous studies (Lewandowsky et al., 2018) and are similarly classified in other datasets with our definition (Figure S1).

For CESM2-LE, we first compute the area-weighted GMST for the ensemble mean from all 40 members through 2099 (Figure 1a). We then calculate 10-year moving lin-
Figure 1. (a) Time series showing annual-mean GMST anomalies for one example (ensemble member) in CESM2-LE relative to a 1981-2010 baseline (blue line). The ensemble spread in annual-mean GMST anomalies is also shown in gray shading for CESM2-LE. Annual-mean GMST anomalies from ERA5 reanalysis are indicated with a black line relative to a 1981-2010 baseline. Onset of slowdown events in the example ensemble are highlighted with red dashed (vertical) lines and their associated linear trends (red lines) over each 10-year period. (b) The slope of all 10-year moving linear trends are shown for the example ensemble member compared to the other ensembles (light gray lines) and the ensemble mean (dark gray line). As in (a), red dashed (vertical) lines are shown for the onset of slowdown events in the highlighted ensemble member. Slopes of all 10-year moving linear trends are shown for ERA5 reanalysis by the black solid line. The threshold for slowdown events in CESM2-LE is shown with a red dashed line, and the threshold for slowdown events in ERA5 is shown with a black dashed line. (c) Histogram showing the frequency of slowdown events in each ensemble member over the 1990-2039 period (gray bars) and the 2040-2090 period (red bars). See Section 2.3 for more details.
ear trends, which begin in 1990 for consistency with observations. The climate model
threshold for a slowdown (red dashed line in Figure 1b) is defined by multiplying the frac-
tion of the mean trend from the observations (0.44) times each trend period from the
ensemble mean (thick gray line in Figure 1b).

Then, we calculate the GMST for each ensemble member and the associated mov-
ing 10-year linear trends (thin gray lines in Figure 1b). We define a warming slowdown
event when these 10-year trends fall below the climate model threshold. That is, we de-
define a slowdown event as a fraction of the forced response. However, our definition still
leads to a reduction in the number of slowdown events after 2040 in CESM2-LE (Fig-
ure 1c), as shown in several past studies (e.g., Sévellec et al., 2016).

2.4 Artificial Neural Network

For this analysis, we adopt a neural network architecture that is designed to receive
input maps of OHC100 anomalies and output whether the next 10 years will observe a
decadal warming slowdown. In other words, if we input a map of OHC100 anomalies for
the year 2000, the ANN will output whether the decade from 2000 to 2009 will be a slow-
down event or not. A schematic of our ANN can be found in Figure S3, and the archi-
tecture parameters are outlined in the Supporting Information.

In addition to seeing if warming slowdown events are predictable, we are also in-
terested in the sources of predictability in fields of anomalous OHC100. To attempt to
understand the ANN’s decision-making process, we use a method of XAI called layer-
wise relevance propagation (LRP; Bach et al., 2015; Montavon et al., 2017, 2018). The
utility of LRP has been demonstrated in a wide range of weather and climate applica-
tions (e.g., Barnes, Toms, et al., 2020; Davenport & Diffenbaugh, 2021; Gordon et al.,
2021; Labe & Barnes, 2021; Sonnewald & Lguensat, 2021), and an overview for the geo-
sciences can be found in Toms et al. (2020). In short, prior to the softmax, a single pre-
diction output is propagated backward through the ANN after freezing the model weights
and biases. LRP then returns a vectorized spatial map, which shows the feature relevance
for every input sample’s latitude and longitude pixel. Therefore, we have a unique LRP
heatmap for every input sample of OHC100. Throughout this study, regions of higher
relevance can be interpreted as more important for the ANN’s prediction. We implement
the LRP_z rule for back propagation, which was found by Mamalakis et al. (2021) to be
a well performing XAI method using a benchmark climate data set similar to ours. To improve interpretation and reduce the amount of noise in the LRP heatmaps, we only focus on positive areas of relevance, which are features that contribute positively to the ANN’s prediction output.

