Rapid, concurrent formation of organic sulfur and iron sulfides during experimental sulfurization of sinking marine particles

Morgan Raven1,1, Richard G. Keil2,2, and Samuel M Webb3,3

1University of California, Santa Barbara
2University of Washington
3SLAC National Accelerator Laboratory (DOE)

November 30, 2022

Abstract

Organic matter (OM) sulfurization can enhance the preservation and sequestration of carbon in anoxic sediments, and it has been observed in sinking marine particles from marine O2-deficient zones. The magnitude of this effect on carbon burial remains unclear, however, because the transformations that occur when sinking particles encounter sulfidic conditions remain undescribed. Here, we briefly expose sinking marine particles from the eastern tropical North Pacific O2-deficient zone to environmentally relevant sulfidic conditions (20°C, 0.5 mM [poly]sulfide, two days) and then characterize the resulting solid-phase organic and inorganic products in detail. During these experiments, the abundance of organic sulfur in both hydrolyzable and hydrolysis-resistant solids roughly triples, indicating extensive OM sulfurization. Lipids also sulfurize on this timescale, albeit less extensively. In all three pools, OM sulfurization produces organic monosulfides, thiols, and disulfides. Hydrolyzable sulfurization products appear within \([\sim 200-\sim 500]\) m regions of relatively homogenous composition that are suggestive of sulfurized extracellular polymeric substances (EPS). Concurrently, reactions with particulate iron oxyhydroxides generate low and fairly uniform concentrations of iron sulfide (FeS) within these same EPS-like materials. Iron oxyhydroxides were not fully consumed during the experiment, which demonstrates that organic materials can be competitive with reactive iron for sulfide. These experiments support the hypothesis that sinking, OM- and EPS-rich particles in a sulfidic water mass can sulfurize within days, potentially contributing to enhanced sedimentary carbon sequestration. Additionally, sulfur-isotope and chemical records of organic S and iron sulfides in sediments have the potential to incorporate signals from water column processes.
Rapid, concurrent formation of organic sulfur and iron sulfides during experimental sulfurization of sinking marine particles

M. R. Raven1*, R. G. Keil2, S. M. Webb3

1 Department of Earth Science, University of California, Santa Barbara, Santa Barbara CA 93117, USA
2 School of Oceanography, University of Washington, Seattle WA 98195, USA
3 Stanford Synchrotron Radiation Lightsource, Stanford University, Menlo Park CA 94025, USA

Corresponding Author: Morgan Reed Raven (raven@ucsb.edu)

Key Points:

1. Organic matter in sinking marine particles sulfurizes rapidly in the presence of polysulfides, tripling its S:C ratio in 48 hours.
2. Iron monosulfides form from iron oxyhydroxide particles on the same timescale as organic sulfur.
3. Organic matter sulfurization in sinking particles may increase carbon burial in sediments, impacting sedimentary records and climate.
Abstract

Organic matter (OM) sulfurization can enhance the preservation and sequestration of carbon in anoxic sediments, and it has been observed in sinking marine particles from marine O$_2$-deficient zones. The magnitude of this effect on carbon burial remains unclear, however, because the transformations that occur when sinking particles encounter sulfidic conditions remain undescribed. Here, we briefly expose sinking marine particles from the eastern tropical North Pacific O$_2$-deficient zone to environmentally relevant sulfidic conditions (20°C, 0.5 mM [poly]sulfide, two days) and then characterize the resulting solid-phase organic and inorganic products in detail. During these experiments, the abundance of organic sulfur in both hydrolyzable and hydrolysis-resistant solids roughly triples, indicating extensive OM sulfurization. Lipids also sulfurize on this timescale, albeit less extensively. In all three pools, OM sulfurization produces organic monosulfides, thiols, and disulfides. Hydrolyzable sulfurization products appear within ≤ 200-µm regions of relatively homogenous composition that are suggestive of sulfurized extracellular polymeric substances (EPS). Concurrently, reactions with particulate iron oxyhydroxides generate low and fairly uniform concentrations of iron sulfide (FeS) within these same EPS-like materials. Iron oxyhydroxides were not fully consumed during the experiment, which demonstrates that organic materials can be competitive with reactive iron for sulfide. These experiments support the hypothesis that sinking, OM- and EPS-rich particles in a sulfidic water mass can sulfurize within days, potentially contributing to enhanced sedimentary carbon sequestration. Additionally, sulfur-isotope and chemical records of organic S and iron sulfides in sediments have the potential to incorporate signals from water column processes.

Plain Language Summary

Vast amounts of organic carbon are stored in sediments on the ocean floor. This organic carbon is potentially food for macro- and microorganisms, and yet, under specific environmental conditions, it can escape being eaten and instead persist in sediments and rocks for millions of years. Here, we conduct experiments that test how the organic and inorganic materials in sinking marine particles can be
transformed by two days of exposure to sulfidic environmental conditions, which are often associated
with high rates of organic carbon burial in sediments. We find that these sulfidic conditions substantially
alter the chemistry of (“pickle”) particle organic materials, yielding products that resemble preserved
organic materials in ancient deposits. Marine particles that encounter sulfidic conditions in the
environment are therefore more likely to be preserved and buried in sediments, sequestering carbon out of
the ocean and atmosphere. This process, called ‘sulfurization,’ may act as a stabilizing feedback in the
carbon cycle as ocean anoxic zones expand in response to ongoing climate change.

1. Introduction

In most of the surface ocean today, photosynthetic algae and bacteria produce organic matter (OM)
that is cycled efficiently and locally through metabolic networks linking bacteria, viruses, zooplankton, and
their exudates. OM may also become incorporated into aggregates with sufficient density to sink, or it can
be transported out of the mixed layer by other particle “pumps” (Boyd et al., 2019). Large (≥ ~1 mm),
sinking particles may travel thousands of meters to the seafloor in a few days (La Rocha and Passow, 2007).
As particles sink, they are continually used as a food source, so the downward flux of sinking particulate
OM is strongly attenuated with depth due to oxic respiration. As a result, only a tiny fraction (~1.5%) of
global marine primary production is buried in sediments. In contrast, the efficiency of OM burial can be
much higher in certain types of near-shore (coastal, shelf, or borderland basin) environments (Dunne et al.,
2007; Bianchi et al., 2018), especially those with low dissolved O₂ concentrations like the O₂-deficient
zones (ODZs) of the Eastern Tropical Pacific and Arabian Sea (Martin et al., 1987; Devol and Hartnett,
2001; B. Van Mooy et al., 2002; Hartnett and Devol, 2003; Keil et al., 2016). Under the more strongly
reducing, frequently sulfidic conditions found in the southern North Atlantic during the Cretaceous ocean
anoxic events, OM burial in sediments served as a major sink for CO₂ and likely mitigated a hothouse
climate (Arthur et al., 1988; Sinninghe Damsté and Köster, 1998; Hülse et al., 2019). Nonetheless, without
a more mechanistic understanding of the underlying causes of enhanced sinking particle fluxes in anoxic environments, we are unable to quantitatively predict how ongoing ODZ expansion and other changes in marine O₂ availability (Deutsch et al., 2011; Stramma et al., 2011; Schmidtko et al., 2017; Breitburg et al., 2018; Takano et al., 2018) will impact carbon fluxes to the sediments.

