Understanding and managing uncertainty and variability for wastewater monitoring beyond the pandemic: Lessons learned from the United Kingdom National COVID-19 Surveillance Programmes

Matthew Wade1,1, Anna Lo Jacomo1,1, Elena Armenise2,2, Mathew Brown1,1, Joshua Bunce1,1, Graeme Cameron3,3, Zhou Fang4,4, Kata Farkas5,5, Deidre Gilpin6,6, David Graham7,7, Jasmine Grimsley1,1, Alwyn Hart2,2, Till Hoffmann8,8, Katherine Jackson2,2, David Jones5,9, Chris Lilley1,1, John McGrath10,10, Jennifer McKinley11,11, Cormac McSparron11,11, Behnam Firoozi Nejad11,11, Mario Morvan12,12, Marcos Quintela-Baluja7,7, Adrian Roberts1,1, Andrew Singer13,13, Célia Souque1,1, Vanessa Speight14,14, Chris Sweetapple1,1, Glenn Watts2,2, Andrew Weightman15,15, and Barbara Kasprzyk-Hordern16,16

1Joint Biosecurity Centre, Department of Health and Social Care
2Environment Agency
3Scottish Environment Protection Agency
4Biomathematics and Statistics Scotland
5School of Natural Sciences, Bangor University
6School of Pharmacy, Queen’s University Belfast
7School of Engineering, Newcastle University
8Department of Mathematics, Imperial College London
9School of Natural Sciences
10School of Biological Sciences, Queen’s University Belfast
11School of Natural and Built Environment, Queen’s University Belfast
12Department of Physics and Astronomy, University College London
13UK Centre for Ecology & Hydrology
14Department of Civil and Structural Engineering, Sheffield University
15Cardiff School of Biosciences, Cardiff University
16Department of Chemistry, University of Bath

November 30, 2022

Abstract

The COVID-19 pandemic has put unprecedented pressure on public health resources around the world. From adversity opportunities have arisen to measure the state and dynamics of human disease at a scale not seen before. Early in the COVID-19 epidemic scientists and engineers demonstrated the use of wastewater as a medium by which the virus could be monitored both temporally and spatially. In the United Kingdom this evidence prompted the development of National wastewater surveillance programmes involving UK Government agencies, academia, and private companies. In terms of speed and scale the programmes have proven to be unique in their efforts to deliver measures of virus dynamics across a large proportion of the populations in all four regions of the country. This success has demonstrated that wastewater-based epidemiology (WBE) can be a critical component in public health protection at regional and national levels and looking beyond COVID-19 is likely to be a core tool in monitoring and informing on a range of biological and chemical markers of human health; some established (e.g. pharmaceutical...
usage) and some emerging (e.g., metabolites of stress). We present here a discussion of uncertainty and variation associated with surveillance of wastewater focusing on lessons-learned from the UK programmes monitoring COVID-19 but addressing the areas that can broadly be applied to WBE more generally. Through discussion and the use of case studies we highlight that sources of uncertainty and variability that can impact measurement quality and importantly interpretation of data for public health decision-making are varied and complex. While some factors remain poorly understood and require dedicated research we present approaches taken by the UK programmes to manage and mitigate the more tractable components. This work provides a platform to integrate uncertainty management through data analysis quality assurance and modelling into the inevitable expansion of WBE activities as part of One Health initiatives.
Understanding and managing uncertainty and variability for wastewater monitoring beyond the pandemic: Lessons learned from the United Kingdom National COVID-19 Surveillance Programmes