3 Results

3.1 Predicting Slowdown Trends in a Large Ensemble

Figure 2a shows the results of our ANN for each CESM2-LE ensemble member in the testing data set from 1990 through 2090 (i.e., 2090-2099 is the last complete decade of data). Given the large class imbalance, we focus on the F1 score (balancing precision and recall), rather than categorical accuracy, to evaluate the performance of our ANN for correctly identifying slowdown events. Figure S7 provides a collection of skill metrics for our testing data (Accuracy = 0.87, Precision = 0.39, Recall = 0.41). Overall, the network achieves a F1 score of 40% and performs better than random chance (10.4%). While our ANN sometimes struggles with correctly classifying slowdown events, especially those that occur simultaneously in a row, it generally classifies at least one 10 year period during these extended events. This skill suggests that the ANN is learning information from OHC100 anomalies that corresponds to future slowdown periods in CESM2-LE.

We test the robustness of our results by training 100 ANNs with unique random initialization seeds and different combinations of ensemble members used for training, validation, and testing data. The F1 score of our single seed ANN falls around the ≈ 85th percentile of this distribution, and additional metric scores are shown in Figure S8 for the 100 ANNs. The spread between this distribution can be attributed to uncertainties from random initialization states of the ANNs and different combinations of ensemble members. This suggests that differences in the skill of slowdown predictions across the ANN distribution could be related to individual realizations of internal variability as simulated per each ensemble member. Although we found that there is no relationship between the accuracy of testing predictions compared to the number of training slowdown events each ANN learned for the 100 iterations (Figure S9).
3.2 Sources of Predictability for Slowdowns

To understand the sources of skill for the ANN’s correct slowdown predictions in CESM2-LE, we turn to composite maps of LRP. Recall that LRP traces the decision-making process of a neural network, where higher relevance corresponds to greater importance for the ANN to make its final prediction. While we have LRP heatmaps for every input of annual-mean OHC100, we focus on correct predictions by the ANN in the testing data set. Figure 2b shows the LRP composite for all correct slowdown predictions. We find higher relevance in the off-equatorial regions of the eastern Pacific, especially in the regions of the North/South Pacific Meridional Modes (Amaya, 2019). There are also patches of higher relevance across portions of the Indian Ocean, south Atlantic, and south Pacific, which suggests that the ANN is leveraging other regional patterns of OHC to make predictions. Notably, there is no relevance for a thin band along the equator in the area of the El Niño-Southern Oscillation (ENSO). Figure 2d shows the corresponding LRP composite for no slowdowns in decadal warming, which shows a similar spatial pattern of relevance across the equatorial Pacific as in Figure 2b, but higher relevance in other ocean basins. Likewise, we also find comparable LRP composites for the incorrect slowdown predictions, although there are notable differences over portions of the Southern Ocean, lower Arctic, and near New Zealand (Figure S10b). These XAI results are a product of the setup of our binary classification problem, and therefore the LRP maps reveal the regions that the ANN is using to make this determination (i.e., yes or no slowdown), but these patterns may not always necessarily correspond to an actual slowdown events driven by OHC variability.

We compare these LRP maps to composites of the raw (normalized) OHC anomalies that were input to the network for correct slowdown predictions (Figure 2c) versus correct no slowdown predictions (Figure 2e). Now we find striking differences between the two OHC patterns. The composite of OHC100 for the slowdown predictions reveal an IPO-like spatial pattern with cold pools in the west-central North Pacific and west-central South Pacific and warm anomalies in the Southern Ocean and eastern Pacific. We also see the signature of a positive Indian Ocean Dipole (IOD; Saji et al., 1999) and a dipole pattern of OHC100 anomalies between the southern Atlantic and north-central Atlantic. Some studies have shown that a positive IOD can be a precursor for a rapid transition to a cooler equatorial Pacific by modulating the strength of the Walker Circulation (Izumo et al., 2010; Le et al., 2020; Yoo et al., 2020).
Figure 2. (a) Time series showing the results in each ensemble member of the testing data for the onset of actual slowdown events (gray dots), incorrect slowdown predictions by the ANN (red dots), and correct slowdown predictions by the ANN (blue dots). (b) LRP composite heatmap for the correct slowdown predictions by the ANN (testing data). Higher LRP values indicate greater relevance for the ANN’s prediction. LRP values are normalized by the maximum relevance in the composite for visualization purposes. Blue boxes highlight regions of the Tripole Index for the IPO (Henley et al. (2015); 25°N-45°N and 140°E-145°W, 10°S-10°N and 170°E-90°W, 50°S-15°S and 150°E-160°W). (c) Composite of normalized OHC100 for correct slowdown predictions. Yellow contour lines are overlaid to show relevance from the LRP composite in (b). (d) As in (b), but for correct predictions of no slowdowns in decadal warming. (e) As in (c), but for correct predictions of no slowdowns in decadal warming.
Figure S11 shows maps of OHC anomalies at other vertical depth levels for the slowdown predictions compared to 5-10 years after the start of the slowdown decade. We find a similar spatial pattern of SSTs (Figure S11a), but a stronger cold pool at deeper depths, which appears to be propagating eastward in the equatorial Pacific (Figure S11c-d). In contrast, we find a negative IPO-like pattern for the composites at the end of the slowdown decade (Figure S11e-h). This finding is in agreement with earlier studies that showed slowdowns in decadal warming often correspond to trends toward a negative phase of the IPO within CMIP5 models (e.g., Maher et al., 2014). Given this evolution of events and the patterns of LRP relevance, it is feasible that the ANN is learning OHC anomalies associated with transitions in the state of the IPO.