Multiple physical, chemical, and biological mechanisms contribute to the enhanced sinking organic particle flux through anoxic water columns (Keil et al., 2016). Especially in anoxic environments, clays and other minerals physically protect sedimentary OM by occlusion or sorption onto surfaces (Salmon et al., 2000; Arnarson and Keil, 2007). Anaerobic microorganisms also gain less energy from the oxidation of organic matter than aerobic organisms (Froelich et al., 1979), and some individual organic molecules may become energetically inaccessible at certain redox potentials (Boye et al., 2017). However, anoxic sedimentary systems often preserve greater quantities of OM than can be explained by surface protection, microbial energetics, or the availability of alternative electron acceptors like sulfate (Arndt et al., 2013), indicating that there is a role for condensation and kerogenization reactions that render OM inaccessible to microbes and their exoenzymes. A special category of kerogenization reactions that is specific to anoxic environments, OM sulfurization, was observed in sinking ODZ particles under in-situ conditions and could be a significant contributor to OM burial (Raven et al., 2021).

OM sulfurization reduces the effective lability of OM by replacing certain functional groups (e.g., aldehydes, conjugated double bonds) with organic S functionalities and by bridging molecules together, increasing their molecular weight (Sinninghe Damsté et al., 1988; Kohnen et al., 1989; Kutuzov et al., 2020). Sulfurized OM is thus less susceptible to breakdown by microbial exoenzymes than fresh or degraded algal biomass (Boussafir and Lallier-Verges, 1997; Sinninghe Damsté and Köster, 1998). The reactants for sulfurization on timescales of days or less appear to be polysulfides (Sₓ²⁻, 2 ≤ x ≤ 8), which form spontaneously in the presence of dissolved sulfide (HS⁻) and elemental S (S⁰) or other oxidants (Kamyshny et al., 2004; Rickard and Luther, 2007). In experiments, algal biomass has been shown to sulfurize rapidly in the presence of dissolved polysulfides, producing pyrolysates interpreted as deriving
from carbohydrates cross-linked with organic sulfides and polysulfides (Gelin et al., 1998; Kok, Schouten, et al., 2000; Pohlabeln et al., 2017). Experiments with model compounds have shown similar cross-linking following polysulfide exposure (van Dongen et al., 2003; Amrani and Aizenshtat, 2004a). Over the past few years, OM sulfurization has been reported across a growing diversity of environments, including coastal mangrove forests, hydrothermal systems, marine surface sediments exposed to variable redox conditions (Gomez-Saez et al., 2016; Jessen et al., 2017; Raven, Fike, Gomes, et al., 2019; Gomez-Saez et al., 2021), and sinking marine particles in both sulfidic basins and anoxic (non-sulfidic) ODZs (Raven, Sessions, Adkins, et al., 2016; Raven et al., 2021). The sulfurization of OM in sinking marine particles could have a particularly large effect on fluxes in the marine carbon cycle because it impacts a relatively large and reactive pool of sinking biomass, where moderate changes in preservation efficiency can translate into substantial changes in the rates of sedimentary OM burial (Raven et al., 2018).

In this study, we investigate how sinking marine particles from the eastern tropical North Pacific ODZ respond to a brief exposure to environmentally relevant sulfidic conditions. The 48-hour duration of these experiments could be analogous to, for example, the experience of a large particle sinking through a polysulfide-rich chemocline in the water column. Previous sulfurization experiments that demonstrated rapid OM sulfurization generally used model compounds (Amrani and Aizenshtat, 2004b) or elevated temperatures, phase transfer agents, and/or elevated polysulfide concentrations that make them challenging to directly compare with modern marine environments (e.g., 50°C, 13 mM [poly]sulfide, 30 days) (Gelin et al., 1998; Kok, Rijpstra, et al., 2000; van Dongen et al., 2003). Here, we conduct two-day experiments with natural particle samples under environmental conditions (20°C, 0.5 mM [poly]sulfide), and use an expanded suite of X-ray spectroscopic techniques, to investigate how sulfidic conditions transform sinking marine particles.

2. Materials and Methods
2.1 Polysulfide solution preparation

Polysulfide solutions were prepared by combining 50 mg of natural-abundance S\(^0\)(s) (Sigma Aldrich, trace metal grade) and 1 mg of \(^{34}\)S-labeled (≥98%) \(^{34}\)S\(^0\)(s) in O\(_2\)-free ultra-pure water with 1.25 mL of 400-mM sodium sulfide solution adjusted to pH 8 (with HCl). Solutions were equilibrated in the presence of this excess S\(^0\)(s) at 18°C in the dark for >60 days before use, at which point S-isotope compositions in the aqueous phase were stable and fully equilibrated with solids. The total concentration of dissolved (poly)sulfide S in solution under these conditions was ~12 mM.

In a fully aqueous system, polysulfide speciation would be controlled primarily by pH and the relative abundances of sulfur and sulfide precursors. In the presence of excess S\(^0\)(s), however, the major species present in mixed polysulfide solutions are primarily a function of pH. At pH 8, experimental polysulfide solutions are largely composed of bisulfide anions and mid-chain-length polysulfides: H\(S\)^\(-\)>\(S\)\(^2\)^\(-\)>\(S\)\(^3\)^\(-\) (Rickard and Luther, 2007). Solid-phase S\(^0\) was removed by in-line filtration during injection of the polysulfide solution into experiments.

2.2 Sampling site

Samples (IGSN: IEMRRETNP) were collected from the eastern tropical North Pacific ODZ in spring 2018 as part of cruise RR1807 on the R/V Roger Revelle. We deployed a surface-float-tethered particle trap with a 2-meter-diameter, 50-\(\mu\)m-mesh net (Van Mooy and Keil, 2015) at two sites: a relatively low particle flux site (‘P2,’ 200 km from the Mexican coast, 17.0°N x 107.0°W, ~3500 m water depth), and a relatively high particle flux site (‘P1,’ ~50 km from shore, 20.3°N x 106.1°W, ~1500 m water depth).

This same population of samples was also used for radiosulfur measurements of microbial sulfate reduction rates and the identification of in-situ organic S formation (Raven et al., 2021). Particles were trapped at the depth of the secondary nitrite maximum (120-143 m at P1 and 147 m at P2) for approximately 48 hrs. After recovery, the 2-m-diameter net, which closed in-situ before recovery, was rinsed with filtered surface seawater to collect particles. Samples for this study (Table S1) include one sample from P2 (‘F’) and five samples from P1 (‘A’ through ‘E’), all of which were collected from the ‘net wash.’ During processing, the
experimental sample from P2 was lost due to an unfortunate wind incident. Aliquots for controls (‘A\textsubscript{C},’ B\textsubscript{C},’ etc.) were syringe-filtered in a N\textsubscript{2}-filled glovebag onto pre-combusted, 0.7 \(\mu\)m (GF-F) glass fiber filters and immediately frozen under N\textsubscript{2} headspace at \(-20^{\circ}\)C. Aliquots for polysulfide exposure experiments (‘A\textsubscript{SS},’ B\textsubscript{SS},’ etc.) were transferred to 250-mL serum bottles and sparged with N\textsubscript{2}. Each experiment received 10 mL of the 12-mM, filtered, \(^{34}\)S-labeled, mixed polysulfide solution yielding a total reduced sulfur concentration in experiments of 0.52 mM. Bottles were incubated for 48 hrs at \(-20^{\circ}\)C in the dark. After incubation, 1-mL aliquots of seawater were filtered through GF-F filters into vials containing concentrated HCl to volatilize H\textsubscript{2}S and then preserved with BaCl\textsubscript{2} for sulfate S-isotope analysis. Particle solids were collected anoxically onto pre-combusted GF-F filters and frozen under N\textsubscript{2} at \(-20^{\circ}\)C.