Matthew J. Wade∗a,b, Anna Lo Jacomoa,c, Elena Armenised, Mathew R. Browna,b, Joshua T. Buncea,b,e, Graeme J. Camerona1, Zhou Fangs, Kata Farkasb, Deide F. Gilpinb, David W. Grahamb, Jasmine Grimsleya, Alwyn Hartd, Till Hoffmanna,j, Katherine J. Jacksond, David L. Jonesb,k, Chris J. Lilleya, John W. McGrathb, Jennifer M. McKinleym, Cormac McSparronm, Behnam F. Nejadm, Mario Morvanan, Marcos Quintela-Balujab, Adrian M.I. Robertsg, Andrew C. Singero, Célia Souquea,p, Vanessa L. Speighta, Chris Sweetapplea,r, Glenn Wattsd, Andrew Weightmanb, Barbara Kasprzyk-Horderni

aJoint Biosecurity Centre, Department of Health and Social Care, Windsor House, Victoria Street, London SW1H 0TL United Kingdom
bNewcastle University, School of Engineering, Cassie Building, Newcastle-upon-Tyne NE1 7RU United Kingdom
cBristol University, Department of Engineering Mathematics, Bristol BS8 1TW United Kingdom
dEnvironment Agency, Research, Horizon House, Deanery Road, Bristol BS1 5AH United Kingdom
eDepartment for Environment, Food and Rural Affairs, Seacole Building, 2 Marsham Street, London SW1P 4DF United Kingdom
fScottish Environment Protection Agency, Strathallan House, Stirling FK9 4TZ United Kingdom
gBiomathematics and Statistics Scotland, James Clerk Maxwell Building, Peter Guthrie Tait Road, Edinburgh EH9 3FD United Kingdom
hBangor University, School of Natural Sciences, Demiul Road, Bangor LL57 2UW United Kingdom
iQueen's University Belfast, School of Pharmacy, Lisburn Road, Belfast BT9 7BL United Kingdom
jImperial College London, Department of Mathematics, London SW7 2AZ United Kingdom
kThe University of Western Australia, UWA School of Agriculture and Environment, Perth WA 6009 Australia
lQueen’s University Belfast, School of Biological Sciences, Chlorine Gardens, Belfast BT9 5DL United Kingdom
mQueen’s University Belfast, School of Natural and Built Environment, Stranmills Road, Belfast BT9 5AG United Kingdom
nUniversity College London, Department of Physics and Astronomy, Gower Street, London WC1E 6BT United Kingdom
oUK Centre for Ecology and Hydrology, Benson Lane, Wallingford OX10 8BB United Kingdom
pUniversity of Oxford, Department of Zoology, Mansfield Road, Oxford OX1 3SZ United Kingdom

∗Corresponding author
Email address: matthew.wade@dhsc.gov.uk (Matthew J. Wade)

Preprint submitted to ESSOAr July 26, 2021
Abstract

The COVID-19 pandemic has put unprecedented pressure on public health resources around the world. From adversity, opportunities have arisen to measure the state and dynamics of human disease at a scale not seen before. Early in the COVID-19 epidemic, scientists and engineers demonstrated the use of wastewater as a medium by which the virus could be monitored, both temporally and spatially. In the United Kingdom, this evidence prompted the development of National wastewater surveillance programmes involving UK Government agencies, academics and private companies. In terms of speed and scale, the programmes have proven to be unique in its efforts to deliver measures of virus dynamics across a large proportion of the populations in all four regions of the country. This success has demonstrated that wastewater-based epidemiology (WBE) can be a critical component in public health protection at regional and national levels, and looking beyond COVID-19, is likely to be a core tool in monitoring and informing on a range of biological and chemical markers of human health; some established (e.g. pharmaceutical usage) and some emerging (e.g. metabolites of stress). We present here a discussion of uncertainty and variation associated with surveillance of wastewater, focusing on lessons-learned from the UK programmes monitoring COVID-19, but addressing the areas that can broadly be applied to WBE more generally. Through discussion and the use of case studies, we highlight that sources of uncertainty and variability that can impact measurement quality and, importantly, interpretation of data for public health decision-making, are varied and complex. While some factors remain poorly understood and require dedicated research, we present approaches taken by the UK programmes to manage and mitigate the more tractable components. This work provides a platform to integrate uncertainty management, through data analysis, quality assurance, and modelling, into the inevitable expansion of WBE activities as part of One Health initiatives.