To directly assess the IPO in the maps of OHC100, we compute the unfiltered IPO Tripole Index (normalized) following Henley et al. (2015) using annual-mean SSTs from CESM2-LE (Figure S12). As expected from the composite analysis in Figure 2, we find that correct predictions of slowdowns generally correspond to highly positive phases of the IPO index. To demonstrate this point, we select one ensemble member and compare its annual IPO index to the frequency of the slowdowns classifications in the distribution of 100 unique ANNs (Figure S13). We find slowdown predictions often correspond to a positive IPO index in this ensemble member, but also importantly, not every positive IPO results in the prediction of a slowdown event.

To further confirm that the ANN is learning additional spatial information beyond a simple reflection of the IPO-like pattern of OHC anomalies, we set up a logistic regression problem by inputting only the value of the IPO index in CESM2-LE to predict whether a slowdown event will occur over the next 10 years (Accuracy = 0.75, Precision = 0.2, Recall = 0.46, F1 score = 0.28). Thus, we find that using global maps of OHC100 as inputs to the fully-connected ANN provides more skillful predictions of warming slowdown events.

3.3 Predicting Slowdown Trends in Observations

Lastly, we test the utility of our neural network for capturing the observed early 2000s slowdown by inputting maps of OHC100 from observations, which are first linearly detrended and then normalized by their own mean and standard deviation at every grid point. Figure 3a shows the slowdown prediction from our ANN for each input map of...
annual-mean OHC100 using observations. During the overlapping period with the actual early 2000s slowdown, the decades from 2003 to 2012 and 2004 to 2013 are classified as warming slowdowns. The range in observational predictions across the distribution of 100 ANNs is also shown in Figure S14.

To understand the patterns of anomalous OHC100 that the ANN is using to make its prediction for observations, we evaluate a LRP composite map from the single seed ANN (which correctly predicted two slowdown events in the early 2000s) in Figure S15a. Similar to the LRP composites using CESM2-LE (Figure 2), we find areas of higher relevance in the equatorial western Pacific, south-central Atlantic, and patches in the Indian Ocean. The ANN also predicts the onset of slowdown events mainly during positive phases of the IPO (Figure 3b). Although this correlation is not always the case (e.g., during the positive IPO event in the early 1990s), which again suggests that our ANN is leveraging additional spatial information than simply the IPO pattern to make predictions. This is also supported by our interpretation of the LRP maps, which show higher relevance regions across the western Pacific and not necessarily the canonical IPO/PDO patterns (Parker et al., 2007; Newman et al., 2016) (Figure S15a).

At the time of our analysis, the last complete decade of GMST observations covers the decade of 2011 to 2020 (Figure 1a). However, since we only need OHC prior to predicting the future 10 years, we can also explore warming slowdown events extending beyond 2020 (Figure 3a). For these future predictions, 2016 to 2025 and 2017 to 2026 are classified as warming slowdown events by the ANN. 2016 was characterized by the dissipation of an extreme El Niño event into a weak La Niña state (Santoso et al., 2017), and the GMST also set a new record high for that respective year (Aaron-Morrison et al., 2017). Similarly, the IPO index also shows a transition from a highly positive phase in 2015 to a neutral or negative phase in the following years through 2020 (Figure 3b). Composites of normalized SST and OHC for 2016 and 2017 show anomalously warm subsurface waters just off the equator in the eastern Pacific and cold pools in the tropical Indo-Pacific and north-central Pacific (Figure S16). Comparing the LRP composite map over 2016 and 2017 with the raw OHC100 anomalies (Figure S15b and Figure S16b), we find higher relevance outlining the warm anomalies in the eastern Pacific and patches of relevance in the Indian Ocean and southern Pacific. The LRP composite for the future slowdown prediction in Figure S15b is more similar to those outlined in CESM2-
Figure 3. (a) Time series showing the slowdown onset predictions by the ANN (dashed red line). Green bars show the onset of actual slowdown events in observations. Gray shading indicates 10-year trend periods that extend into the future (e.g., 2012-2021). (b) Time series of the unfiltered Tripole IPO Index (normalized) for each year in observations (red/blue bars). Green bars show the onset of actual slowdown events in observations.
LE (e.g., Figure 2b), which may provide insight for why the ANN more confidently predicts a slowdown compared to the earlier 2000s event.