2.3 Sample collection, handling, and processing

Particle samples were subdivided into three pools for analysis: extractable lipids (OM\textsubscript{Lipid}), acid-soluble/volatile materials (OM\textsubscript{Hyd}), and acid-resistant organics (OM\textsubscript{Res}), as diagrammed in Figure S1. After filters were washed with N\textsubscript{2}-sparged pH 7.8 tris buffer solution to remove inorganic sulfate and lyophilized, splits were set aside for ‘whole particle’ spectroscopy, and selected controls with sufficient particle material were split to allow elemental and isotopic analysis of ‘whole particles’ with minimal disruption. Remaining particles were microwave-extracted (CEM MARS-6) twice in 9:1 dichloromethane:methanol. Solvent extracts were concentrated under N\textsubscript{2} and exposed to activated Cu0 for 12 hrs to remove elemental S. Lipid extract aliquots for XAS were dried onto quartz slides, and the remaining material was trapped onto washed and dried silica gel for elemental analysis. Splits of solvent-extracted particle filters were set aside for X-ray absorption spectroscopy and X-ray fluorescence mapping (XAS/XRF), and experimental samples with sufficient material were split for elemental analysis. Experimental particles were split after solvent extraction to ensure removal of reactant polysulfide before S quantification.

All solvent-extracted particles were subjected to acid-volatile sulfide (AVS) extraction with hot (~70\(^{\circ}\)) 6N hydrochloric acid under flowing N\textsubscript{2} (Rickard and Morse, 2005; Raven, Fike, Gomes, et al., 2019). In addition to volatilizing sulfides from FeS, this method solubilizes a large proportion of the
carbohydrates and proteins in OM (Hill, 1965). After AVS hydrolysis, remaining solids were washed in ultra-pure water and divided into splits for XAS and for elemental analysis.

2.4 EA-IRMS analysis

Carbon isotopes and S:N:C elemental ratios of lipid extracts and whole and AVS-extracted particles were analyzed at UCSB with an Elementar Vario Isotope Select elemental analyzer (EA), which includes a ramped-temperature column to improve SO$_2$ peak shape, coupled to a Nu Horizon isotope ratio mass spectrometer (IRMS). C-isotope data were internally standardized to CO$_2$ gas standards and calibrated to VPDB using the caffeine isotope standards USGS-61, -62, and -63. Reported uncertainties reflect long-term uncertainties for replicate sulfanilamide standards. Whole particle samples before acidification retain some seawater sulfate, as quantified by XAS (below); reported S:C ratios for ‘whole particle’ and ‘solvent-extracted’ OM were corrected (uncorrected data included in Table S2) to remove the proportional contributions from inorganic phases (sulfate and FeS) based on the relative abundances of these phases in XAS spectra. S-isotope values for dissolved sulfate at the end of the polysulfide exposure experiment and for the initial polysulfide spike were measured by EA–IRMS as barium sulfate and zinc sulfide, respectively. Samples contained WO$_3$ as a combustion aid, and S-isotope values were calibrated to VCDT using the isotope standards IAEA-S1, S2, S3, and S5. The δ^{34}S values for the 34S-labeled polysulfide spike are estimates because they exceed the calibration range of these standards.

XAS/XRF analysis and data processing

The redox speciation and bonding environment of sulfur and iron in the filter-bound particles were analyzed at the Stanford Synchrotron Radiation Lightsource (SSRL). Glass fiber filter pieces were adhered onto Saint Gobain M60 S-free polyester tape and covered in 5-μm-thick SPEX 3520 polypropylene XRF film. ‘Bulk’ sulfur K-edge spectra (500 μm2 spot size) were collected on beam line 14–3 on whole particles, solvent-extracted particles, HCl-extracted particles, and lipid extracts, before and after copper exposure. Additionally, a micro-focused X-ray beam was used to map S and Fe species by rastering over selected mapping areas at specific energies (for sulfur: 2472.0, 2472.9, 2473.9, 2474.25, 2476.15, 2477.8, 2481.4,
2482.6, and 2486.0 eV; for iron: 7116.0, 7128.0, 7133.0, 7139.0, and 7147.0 eV) to create elemental and chemical distribution maps. Full XAS spectra were collected from 2460 to 2540 eV (sulfur) or 6900 to 7500 eV (iron) at selected spots.

Sulfur data were collected at SSRL beam line 14–3, which is equipped with a Si(111) (Φ = 90) double crystal monochromator and calibrated to the thiol pre-edge peak of thiosulfate at 2472.02 eV. The S Kα fluorescence line was measured with a Si Vortex Si drift detector (Hitachi) using Xspress3 pulse processing electronics (Quantum Detectors). The X-ray beam was focused using an axially symmetric focusing mirror (SIGRAY) to a size of 5 x 5 µm at a flux of ~8 x 10^10 photons per second; maps were collected at a resolution of 5 µm^2. Sulfur XAS spectra were processed in the SIXPACK (Webb, 2005; Webb, 2020) software package using a K-edge E0 of 2473 and pre-edge and post-edge linear normalization ranges of –20 to –7 and 35 to 70 eV, respectively. Sulfur K-edge fitting standards are shown in Figure S2. Uncertainties reported in Table S3 refer to the confidence in the linear combination fit calculated in SIXPACK. Iron data were collected at SSRL beam line 2–3, a bending magnet workstation equipped with a Si(111) (Φ = 0) double crystal monochromator calibrated such that the first derivative of an Fe metal foil was set to 7112 eV. The beam line uses an axially symmetric focusing mirror (SIGRAY) to achieve a spot size of 5 x 5 µm at a flux of ~5 x 10^8 photons per second at 7100 eV, and uses a similar fluorescence data collection system as above with 14-3 to collect K-edge Fe spectra from 6900 to 7500 eV and elemental maps of Ca, P, Mn, Ti, S, and other metals at 5-µm resolution. XRF maps from both beam lines were processed using the MicroAnalysis Toolkit (SMAK; (Webb et al., 2011)). Sulfur XANES fitting used 3-pt blurred maps (standard deviation 0.5) and a set of six standard spectra (FeS, methionine, glutathione disulfide, methionine sulfoxide, cysteic acid / sulfonate, and sulfate ester, Fig. S2).

3. **Results**

3.1 **EA–IRMS results**
The carbon-isotope compositions of sinking particle materials are similar for samples from both the high- and low-particle-flux sites (A–E and F, respectively; Fig. 1A and Table S2). Whole washed particles before acidification, which may contain both organic C and calcium carbonate, have δ13C values between −26.0 and −23.7‰ (mean −24.6‰), while lipid extracts have relatively 13C-depleted compositions (Hayes, 2001) between −32.9 and −28.3‰ (mean −30.4‰). Accordingly, the δ13C values for Sx-exposed, solvent-extracted particles are higher (mean −22.0‰) than those for whole particle controls due to the removal of 13C-depleted lipids by solvent extraction (Fig. 1A). After both lipid extraction and strong acidification (6N HCl, 70°C, 2 hrs), residual particle material (OMRes) from both experiments and controls has a δ13C value between −27.4 and −25.0 (mean −25.7‰). There is no significant change in the C-isotope composition of either OMRes or OMlipid associated with Sx exposure.

The nitrogen contents of whole particles, lipids, and OMRes primarily track the abundance of protein in each pool (Fig. S3). Whole particles N:C ratios (8.9 – 15.3 mol%) are typical for protein-rich, primary producer biomass that has experienced some degradation (16:117 = 13.7%; (L. Anderson and Sarmiento, 1994)), while lipid extracts have lower N:C ratios (0.6 – 3.8 mol%). Molar N:C ratios in OMRes controls are between 2.5 and 4.7 mol%. In some cases, Sx-exposed OMRes contains significantly more N than OMRes controls, with N:C ratios of up to 7.8 mol% (sample Dsx; Fig. S3).