Key words: COVID-19, Wastewater-based epidemiology, Measurement variability, Uncertainty
Introduction

Environmental surveillance for public health

The acquisition of data and extraction of information from environmental samples to manage and improve public health has been a cornerstone of societal development for nearly 200 years [1]. However, in comparison with medical and pharmaceutical innovation, much of the work in the field of environmental public health is largely unrecognised outside of the professional communities invested in its use. This is evident with wastewater, a conduit for an array of bio- and chemical markers that can be analysed to provide information on human activities, behaviours, and health status in populations [2, 3, 4, 5], but which has remained a relatively untapped resource given its known potential [6, 7, 8, 9, 10]. However, the negative perception of wastewater as solely a polluting substance, to be removed (from the human and natural environments) and cleaned (often by energy intensive processes), has undergone re-evaluation in recent years. The focus on sewage as a resource rather than a waste product is driving innovation in the water industry. Accordingly, the diversity of biotic and abiotic features within the sewage matrix presents an opportunity to acquire actionable insights through routine monitoring and analysis of its components. An increasing technological and computational capacity for deriving knowledge from measurements and data has manifested in efforts to ‘smarten’ the water industry [11], fusing data science with fundamental science and engineering principles. This provides opportunities for greater utilisation of sewage for the common good, be it in the production of resources such as energy and high value chemicals [12], or as a proxy of human health and behaviours, which will have transformative impacts for society.

Wastewater-based epidemiology in a time of crisis

The nature and extent of the COVID-19 pandemic has driven an unprecedented response from a diverse array of stakeholders, internationally. The efforts to tackle both the spread of the disease and its impact on populations have highlighted the need for disparate communities of scientists, government agencies, decision makers and the public to work together and collectively address the multiplicity of public health, economic and social challenges that have emerged over the course of the pandemic [13, 14]. This is also the case with the development of wastewater-based epidemiology (WBE) as an important tool to facilitate the detection and spatiotemporal monitoring of SARS-CoV-2 virus dynamics in the environment being undertaken in many countries [15, 16, 17].

Several studies have shown that the risk of infection by active SARS-CoV-2 virus in pre- or post-treated wastewater is low, particularly in modern sanitation systems [18, 19, 20, 21]. Nevertheless, inactive fragments of the virus RNA have been shown to persist longer in water than infectious virus [22]. Subsequently, most reports on SARS-CoV-2 detection and quantification in wastewater have focused on monitoring of the inactive virus, more specifically, the targeting of small regions of the virus genome using an array of analytical methods, such as reverse transcription-quantitative polymerase chain reaction (RT-qPCR) [23],
genomic sequencing \cite{24, 25, 26}, and, more recently, mass spectrometry \cite{27}, to detect and identify the emergence and spread of novel variants in the population.

Beyond COVID-19

Although the COVID-19 pandemic has highlighted the benefits of \textit{ex-situ} monitoring human-associated disease in the environment, WBE has also been successfully applied in other public health contexts, such as tracking pharmaceuticals, such as self-prescribed drug usage in cities \cite{28, 29}, antimicrobial resistance \cite{30}, and assessment of human exposure to environmental pollution \cite{6, 31, 10}. The severity of the current pandemic is a strong motivation for increased and integrated public health and environmental surveillance at national and supra-national scales \cite{32, 33}. Whether it is future-proofing for potential new pandemics \cite{34} or water fingerprinting to determine factors impacting both physical and mental health in communities \cite{35}, wastewater surveillance will become a vital tool at the disposal of governments and public health authorities at the nexus of public and environmental health beyond COVID-19.

Wastewater and Public Health, an uncertain relationship

The manuscript is focused on the understanding and management of uncertainty in WBE, framed by, but not limited to, lessons-learned from wastewater surveillance during the COVID-19 pandemic. For broader discussion of WBE and its implementation as a tool for informing decision-making and policy, there are a plethora of excellent review articles that may be referred to \cite{15, 36, 37}. The data rich, technologically diverse and computationally powerful resources available for WBE present an opportunity to deliver next-generation public health solutions in combination with targeted or passive environmental monitoring. Deriving an understanding of sources of uncertainty and implementing methods to estimate and account for measurement error is therefore critical for the design and implementation of wastewater surveillance to support public health decision-making. We posit that the insights presented here have wider consequences for WBE efforts beyond the pandemic.