4 Summary and Conclusions

Due to an increasing need from decision makers and other community stakeholders for near-term climate predictions, there has been a coordinated effort to increase the availability of decadal outlooks from initialized climate models and other operational forecast systems (e.g. Graham et al., 2011; Meehl, Goddard, et al., 2013; Boer et al., 2016; Smith et al., 2019; Kushnir et al., 2019; Merryfield et al., 2020; Hewitt et al., 2021; Meehl et al., 2021). However, these simulations can be computationally expensive to run. Alternatively, recent progress in machine learning has shown promising results for decadal climate applications, especially when combined with explainability methods (e.g., Gordon et al., 2021; G. Liu et al., 2021; Toms et al., 2021). Motivated by this new line of research, we explore the utility of a relatively shallow ANN for predicting temporary decadal warming slowdowns of GMST using upper OHC variability. Although our ANN is trained on climate model data from CESM2-LE, we find that it also produces skillful predictions of the early 2000s warming slowdown in observational data. We further compliment our ANN with a machine learning explainability method (LRP) to attempt to understand what information the ANN is using to make its correct predictions. The LRP maps reveal that the ANN is mainly using off-equatorial anomalies of OHC100 to predict the onset of a decadal warming slowdown. These patterns suggest that the ANN may be learning precursors for transitions to a negative phase of the IPO, although this topic remains an active area of research (Cai et al., 2019; Power et al., 2021).

Finally, we note a few important considerations when interpreting these results. First, the causal mechanisms related to the early 2000s slowdown event remain uncertain (Hedemann et al., 2017; von Känel et al., 2017; Medhaug et al., 2017), and we note that we have only considered one potential predictor for warming slowdowns (i.e., upper OHC). Slowdowns can also occur due to external forcing (e.g., aerosols) or other modes of climate variability (Medhaug et al., 2017). Further, there are a number of different definitions for slowdown-like events (Risbey et al., 2018). Future work could explore the predictability of slowdowns using ANNs with other climate predictors, such as considering a TOA energy imbalance approach (Hedemann et al., 2017), or taking into account longer duration events. It may also be valuable to combine maps of OHC at different lead times, which was re-
recently demonstrated by Gordon et al. (2021) for predicting transitions in the phase of
the PDO. Lastly, we train our ANN on a large ensemble from only one climate model.
Thus, our results may be influenced CESM2’s inherent model biases and prescribed ex-
ternal forcing, including the SSP3-7.0 emissions scenario and the protocol for biomass
burning (Rodgers et al., 2021). The value of using multi-model large ensembles and adding
more complexity to the neural network, such as designing a convolutional neural network
to evaluate regional OHC patterns, will be left for future exploration. Importantly, even
our simple ANN demonstrates that temporary warming slowdowns may have some pre-
dictability from Pacific climate variability and demonstrates a new application of ma-
chine learning for climate science.

Open Research
Climate model data used in this study are freely available from the CESM2 Large
Ensemble Project (https://www.cesm.ucar.edu/projects/community-projects/LENS2/
data-sets.html). Computer code for the ANN architecture and exploratory data anal-
ysis is available at https://zenodo.org/record/5879059. Observations used in this
study are from Institute of Atmospheric Physics (IAP) ocean heat content (http://www
.ocean.iap.ac.cn/), and monthly atmospheric reanalysis data are also freely available
from ERA5 (https://cds.climate.copernicus.eu/cdsapp#!/dataset/reanalysis
-era5-single-levels-monthly-means?tab=overview), BEST (http://berkeleyearth
.org/data/), GISTEMPv4 (https://data.giss.nasa.gov/gistemp/), HadCRUTv5
(https://www.metoffice.gov.uk/hadobs/hadcrut5/data/current/download.html),
and NCEP2 (https://psl.noaa.gov/data/gridded/data.ncep.reanalysis.derived
.surfaceflux.html)

Conflict of Interest
The Authors declare no conflicts of interest relevant to this study.