Sulfur-isotope compositions of dissolved sulfate in experimental bottles are between 22.6‰ and 24.3‰, summarized in Table S2. Replicates of the polysulfide spike were trapped as zinc sulfide and thus reflect thio sulfur (bisulfide and roughly half of polysulfide S); the effect of excluding zero-valent polysulfide S is negligible in this case given the much larger uncertainties from standard extrapolation. Spike δ34S values average 342.2‰ (Table S3).

Particle S:C ratios (Fig. 1B) increase in response to Sx exposure, reflecting the addition of (poly)sulfide S to particulate OM. In controls, the S:C ratio of organic materials in whole particles is 0.64–0.74 mol% at high-flux site P1 and 1.3 mol% in one sample from low-flux site P2 (Table S2). OMRes and lipids have lower S:C ratios, averaging 0.3 mol% and 0.4 mol%, respectively. After sulfurization, organic
materials in whole and solvent-extracted particles from P1 have S:C ratios between 1.7 and 2.1 mol%, an approximately 2.8-fold increase over P1 controls. Similarly, average Sx-exposed OMRes S:C ratios average 1.1% (range 0.5 – 1.7%), a roughly 3.3-fold increase over P1 controls. Lipid extract S:C ratios are variable among samples (0.1 – 1.1%) and do not differ systematically between controls and Sx-exposed samples.

3.2 Bulk Particle XAS Speciation

The redox speciation of sulfur in particles varies systematically among lipid, hydrolyzable, and hydrolysis-resistant materials, and these distributions are consistent across samples from both sites and all depths (Fig. 2). Broadly speaking, the organic S (OS) in whole (control) particles from the ETNP is approximately 60% oxidized (sulfonates and sulfate esters) and 40% reduced (sulfides, disulfides, and aromatics). Organic solvent extracts are predominantly (58–78%) sulfate esters with up to 16% sulfonates, and the remaining 3.2 – 16.1% of the lipid OS pool is reduced. Hot acidification (6N HCl, 70°, 2 hrs) removed approximately 85% of the total sulfur in the particles, which included most of the non-lipid oxidized OS as sub-equal pools of sulfate esters and sulfonates. A reduced OS component is also removed by acidification that is best fit as aromatic S. After acidification, residual solids (OMRes) contain sulfur predominantly as sulfides and disulfides, with smaller amounts of aromatics and oxidized forms, as was previously reported for parallel experiments with this population of particles (Raven et al., 2021).

After exposure to polysulfides for ~48 hrs, the speciation of sulfur in all five of the particle samples from site P1 was transformed, as summarized on the right-hand side of Fig. 2. Compared to controls, Sx-exposed particles contain a larger proportion of reduced species (sulfides and disulfides) and iron sulfides. Sx-exposed whole particles contain some elemental sulfur derived from the polysulfide reactant solution that was subsequently removed by solvent extraction and copper exposure. Copper-treated lipids after polysulfide exposure contained nearly 50% reduced OS in addition to the sulfate esters and sulfonates observed in the OM_Lipid controls. Reduced OS in the Sx-exposed lipids is composed of sulfides and disulfides with some zero-valent S. Particle materials lost during acidification include iron sulfides (AVS)
and roughly sub-equal pools of reduced and oxidized OS (OM\text{Hyd}). OS in OM\text{Res}, on the other hand, is almost exclusively reduced (sulfides and disulfides). Oxidized OS thus makes a smaller contribution to total OS in the experimental particles than in corresponding controls.

3.3 Particle XRF Maps

To examine the spatial variability in particle OS speciation, we mapped particles at 5-to-7-\mu m resolution using X-ray fluorescence imaging. Figure 3 presents maps of sulfur speciation in whole, buffer-washed particles from site P1 at 123 m depth (sample ‘A\text{c}’). Sulfur was not detected in filter backgrounds. Organic sulfur speciation is spatially heterogeneous in control particles, with separate regions that are rich in reduced versus oxidized organic S. The abundance of reduced organic S at specific spots ranges from 20.5% (spot 8) to 72.5% (spot 2). Reduced organic S, including organic monosulfides, thiols, aromatics, and disulfides, appears as localized concentrations ranging from \leq 7 \mu m (single pixel) to nearly 80 \mu m in diameter. Oxidized components (sulfonates and sulfate esters) are also found in discrete regions up to several hundred microns in size.

After exposure to polysulfides, particles accumulate organic monosulfides and disulfides (Fig. 4). The proportion of OS in reduced forms (sulfides, disulfides, and aromatics) ranges from 59.3 to 78.3% (Fig. 4A and Table S5), and the overall proportion of reduced S is higher, consistent with the results for bulk speciation (Fig. 2). Newly formed disulfides appear as irregularly sized splotches that are generally but not exclusively associated with other forms of organic S, especially organic monosulfides (e.g., spot 7). Regions that are relatively rich in oxidized OS are discrete and 100–200 \mu m in size, similar to those observed in controls. In contrast, iron monosulfides are found throughout sulfurized particle materials and do not generally accumulate as singular particulates. Despite its relatively low abundance, the presence of FeS in these samples is confirmed by the characteristic pre-edge peak near 2470 eV in the XAS spectra from Fig.
4A (shown in Fig. S4). Gypsum (calcium sulfate) was also detected as an individual 25-µm-diameter particulate (spot 6).

Most of the iron on the particle filters is present as discrete, 15–40 µm particulates (Fig. 5). Prior to polysulfide exposure, iron oxyhydroxides are scattered throughout the samples and are not spatially associated with either carbonates or organic matter (P or S). After polysulfide exposure, some of these discrete iron particulates remain (e.g., C_{Ss}, Fig. 5), but iron also accumulates throughout the particles as a low, uniform abundance phase that is broadly co-located with sulfur. Based on XAS spectra in Fig. 4, at least some of this material is FeS (e.g., mackinawite).

4. Discussion

4.1 Controls: Organic sulfur speciation in sinking marine particles

Sulfur is a major component of biomass. Molar S:C ratios for marine biomass are typically 0.5–1‰, although they can be lower in woody plants and higher in some S-cycling microorganisms (Matrai and Eppley, 1989; Chen et al., 1996). The speciation of organic sulfur in particles (Fig. 2) reflects the contributions of various compound classes to functionally defined categories of OM, as well as any subsequent transformations of that OM due to enzymatic degradation, condensation, oxidation, and/or sulfurization.

Sinking particles from the ETNP ODZ contain the full suite of reduced and oxidized OS moieties that have been previously described for proteins, lipids, and carbohydrates. A large proportion (42–65%) of the assimilatory S in microplankton is typically found as proteins and polypeptides (Cuhel et al., 1982), specifically the amino acids cysteine, which is a thiol, and methionine, which is an organic monosulfide. Cysteine and methionine are highly susceptible to oxidation, both in the environment and during laboratory handling, which will produce sulfoxide (Vogt, 1995) and/or sulfonate (Phillips et al., 2021). The AVS hydrolysis method used here to isolate OM_{Res} is less intense (shorter duration and lower temperature) but
otherwise similar to some early methods for protein hydrolysis (e.g., 24 hrs, 110°, 6N HCl) (Hill, 1965).

Therefore, AVS hydrolysis is likely to solubilize many proteins in our particles, which is supported by the drop in molar N:C ratios from whole particles (averaging 11.6%) to OMRes (averaging 4.5%; Fig. S1). However, we find that most of the OS in the OMHyd pool is relatively oxidized (Fig. 2), suggesting that cysteine and methionine are not major contributors to OMHyd. (We calculate speciation by comparing solids before and after hydrolysis, so the lack of reduced S in OMHyd is not caused by amino acid oxidation during hydrolysis.) Instead, the reduced OS species in OMHyd are best fit as aromatic, and the main peak in their XAS spectra at ~2473.5 eV is resolvably shifted relative to cysteine and methionine. Although aromatic OS compounds have been attributed to rapid OM sulfurization in a few cases (i.e., phytol thiophene, (LaLonde et al., 1987; Raven, Sessions, Adkins, et al., 2016)), aromatic OS is generally rare in modern samples, and we do not observe aromatic OS formation during polysulfide experiments (below). The immediate provenance of apparent aromatic OS in OMHyd from untreated particles is thus not yet known. Rather than appearing in OMHyd, organic monosulfides and thiols account for ~80% of the S in OMRes from control particles. These functional groups are localized in cell-sized (≤ 20 um) structures, which suggests they may be proteinaceous (Raven et al., 2021). In addition to amino acids, these structures contain organic disulfides that may reflect amino acid dimers, like cystine. Finally, even in these unamended ‘control’ samples, we expect to have at least trace contributions of sulfides and/or disulfides to OMRes from in-situ OM sulfurization, as we observed using radiolabels in Raven et al. (2021).

Oxidized OS compounds comprise the majority of total OS in lipids, OMHyd, and whole particles. Lipid extracts are particularly rich in sulfate esters, which could represent sulfated hormones (e.g., cholesterol sulfate) and/or various sulfoglycolipids common in animals (Benson et al., 1959; R. Anderson et al., 1978; Ishizuka, 1997). Lipids also contain sulfonates, which could reflect contributions from common S-bearing lipids like sulfoquinovosyl diacylglycerides (SQDGs). In OMHyd, carbohydrates appear to be major sources of oxidized OS, especially sulfate esters (Fig. 2). Exudates from macrophytoplankton can be major sources of such sulfate-ester-bearing polysaccharides (Ramus and Groves, 1974; Percival et al.,
1980) and are likely to be particularly important here, because these extracellular polysaccharides, which can be produced in vast quantities by diatoms, are thought to contribute directly to the formation of large, sinking particles (Alldredge and Silver, 1988; La Rocha and Passow, 2007; Arnosti et al., 2021; Vidal-Melgosa et al., 2021). Hydrolyzable sulfate esters are also frequently localized in irregularly sized particles (Fig. 3) that could represent detritus from plants and animals and/or sulfated polysaccharides from algal exudates (Vidal-Melgosa et al., 2021). Overall, these XAS data underscore the substantial contributions of oxidized OS species to lipids and carbohydrates in marine particles, which can be clearly distinguished from amino acids and the products of abiotic OM sulfurization.

4.2 Experiments: Organic products of particle sulfurization reactions

In a separate study (Raven et al., 2021), we used radiolabeled sulfate to identify organic S formation in sinking marine particles under anoxic, sulfide-limited, ODZ-like conditions. Here, we investigate how this same population of particles would be transformed by short-term exposure to more strongly reducing, sulfidic conditions. Polysulfide concentrations in our experiments (~0.5 mM) are equivalent to or slightly higher than reported concentrations in a range of modern environments: the Great Salt Marsh (Boulegue et al., 1982; Luther et al., 1986), sulfidic lakes like Mahoney Lake (Overmann et al., 1996) and Fayetteville Green Lake (Zerkle et al., 2010), and the Black Sea (Holmkvist et al., 2011). Polysulfide concentrations can be even higher in specific environments like microbial mats, where up to 100s of mM polysulfides have been reported (Findlay, 2016). Conditions in experimental bottles therefore coarsely reproduce the experience of particles in certain modern and ancient Earth environments.

Experiments with particles and (poly)sulfide generated organic S in the proto-kerogen, hydrolysable, and lipid pools. Based on XAS fits, organic S accounts for the majority (67 to 82%) of the newly formed non-lipid particle solids (Fig. 6); inorganic products (iron sulfides) are discussed in Section 4.3, below. The initial molar S:C ratios in total particle OM from high-flux site P1 average 0.69% (range 0.64 – 0.74%), and these ratios increase after 48 hours of polysulfide exposure to an average of 1.9% (range
OM S:C ratios are somewhat lower in the OM_{Res} pool, averaging 0.33% before, and 1.1% after, polysulfide exposure (Fig. 1B). These S:C ratios are similar to those found in OM_{Res} in sediments from O_2-limited continental margin sediments, including the Santa Barbara Basin (OM S:C ratios average 2.1 mol% in the upper 50 cm; (Raven, Sessions, Fischer, et al., 2016)), the Peru Margin (0.5 – 2.3% in the upper meter of sediments; (Mossman et al., 1991; Suits and Arthur, 2000), and the Namibian Margin (OM S:C ratios average 2.3% for all data; (Dale et al., 2009)). But, sulfurized particle S:C ratios remain below those observed for OM in sulfidic basins like the Cariaco Basin (~4 mol%; (Werne et al., 2003)). It is likely that longer–term exposure to polysulfides would further increase the S content of particle OM, eventually reaching ‘saturation’ or full sulfurization of the functional groups that are reactive on the timescale of interest, as modified by other environmental factors (Amrani et al., 2007). The change in particle S:C ratios as a result of sulfurization indicates that organic precursor molecules contained at least that density of rapidly sulfurizable functional groups (aldehydes, ketones, certain re-arrangeable alcohols, and conjugated double bonds (Kutuzov et al., 2020)). Primary biogenic molecules can also gain sulfide-reactive functional groups like carbonyls through photochemical reactions in the euphotic zone (Amrani and Aizenschtat 2004c).

The short duration of these 48–hour experiments makes it possible to investigate potential OM preservation processes on the same timescale as particle OM breakdown and remineralization. Typical sinking particle OM remineralization rates are ~12% per day (Iversen and Ploug, 2013; Cavan et al., 2017), which means that reactions that transform particle OM within days are particularly important for impacting the extent of OM remineralization in sinking particles and, by extension, carbon fluxes to the sediments. Additionally, the large changes in organic S chemistry observed within 48 hours in these experiments demonstrate that even intermittently sulfidic conditions – on the timescale of hours to days – can have a dramatic effect on the composition of particulate OM.

The initial products of particle sulfurization are primarily organic monosulfides and disulfides (Fig. 6). Although three of the five sulfurized samples also contained more sulfonates or sulfate esters than their
respective controls, this likely represents heterogeneity in the distribution of assimilatory OS particles among control and experiment filter aliquots. In Figure 6, the speciation of newly formed materials is calculated by assuming that sulfurization adds new sulfur to an unchanging pool of biogenic OS, as measured in the control sample. The calculated, newly formed OS is very similar to the overall speciation of S-x-exposed OMRes (Fig. 2) and is consistent with observations from the sulfurization of standard compounds under conditions similar to those investigated here (Amrani and Aizenshtat, 2004b). In those experiments, α, β-unsaturated aldehydes, including the chlorophyll-derived C20 isoprenoid phytanal, were exposed to a polysulfide solution and the products were identified as disulfide-bridged oligo-polymers. Nucleophilic polysulfides attacked the conjugated double bond rapidly (within hours) and the carbonyl group more slowly, leading to carbon skeletons cross-linked by two or more Sx (e.g., polysulfide) bridges within days to weeks (Amrani and Aizenshtat, 2004b). Similar mechanisms could explain the observed rapid formation of organic sulfides, disulfides, and polysulfides (Sx≥3) during the sulfurization of sinking marine particles.