Acknowledgments
We thank four anonymous reviewers for their constructive suggestions to improve this
study. We also thank Dr. John Fasullo (NCAR) for providing fields of OHC from the
CESM2 Large Ensemble and Emily M. Gordon (CSU) for other helpful discussions. This
work was supported by NOAA MAPP grant NA19OAR4310289 and by the Regional and
Global Model Analysis program area of the U.S. Department of Energy’s Office of Biological and Environmental Research as part of the Program for Climate Model Diagnosis and Intercomparison project. We also would like to acknowledge the CESM2 Large Ensemble Community Project, supercomputing resources provided by the IBS Center for Climate Physics in South Korea, and the Cheyenne supercomputer which is operated by the Computational and Information Systems Laboratory (CISL) at NCAR (doi:105065/D5RX99HX) and supported by the National Science Foundation (NSF).

References

172. Retrieved from https://www.nature.com/articles/ngeo760 doi: 10.1038/ngeo760

-26-

Rodgers, K., Lee, S.-S., Rosenbloom, N., Timmermann, A., Danabasoglu, G., Deser,

doi: 10.1029/2021MS002496

doi: 10.1088/1748-9326/AC0EB0

doi: 10.1088/1748-9326/AC34BC

doi: 10.1175/2009JCLI3089.1

doi: 10.1002/2013JD020316

doi: 10.1029/2019MS002002

References From the Supporting Information

Smith, R., Jones, P., Briegleb, B., Bryan, F., Danabasoglu, G., Dennis, J., ... Ye-

Supporting Information for “Predicting slowdowns in decadal climate warming trends with explainable neural networks”

Zachary M. Labe1 and Elizabeth A. Barnes1

1Department of Atmospheric Science, Colorado State University, Fort Collins, CO, USA

Contents of this file
1. Text S1: Community Earth System Model Version 2 (CESM2)
2. Text S2: Artificial Neural Network Architecture
3. Text S3: Open Software/Tools
4. Figures S1 to S16
5. References
Text S1: Community Earth System Model Version 2 (CESM2)

CESM2 uses a nominal 1° horizontal resolution and includes 32 vertical levels with a model top at 2.26 hPa. Components for CESM2 include an atmosphere model from Community Atmosphere Model version 6 (CAM6; Danabasoglu et al., 2020) and an ocean model from Parallel Ocean Program Version 2 (POP2; Smith et al., 2010; Danabasoglu et al., 2012), which are further coupled to interactive ice, land, and ocean biogeochemistry models. Additional details on model development can be found in Danabasoglu et al. (2020). Overall, CESM2 scores well in comparison to other Coupled Model Intercomparison Project Phase 6 (CMIP6) models (e.g., Fasullo, 2020) and includes numerous improvements to cloud microphysics, the ocean surface boundary layer, and land processes over the previous model generation (CESM1; Hurrell et al., 2013; Kay et al., 2015). Future projections of global mean surface temperature (GMST) in CESM2 generally fall in the upper range of CMIP6 models, which is likely due to a higher equilibrium climate sensitivity (Gettelman et al., 2019; Meehl et al., 2020). Representation of the El Niño-Southern Oscillation (ENSO) and Pacific Decadal Oscillation (PDO) in CESM2 compare fairly well to observations, but there are still some large differences in simulated amplitude and spatial patterns (Capotondi et al., 2020; Chen et al., 2021).

Text S2: Artificial Neural Network Architecture

Artificial neural networks (ANNs) have become an increasingly popular method in the Earth sciences for their ability to capture nonlinear behavior in data-intensive problems and applications (Boukabara et al., 2021). In this work, we are not only interested in the skill of an ANN to predict warming slowdown events, but also the opportunity to learn how the ANN is making correct predictions through a relatively new machine learning explainability method.