Newly formed organic disulfides appear within certain particle regions that range from 30 to 300 µm in diameter (Fig. 4). These ‘strongly sulfurized’ regions often envelop clusters of small (single-pixel; ≤ 5 µm), sulfide-rich particulates that are interpreted as cells. And, they are also frequently associated with the larger (20–200 µm), sulfate-ester-rich irregular particles that may represent concentrations of polysaccharide exudates or contributions from plant or animal detritus. These spatial relationships suggest that sulfurization affects a ubiquitous particle component that naturally contains a lower concentration of organic S than other forms of biomass. Exopolymeric substances (EPS) are a leading candidate for this component. EPS is a loosely-defined blend of polysaccharides, proteins, nucleic acids, and lipids, with carboxylate, amine, hydroxyl, sulfate, and phosphate functional groups (Alvarado Quiroz et al., 2006; Braissant et al., 2007). EPS is an important contributor to the formation of large, sinking particles, building particle size and density by binding organic and inorganic solid materials together (Alldredge and Silver,
The abundance of EPS in large sinking particles may make these organic materials particularly susceptible to rapid sulfurization.

XAS results strongly indicate that lipids sulfurize alongside non-lipid OM over 48 hours of polysulfide exposure, despite the lack of consistent trends in lipid S:C ratios. Variable lipid S:C ratios among samples, both before and after sulfurization, most likely reflect the heterogeneous distributions of specific particle components (e.g., animal detritus; Ishizuka 1997) that are key sources of sulfated lipids. Sulfurization may also reduce the solubility of lipid molecules and transfer them functionally to the OM_{Res} pool, although here this process was insufficient to significantly lower the C-isotope composition of OM_{Res} (Fig. 1A). Newly formed lipid OS is compositionally similar to newly formed non-lipid OS, with varying proportions of organic sulfides, disulfides, and oxidized species. Sulfurized lipids also contain zero-valent S that may represent the S^{0} atoms in S_{2} and longer organic polysulfides, which may therefore be more important in lipids than for other organic precursors (Fig. 6). Rapid lipid sulfurization has been documented for specific lipid molecules both experimentally and in the environment (Van Mooy et al., 2002; Amrani and Aizenshtat, 2004b; Raven, Sessions, Adkins, et al., 2016), while other specific lipids are known to sulfurize over thousands of years (Kok, Rijpstra, et al., 2000; Werne et al., 2000). The observed changes in the speciation of total extractable lipid OS help to scale up these compound-specific observations and indicate that rapid sulfurization can impact a substantial proportion of the bulk sedimentary lipid pool.

4.3 Experiments: Competitive sinks for polysulfides

Dissolved sulfide (H_{2}S/HS^{-}) has many possible reaction pathways in real, complex marine particles. In addition to reactions with OM, both microbial sulfide oxidation and iron sulfidization can occur rapidly, generating inorganic sulfur species with redox states ranging from S^{0} to sulfate, and iron sulfides, respectively.
We use the appearance of 34S-labeled sulfate to estimate the scale of polysulfide oxidation during the 48-hour experiment. The δ^{34}S value of seawater sulfate increased during the experiment to values between $22.6 \pm 0.4\%$ and $24.3 \pm 0.4\%$, a significant change from initial sulfate at $\sim 21\%$. Given a 28 mM concentration of seawater sulfate, these values indicate the addition of between 140 and 295 µM sulfate with a δ^{34}S value matching the polysulfide spike ($\sim 342\%$), which represents a substantial proportion (27 – 57%) of the 520 µM polysulfide solution originally added to each experiment. Some of this (poly)sulfide oxidation may have occurred abiotically through reaction with any dissolved O$_2$ that was introduced during on-deck handling of these ‘net wash’ samples and incompletely removed during gentle sparging with N$_2$. However, even dissolved O$_2$ concentrations of as much as 10 µM would account for only a few percent (~ 5 µM) of this sulfate production. Instead, most (poly)sulfide oxidation likely occurred through microbial processes, which can be highly efficient at drawing down limiting sulfide concentrations, generating a tightly coupled and often cryptic sulfur cycle in sediments (Canfield et al., 1992; Jorgensen, 2019) and the water column (Canfield et al., 2010; Johnston et al., 2014). Given ETNP ODZ conditions, nitrate is likely to be a main oxidant powering sulfide oxidation in the dark (Devol et al., 2019). Net rates of (poly)sulfide oxidation in our experimental bottles were ~ 100 µM/day, which is similar to sulfide oxidation rates reported for very different environments like shallow marine sediments (Findlay et al., 2020). Notably, OM sulfurization occurs in particles despite this active competition for (poly)sulfide from oxidative sinks. Although this oxidative cycle likely generated some quantity of more oxidized inorganic sulfur species (e.g. thiosulfate), the key reactant for OM sulfurization is still most likely polysulfide because this matches the redox state of the newly formed organic S.

Another important sink for (poly)sulfide in particles is the formation of iron sulfides. The initial product of the reaction between Fe$^{2+}$ and S$^{2-}$ is an iron monosulfide (e.g., FeS(aq), mackinawite). Given unlimiting sulfide, the rate of this reaction depends on the availability of Fe$^{2+}$, which is typically sourced from the reduction of Fe(III)-oxyhydroxides and other reactive Fe(III) species. Marine particles from ODZs frequently contain Fe$^{3+}$ in the form of iron(III) oxyhydroxides, which appear to be actively recycled between
dissolved Fe$^{2+}$ and particulate Fe(III) minerals (Resing et al., 2015; Heller et al., 2017). We observe similar iron species in our control particle samples; the first-derivative X-ray spectra for iron in these particulates (Fig. 5) have similar spectral features to Fe(III) oxyhydroxide standards. Before S_x exposure, these iron oxyhydroxides are found in discrete, 10–50 µm-diameter particles with a broadly round morphology. These iron-bearing particulates are found throughout the mapped samples (A, B, and C) and are not spatially associated with calcium, phosphorus, or total sulfur.

After 48 hours of exposure to polysulfides, iron sulfides (FeS) form that have a distinctly different distribution than their Fe(III) precursors. FeS does not appear as discrete, resolvable particles and instead accumulates to low, uniform concentrations throughout the same, ~200-µm-scale particle regions that accumulate organic S (Fig. 5). Although Fe(III) particulates do not appear to be local FeS formation hotspots, they must be the source of iron for FeS formation because dissolved Fe$^{2+}$ concentrations in the ETNP ODZ are only ~2 nM (Bolster et al., under review GCA) and iron backgrounds in the EPS from controls are low (Fig. 5). FeS formation therefore most likely proceeded through the reductive dissolution of Fe(III) oxyhydroxides by sulfide to dissolved Fe$^{2+}$, which was subsequently precipitated from solution as FeS. Iron-cycling microbes may also play a role in the generation of dissolved Fe$^{2+}$. Although greater temporal resolution is needed to evaluate the kinetic competition between sulfurizable organic moieties and Fe$^{2+}$ for sulfide, the concurrent and co-located formation of FeS and OS within 48 hrs illustrates the tightly coupled formation of both inorganic and organic sulfur phases in sedimentary systems.

Sulfide-derived organic S has been seen to accumulate prior to the complete consumption of iron oxyhydroxides across diverse marine and lacustrine environments (Francois, 1987; Hartgers et al., 1997; Urban et al., 1999; Filley et al., 2002; van Dongen et al., 2003; Dale et al., 2009; Raven, Sessions, Fischer, et al., 2016). At the same time, environments with abundant reactive iron and active iron cycling can suppress the formation of organic and inorganic S (Shawar et al., 2018). The relative rates of formation for organic and inorganic S are complex and will depend on the identities and morphologies of organic and inorganic precursors, local geochemical conditions, and spatial relationships between sulfide sources and
potential sinks. It is clear, however, that organic S has the potential to preserve S-isotope signals that reflect a water column, particle-hosted sulfur cycle. We speculate that relatively rapid microbial sulfate reduction with fresh, particle OM may generate smaller S-isotope fractionations between sulfate and sulfide and therefore more 34S-enriched dissolved sulfide, OS, and FeS than equivalent metabolisms in near-surface sediments. The S-isotope composition of sulfide in particles may also be impacted by closed-system processes within diffusively-limited particle microenvironments, and by the activity of tightly coupled microbial metabolisms in addition to microbial sulfate reduction. In all of these cases, OS δ^{34}S values can be influenced by processes outside of a traditional, one-dimensional sedimentary diagenetic framework.