We provide an overview of the artificial neural network (ANN) used in our analysis in Figure S3. Our input layer receives vectorized maps of annual-mean ocean heat content in the 0-100 m depth (OHC100) from the CESM2 Large Ensemble Community Project (CESM2-LE), where each unit represents one grid box (13248 units per map from 92 latitudes by 144 longitudes). The input vector is then fed into two hidden layers with 30 nodes each, and our output layer contains two nodes (yes or no for a decadal warming slowdown). In this fully-connected neural network, each node receives a value from the previous layer. For example, each node of the first hidden layer is connected to every node in the second hidden layer. The value of a single node is calculated by weighting the sum of the inputs and an added bias term,

\[
z_j = \sum_i w_{ij} x_i + b
\]

where \(i\) is the node from the previous layer and \(j\) is the node for the value in the current layer (equation 1). In equation 1, \(w_{ij}\) denotes the weight between nodes \(i\) and \(j\), \(x_i\) is the value of node \(i\), and \(b\) is the added bias. The weights and biases are iteratively updated until the training is complete (i.e., minimized loss function). To include nonlinear transformations, we apply the rectified linear unit (ReLU; equation 2; Agarap, 2018) to our hidden nodes \((z_j)\) and include a softmax operator in the output layer (equation 3). In equation 3, \(x_i\) represents the pre-softmax (raw) output for node \(i\), and then \(\tilde{y}_i\) is the final predicted output. The softmax function remaps the output values so that they sum to one and can then be interpreted as the ANN’s confidence for each prediction output. For example, the winning predicted category (i.e., yes or no slowdown) will have a confidence value greater than 0.5.

\[
f(z_j) = \max(0, z_j)
\]

\[
\tilde{y}_i = \frac{\exp(x_i)}{\sum_{j=1}^{M} \exp(x_j)}
\]

Our ANN uses a categorical cross-entropy loss function, where \(M\) is the number of classes, \(y_k\) is the true probability distribution, and \(\tilde{y}_i\) is the predicted probability distribution as denoted in equation 4. Due to the logarithmic transformation, this loss function penalizes larger errors more than smaller errors.

\[
Loss = -\sum_{k=1}^{M} y_k \cdot \log(\tilde{y}_k)
\]

Before training our ANN, we standardize our maps of OHC100 by subtracting the mean and dividing by the standard deviation separately at every grid point and across all years for the training ensemble members (13248
units). Specifically, we train our ANN using 70% of the climate model data (28 ensemble members), validate on 15% (6 ensemble members), and test on the remaining 15% (6 ensemble members). We find that using at least 20 ensemble members for training corresponds to a better balance of recall and precision score metrics (Figure S2). Note that this is also larger than the minimum number of ensemble members needed for capturing global ENSO teleconnections as found in Lee et al. (2021).

During training, we use the stochastic gradient descent optimizer and turn on the Nesterov momentum parameter (set to 0.9) (Nesterov, 1983; Ruder, 2016). Our learning rate is set to 0.001, and the batch size is 128. Batch size refers to a subset of the training data, where the weights and biases are updated after each batch iteration. Thus, one epoch is completed after iterating through all of the training data. During this entire process, the ANN is attempting to minimize the loss function (i.e., reduce the error). While we set the ANN to train using 500 epochs, we apply early stopping on the validation loss to prevent overfitting. In the other words, the ANN is finished training if the validation loss does not improve for 10 epochs in a row. Using this approach, our ANN generally reaches no more than 35 epochs and is restored to the iteration with the best model weights.

To further account for overfitting, we apply L2 ridge regularization (Friedman, 2012) to the weights of the first hidden layer. Our L2 parameter is set to 0.5 after exploring several different combinations of ANN architectures, hyperparameters, and random initialization seeds (Figures S2-S3). Ridge regularization ensures the ANN is not sensitive to outlier weights, which helps to consider any spatial autocorrelation in the input fields of OHC100. Finally, we assign class weights in the loss function, since there is a large class imbalance with only 16 or fewer slowdown events per individual ensemble member (Figure 1c). This parameters tells the model to pay more attention to the underrepresented class during the training process. Figure S6 shows the results of ANNs using a range of class weights compared to the original class imbalance (approximately 8.8 to 1). For the main figures and analysis presented here, we selected a smaller fraction to be applied to the balanced class weights (approximately 4.4 to 1).

In summary, this general approach and set of score metrics are commonly used for many neural network classification problems (Goodfellow et al., 2016). More resources on neural networks can be found in e.g., Lecun, Bengio, and Hinton (2015); Goodfellow et al. (2016); Neapolitan and Jiang (2018); A.Géron (2019).