4.4 Implications for the long-term preservation of sulfurized OM

Because particle OM can sulfurize rapidly, even brief periods of sulfidic conditions in the environment have the potential to transform the chemical structure of sinking particulate OM and impact its lability. OM sulfurization is thus capable of transforming OM in temporally dynamic systems with only intermittently sulfidic conditions, ranging from tidally and photosynthetically cyclic systems like microbial mats and inter-tidal habitats to environments with strong seasonal upwelling. In sulfidic lakes and basins, sinking particles that encounter a layer of polysulfide-rich water near the O_2–H_2S chemocline (Overmann et al., 1996; Li et al., 2008) are likely to carry a signal of rapid OM sulfurization reactions to underlying sediments, similar to interpretations of pyrite δ^{34}S values from the Black Sea and Cariaco Basin (Lyons, 1997; Lyons et al., 2003). The isotopic composition and speciation of organic sulfur preserved in sediments will in part reflect rapid reactions in polysulfide-rich hotspots.

Prior to long-term burial, however, the initial products of particle sulfurization may experience additional condensation reactions, enzymatic attack, and changing environmental conditions that could further alter their chemistry. Organic di- and poly-sulfides may be particularly susceptible to isotope exchange with inorganic polysulfides and chemical maturation – the rearrangement of bonds to more energetically stable forms during sedimentary diagenesis (Canfield et al., 1998; Amrani et al., 2006).
Organic polysulfide maturation would decrease the proportion of organic polysulfides and disulfides over time and increase the abundance of monosulfidic or aromatic moieties (Kohnen et al., 1991; Amrani et al., 2006), which are more common in ancient deposits. S-isotope exchange between organic and inorganic polysulfides could also help explain puzzling S-isotope distributions among sedimentary phases in shallow anoxic sediments (i.e., (Dale et al., 2009; Raven, Sessions, Fischer, et al., 2016)). Here, our experiments with relatively high concentration of polysulfides strongly favor the formation of organic di- and polysulfides relative to reactions with sulfide (Kohnen et al., 1989). As a result, OM contains an average of 52.4% disulfides (range 46.8 to 67.4%; Fig. 6, excluding FeS), which is significantly higher than control OMRes from untreated particles, which averages 31.3% (range 23.4 to 47.7%) disulfides, or than kerogens from 100-million-year-old black shales, which have a maximum reported disulfide content of ~28% (Raven, Fike, Bradley, et al., 2019; Raven et al., 2021). Depending on the scale and timing of organic polysulfide exchange and maturation in the environment, the δ^{34}S values recorded in sedimentary OM may partially reflect later generations of environmental (poly)sulfide rather than the S-isotope composition of the (poly)sulfide that initially drove OM sulfurization. Further work is needed to better understand the stability of OM δ^{34}S values during very early diagenesis and the preservation potential of rapidly-formed organic polysulfides. Organic polysulfide maturation could also serve as a source of sulfur to other sedimentary reactions, including the conversion of iron monosulfides to pyrite, S^0 disproportionation, or gradual lipid sulfurization.

OM sulfurization in sinking marine particles has substantial implications for the carbon cycle, both in response to anthropogenic climate change and during periods of Earth history with relatively widespread sulfidic conditions. In the modern ocean, sinking particle sulfurization could help explain the observation that sediments below a water column ODZ can have higher carbon contents than those under water columns without a strong O_2 minimum, even when bottom water is oxygenated (Lückge et al., 1996; Devol and Hartnett, 2001; B. Van Mooy et al., 2002; Keil et al., 2016). Due to the potential for rapid OM sulfurization in the water column, the ongoing expansion of ODZs (Schmidtko et al., 2017) may increase OM burial in
even deep-water, O$_2$-exposed sediments. OM burial during Ocean Anoxic Event 2 (~94 Mya) was also likely enhanced due to water column particle sulfurization, drawing down atmospheric CO$_2$ and impacting climate (Sinninghe Damsté and Köster, 1998; Hüse et al., 2019; Raven, Fike, Bradley, et al., 2019). On even longer timescales, there is widespread evidence for locally sulfidic conditions at intermediate water depths throughout the Proterozoic (Lyons et al., 2014; van de Velde et al., 2020). OM sulfurization may have influenced the efficiency of carbon burial throughout this period, modifying the organic carbon burial processes that contributed to the oxygenation of the surface Earth. On all of these timescales, particle OM sulfurization in the water column is a powerful lever connecting changes in local redox state to substantial transformations in the pool of OM delivered to, and preserved in, marine sediments.

5. Conclusions

Sinking, OM-rich marine particles are transformed by reactions with polysulfides within 48 hours. Organic materials in the acid-soluble, acid-resistant, and lipid pools can all sulfurize on this timescale. Iron monosulfides (FeS) also form concurrently, prior to the complete consumption of Fe(III) minerals, which indicates that organic matter and iron minerals can be competitive sinks for (poly)sulfide over short (day) timescales. Both organic S and FeS phases appear within regions of particles that are suggestive of extracellular polymeric substances (EPS), which may be particularly important substrates for sinking particle sulfurization. Rapid particle-hosted OM sulfurization has the potential to enhance total organic carbon burial in sediments and to help explain why marine sediments in sulfidic environments often preserve abundant OM.

The initial products of particle OM sulfurization are primarily organic monosulfides and disulfides. Subsequent transformations of this sulfurized OM during sedimentation and early diagenesis could further transform the speciation and/or isotopic composition of organic S. In ancient deposits, the S-isotope compositions of organic S and iron sulfides will depend on the availability and speciation of iron and organic reactants during their formation – potentially in the water column – as well as these later reactions.
Acknowledgements

This work was made possible through the support and generosity of A. Devol, G. Rocap, J. Neibauer, and M. Duffy at the University of Washington; D. Fike at Washington University in St. Louis; and V. Orphan and S. Connon at Caltech. Special thanks are also owed to M. O’Beirne (University of Pittsburgh) and the full science party and crew of the R/V Roger Revelle (RR1805). The manuscript was greatly improved by input from B. Toner and an anonymous reviewer. Financial support was provided under NSF Dimensions of Biodiversity award no. 1542240 (to R.G.K.) and the Agouron Institute Geobiology Postdoctoral Fellowship (to M.R.R.). Use of the Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory (proposal 5359) is supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences under contract no. DE-AC02-76SF00515. The SSRL Structural Molecular Biology Program is supported by the DOE Office of Biological and Environmental Research and by the National Institutes of Health, National Institute of General Medical Sciences (P30GM133894). The contents of this publication are solely the responsibility of the authors and do not necessarily represent the official views of NIGMS or NIH.

Open Research / Data Availability

All of the processed data used in this manuscript are presented in the main text and supporting information. Data files are also archived on FigShare (10.6084/m9.figshare.16550790).
References

Vidal-Melgosa S., Sichert A., Ben Francis T., Bartosik D., Niggemann J., Wichels A., Willats W. G. T.,
fucan polysaccharide precipitates carbon during algal blooms. Nature Communications 12, 1150.