Text S3: Open Software/Tools
Preprocessing and regridding were completed using NCL v6.2.2 (NCAR, 2019), NCO v4.9.3 (Zender, 2008), and CDO v1.9.8 (Schulzweida, 2019). Figures and main analysis were completed using open source Python v3.7.6, Numpy v1.19 (Harris et al., 2020), SciPy v1.4.1 (Virtanen et al., 2020), Matplotlib v3.2.2 (Hunter, 2007), and colormaps provided by cmocean v2.0 (Thyng et al., 2016), Palettable’s cubehelix v3.3.0 (Green, 2011), and Scientific v7.0.0 (Crameri, 2018; Crameri et al., 2020). Additional Python packages used for development of the ANN and LRP visualizations include TensorFlow v2.4.0/v1.15.0 (Abadi et al., 2016), Scikit-learn v0.24.2 (Pedregosa et al., 2011), and iNNvestigate v1.0.8 (Alber et al., 2019). References for the data sets are provided throughout the study. Lastly, we would like to thank all the scientists, software engineers, and administrators who contributed to the development of CESM2.
Figure S1. The slope of linear trends are calculated for each decade of global mean (near-) surface temperatures from 1990 to 1999 and ending in 2011 to 2020 using European Centre for Medium-Range Weather Forecasts ERA5 (dashed black line) reanalysis (Hersbach et al., 2020), Berkeley Earth Land/Ocean Temperature Record (BEST; solid purple line) (Rohde & Hausfather, 2020), Goddard Institute for Space Studies Surface Temperature product version 4 (GISTEMPv4; solid blue line) (Hansen et al., 2010; Lenssen et al., 2019), Hadley Centre/Climatic Research Unit Temperature version 5.0.1.0 (HadCRUT5; solid green line) dataset (Morice et al., 2021), and National Centers for Environmental Prediction–Department of Energy Reanalysis II (NCEP2; solid orange line) (Kanamitsu et al., 2002). Gray shading shows the onset of actual slowdown events in ERA5 reanalysis (as in Figure 3’s green bars). Horizontal solid lines indicate the threshold for slowdown events in each observational data set respectively. The thicker horizontal gray line denotes a trend of 0°C/yr.
Figure S2. Points showing the accuracy (blue) and F1 score (red) for testing data. Results are shown for ANNs using a different number of training ensemble members from CESM2-LE (2, 7, 12, 17, 22, 27, 32, and 37 ensembles), but the same architecture as used in the paper (see Text S2 and Figure S3). For these different ANNs, 2 ensemble members are always used for testing data, and 1 ensemble member is always used for validation data. The points for each ANN experiment are comprised of 10 iterations (different combinations of training, testing, and validation data and random initialization seeds), and the median score is shown for each set of points with a bold horizontal line respectively. Note that the ANN used in the main analysis uses 28 ensembles for training data.
Figure S3. Schematic of the artificial neural network (ANN) used in this study for predicting the onset of a slowdown in decadal warming trend (output layer) from a global map of annual mean ocean heat content in the 0-100 m depth (input layer). The ANN consists of two hidden layers that both contain 30 hidden nodes. The output layer includes a softmax activation function. An example heatmap using layer-wise relevance propagation (LRP; Bach et al., 2015; Montavon et al., 2018) is also illustrated here. LRP highlights the regions of greater relevance for the ANN to decide whether a slowdown event will occur for the next 10 years.
Figure S4. Points showing the precision (blue) and recall (red) scores for validation data. Results are shown for ANN architectures using (a) 1 hidden layers of 10 nodes, (b) 1 hidden layers of 30 nodes, (c) 2 hidden layers of 10 nodes each, (d) 2 hidden layers of 30 nodes each, (e) 3 hidden layers of 10 nodes each, (f) and 3 hidden layers of 30 nodes each (f). Each architecture also compares scores for different L_2 regularization values (0.01, 0.1, 0.5, 1). The points for each ANN are comprised of 5 iterations (different combinations of training, testing, and validation data and random initialization seeds), and the median score is shown for each set of points with a bold horizontal line respectively. The architecture used in the main analysis is labeled in bold for 2 hidden layers of 30 nodes each (subplot d).
Figure S5. Points showing the F1 score for validation data. Results are shown for ANN architectures using (a) 1 hidden layers of 10 nodes, (b) 1 hidden layers of 30 nodes, (c) 2 hidden layers of 10 nodes each, (d) 2 hidden layers of 30 nodes each, (e) 3 hidden layers of 10 nodes each, (f) and 3 hidden layers of 30 nodes each (f). Each architecture also compares scores for different L2 regularization values (0.01, 0.1, 0.5, 1). The points for each ANN are comprised of 5 iterations (different combinations of training, testing, and validation data and random initialization seeds), and the median score is shown for each set of points with a bold horizontal line respectively. The architecture used in the main analysis is labeled in bold for 2 hidden layers of 30 nodes each (subplot d).
Figure S6. (a) Accuracy, (b) precision, (c) recall, (d) and F1 scores for validation data in the ANN architecture used throughout the paper, but with different class weights on slowdown events. The class weight used in the main analysis is shown with a marker for the F1 score.
Figure S7. Confusion matrix of testing data for all predictions. The shading and large red values inside each box represents the sample size (n) for each classification category bin.
Figure S8. Box-and-whisker plots showing the accuracy, precision, recall, and F1 scores for the ANN architecture used throughout the paper after considering 100 different combinations of training, testing, and validation data and random initialization seeds.
Figure S9. Scatter plot showing the number of slowdown events in training data compared to the F1 score for testing data in 100 ANNs using different combinations of training, testing, and validation data and random initialization seeds.
Figure S10. (a) LRP composite heatmap for the incorrect no slowdown predictions by the ANN (testing data using CESM2-LE). Higher LRP values indicate greater relevance for the ANN’s prediction. LRP values are normalized by the maximum relevance in the composite for visualization purposes. The upper left-hand value shows the number of cases for each wrong prediction (see Figure S7). (b) As in (a), but for incorrect predictions of slowdowns in decadal warming.
Figure S11. (a) Composite of normalized sea surface temperature (SST) for correct slowdown predictions by the ANN. (b) As in (a), but for ocean heat content in the 0-100 m layer (OHC100). Yellow contour lines are overlaid to show relevance from the LRP composite in main Figure 2b. (c) As in (a), but for ocean heat content in the 0-300 m layer (OHC300). (d) As in (a), but for ocean heat content in the 0-700 m layer (OHC700). (e-h) As in (a-d), but for composites of 5-10 years after the correct slowdown predictions.
Figure S12. Unfiltered Tripole IPO Index (normalized) for each year of the six ensemble members in the testing data. Correct predictions by the ANN for the onset of slowdown events are highlighted with a yellow ‘S’ in each ensemble member, wrong slowdown predictions by the ANN are highlighted with a gray ‘S’ in each ensemble member, and all other actual slowdown events are indicated with a black ‘S’ in each ensemble member.
Figure S13. (a) Time series showing the frequency of slowdown onset predictions for one ensemble member realization (in testing data) using 13 ANNs constructed from different combinations of training, testing, and validation data (dashed dark red line). Light red bars show the onset of actual slowdown events in the ensemble member. (b) Time series of the unfiltered Tripole IPO Index (normalized) for each year in the same ensemble member (red/blue bars).
Figure S14. Time series showing the frequency of slowdown onset predictions after inputting observations into 100 ANNs constructed from different combinations of training, testing, and validation data. Green bars show the onset of actual slowdown events in observations. Gray shading indicates 10-year trend periods that extend into the future (e.g., 2012-2021).
Figure S15. (a) LRP composite heatmap for the correct slowdown predictions by the ANN in observations. (b) As in (a), but for the ANN slowdown predictions during the future 10-year trend periods. Higher LRP values indicate greater relevance for the ANN’s prediction. LRP values are normalized by the maximum relevance in the composite for visualization purposes. Blue boxes highlight regions of the Tripole Index for the IPO (Henley et al. (2015); 25°N-45°N and 140°E-145°W, 10°S-10°N and 170°E-90°W, 50°S-15°S and 150°E-160°W).
Figure S16. (a) Composite of normalized sea surface temperature (SST) for the future slowdown predictions after testing observations with the ANN. (b) As in (a), but for ocean heat content in the 0-100 m layer (OHC100). Yellow contour lines are overlaid to show relevance from the LRP composite in Figure S15b. (c) As in (a), but for ocean heat content in the 0-300 m layer (OHC300). (d) As in (a), but for ocean heat content in the 0-700 m layer (OHC700).
References