Petroleum Geology 18, 93–105.

1011.

196–199.

https://doi.org/10.1107/S1574870720003456.

sulfur in euxinic sediments of the Cariaco Basin: sulfur isotope constraints on organic sulfur

diagenetic sulfurization of organic matter: A precursor-product relationship in early Holocene
sediments of the anoxic Cariaco Basin, Venezuela. Geochimica et Cosmochimica Acta 65, 1741–
1751.

stratified euxinic lake with moderately high sulfate: constraints from quadruple S isotopes.
Geochimica et Cosmochimica Acta 74, 4953–4970.
Fig. 1: Carbon-isotope composition and molar S:C ratio of particle materials, before and after S₈ exposure. S:C ratios exclude inorganic phases (sulfate and FeS) quantified by XAS; uncorrected ratios are reported in Table S2. Filled symbols represent controls (e.g., ‘Aₐ’), and hollow symbols represent experiments (e.g., ‘Aₛₓ’), as detailed in Table S2. The six discrete sets of samples are listed on the x-axis in arbitrary order. Whole and organic-solvent-extracted particles represent the combination of OMₜₘ and OMₖₑₛ. Samples with multiple symbols represent discrete filter splits rather than replicates of homogenized samples. Error bars indicate the long-term reproducibility of standards (2σ). In panel B, purple and green lines highlight the consistent increase in the S:C ratio of OMₖₑₛ and whole particle samples following sulfurization; bulk lipids do not show a consistent trend.
Fig. 2 Sulfur speciation in sinking ETNP particles, with and without polysulfide exposure. Samples A through F represent six separate trap deployments (see Table S1). Heavy black lines between the orange and yellow bars broadly separate ‘reduced’ from ‘oxidized’ organic sulfur species. Inorganic sulfate was also detected in samples before hot acidification and is excluded from normalization. Non-sulfate materials lost during hot acidification are calculated by difference using X-ray spectrum step heights and are subject to errors of 5–10%. One sample labeled E* used an assigned step height. Fit uncertainties on each component are typically <2% (see Table S4). The elemental S detected in experimental whole particles (grey) may derive from polysulfide reactants; this was removed from lipid extracts before analysis by Cu exposure.
Fig. 3 **Sulfur speciation of whole particle controls by XAS and XRF.** Particles were collected from site P1 (123 m, sample ‘Ac’) and are mounted on GFF filters. Panel A: Fitted XAS spectra for specific (~1 µm²) spots, numbered at right. Uncertainties are typically <2%, see Table S5. Panel B: Tri-color XANES fits to multiple-energy maps showing organic monosulfides and thiols (red), disulfides (blue), and sulfate esters (green). Map step size = 7 µm.
Fig. 4 Sulfur speciation maps of polysulfide–exposed particles by XAS and XRF. As in Fig. 3, particles were collected from site P1 (123 m, sample ‘A5x’) and are mounted on GFF filters. Panel A: Fitted XAS spectra for specific (~1 µm²) spots, numbered at right. Uncertainties are typically <2%, see Table S5. Panel B: Tri-color XANES fits to multiple-energy maps from two adjacent filter regions, showing organic monosulfides and thiols (red), disulfides (blue), and sulfate esters (green). Step size = 5 µm. Newly formed disulfides appear as 50-to-100-µm regions surrounding more discrete particles containing various forms of organic S.

Fig. 5: Maps of iron, calcium, and sulfur on particle filters by XRF. Samples were prepared by washing with buffer under anoxic conditions; sulfur maps in all panels thus include trace inorganic sulfate. Maps show representative regions from sample splits, not the same regions after treatment. Pixels are 5 µm². Colors show iron at 7133 eV (red), total calcium (blue), and total sulfur (green).
Fig. 6 Speciation of products formed during polysulfide exposure. Heavy black lines broadly separate ‘reduced’ from ‘oxidized’ organic sulfur species. Results were calculated by linear combination fitting of S_x-exposed sample spectra for solvent-extracted particles ($\text{OM}_{\text{Res}} + \text{OM}_{\text{Hyd}}$, left) and lipid extracts (right) using the control spectra from each sample as a component. Upper and lower panels show the same data, but the lower panel highlights the proportion of S_x-exposed materials that were attributed to pre-existing (control) materials. Newly formed organic S in both pools is largely sulfides and disulfides.
Supporting information for:

Rapid, concurrent formation of organic S and iron sulfides during experimental sulfurization of sinking marine particles

M. R. Raven1*, R. G. Keil2, S. M. Webb3

1 Department of Earth Science, University of California, Santa Barbara, Santa Barbara CA 93117, USA
2 School of Oceanography, University of Washington, Seattle WA 98195, USA
3 Stanford Synchrotron Radiation Lightsource, Stanford University, Menlo Park CA 94025, USA

Contents of this file:

Figure S1 Sample processing workflow diagram
Figure S2 XAS standards used in fits
Figure S3 Molar N:C ratio of particle materials
Figure S4 XAS spectra for ETNP particles

Tables (see .xlsx file)

S1 Sample IDs and collection details
S2 Carbon isotope and elemental compositions of particle materials
S3 Sulfur isotope data
S4 XAS fits, macro (500 µm²) spots for bulk speciation
S5 XAS fits, micro (1 µm²) spots for map speciation

Fig. S1 **Sample processing workflow diagram.** Particles were sequentially extracted with buffer, organic solvent, and strong acid; splits were collected after each step for X-ray absorption spectroscopy (XAS) and elemental analysis (EA). Pool IDs correspond to those in Fig. 2 and throughout the main text: OMRes = residual, acid-resistant organics; OMHyd = hydrolyzable and/or acid-soluble organics; AVS = acid-volatile sulfides.
Fig. S2 **XAS standard spectra used in fits.**Standards are curated from a collection of in-house results (processed identically to samples, denoted by ‘*’), and the European Synchrotron Radiation Facility database (https://www.esrf.fr/home/UsersAndScience/Experiments/XNP/ID21/php.html), unstarred. All standard spectra are calibrated to a consistent monochromator energy (eV) relative to our thiosulfate pre-edge peak at 2472.02. Linear combination fits were calculated using multiple examples of some categories of organic sulfur structures to provide coverage of the real variability within natural materials (dashed and solid lines of the same color indicate organic monosulfides and thiols; sulfones and sulfonates; two examples of organic disulfides). These spectra were summed as single bins during all subsequent data analysis.
Fig. S3 **Molar N:C ratio of particle materials, before and after S\textsubscript{x} exposure.** Filled symbols represent controls (e.g., ‘A\textsubscript{C}’), and hollow symbols represent experiments (e.g., ‘A\textsubscript{SX}’), as detailed in Table S1. Whole and organic-solvent-extracted particles contain both OM\textsubscript{Hyd} and OM\textsubscript{Res}. Samples with multiple symbols represent discrete filter splits rather than duplicates of homogenized samples. Error bars indicate the long-term reproducibility of standards (2\(\sigma\)).
Fig. S4 XAS spectra for ETNP particles. All spectra are normalized to a post-edge baseline of 1.0 using pre- and post-edge normalization regions of -20 to -7 and +35 to +60 eV, respectively, relative to an E0 of 2473.0 eV. Dashed lines show controls, and solid lines show materials after polysulfide exposure. Top: Particle materials after solvent extraction but prior to acidification, including acid-resistant (OM_res), acid hydrolyzable (OM_Hyd), and acid-volatile (AVS) sulfur species. These spectra were used to calculate newly formed materials (c.f. Fig. 6). Bottom: Particle materials after solvent extraction and subsequent hot acidification (AVS extraction), defined as OM_res.