Here we provide insights from our broad and extensive experiences gained while working with the United Kingdom (UK) WBE surveillance programmes and share this collective knowledge to support public health initiatives beyond the COVID-19 pandemic. The proceeding sections are then organised according to uncertainty and variability derived from source (population, shedding), in-network characteristics, and sampling and sample analysis. We finish by providing four case-studies related to separate aspects of applied WBE in which uncertainty and measurement variability are addressed and managed.

Uncertainty and its impact on wastewater surveillance

The perceived benefits of using measurements from wastewater samples for epidemiology include the relatively unbiased signal response to the determinant of focus (e.g. disease) and the provision of near real-time insights obtained from
changes in the magnitude or direction of this response [38]. With respect to COVID-19, clinical sampling of individuals in the community, via nasopharyngeal swabs, saliva or serological tests, is subject to biases associated with factors common to sub-sampling of heterogeneous populations [39], and mass-testing to obtain a representative sample size is costly. Wastewater, on the other hand, provides an aggregated picture of community disease state through the measurement of virus RNA excreted by, theoretically, all viable shedders with the disease in the sewer catchment [40], and can be implemented at a relatively low-cost in comparison with clinical sampling [41]. In reality, however, the accuracy and representativeness of any measurement acquired from wastewater is subject to a number of influencing factors, which can be classed as observable (e.g. sample dilution by exogenous hydrological flows), or partially observable (e.g. in-network analyte decay/degradation). Two recent reviews of wastewater-based SARS-CoV-2 detection have focused on factors contributing to uncertainty in disease prevalence estimation [42] and, more specifically, errors associated with laboratory quantification using RT-qPCR [43].

It is well understood that environmental measurements are subject to extraneous factors that account for differing degrees of variability and uncertainty in the signal (see [44], for example), and surveillance for WBE is particularly impacted by the complexity of the media being sampled [35, 45, 42]. Figure 1 presents an overview of the known and potential sources of uncertainty in WBE for COVID-19, grouped into spatiotemporal classes (i.e., where and when the uncertainty is likely to impact the measurement). For COVID-19, variability manifests as a significant problem when different measured virus RNA concentrations are observed for, theoretically, the same proportion of infected individuals in the population. More precisely, it is the uncertainty arising between the target analyte (RNA) and its representation of the stressor of concern (disease prevalence or incidence). Unwanted variability can occur over time at a given sample site due, for example, to rainfall or snow melt entering into a combined sewer network during or after wet weather events, and diluting the analyte concentrations relative to a dry weather baseline. With target analytes such as virus particles, which can attach to solids in the network, the impact of increased flow in the sewer is likely non-linear due to the effects of turbulence and scouring on settled solids resuspension. Although, to our knowledge, no evidence of this currently exists for SARS-CoV-2.

Variation between sites is also a problem when using WBE measurements for comparison across geographies, or when aggregating to provide supra-catchment perspectives of target analyte dynamics. For example, a large catchment having a long residence time may systematically produce lower concentration measurements than a smaller site, even though the disease prevalence could be the same in both catchments. As shown in Figure 1, factors causing uncertainty or unwanted variability can range from large-scale processes, such as highly transient populations, to those at a smaller scale including laboratory specific methods [43]. In each case, strategies are needed to account for the variability in a way that is appropriate for the intended use of the data.

Uncertainty is unexplained variability and, importantly, imposes a lower level
of confidence on a measurement than accountable and manageable (signal) variation [46]. Evaluation of uncertainty is necessary for WBE as quantifying the error bounds (and understanding the limits) of sample measurements is critical for capturing the inherent risk associated with public health decision-making processes. These risks are similar for likely all applications of WBE, i.e. incorrect estimation of target analyte(s); inability to compare measurements from different environments or under different conditions; loss of confidence in ability to detect or quantify the target analyte(s). The risks associated with uncertainty to wastewater surveillance of COVID-19 are wide-ranging and depend on its use-case. For example, recent attention focused on how using measurements from wastewater in epidemiological models [47, 48] could increase parametric uncertainty and error bounds on model estimates [49]. This, in turn, will affect the suitability of the model for tracking and predicting the dynamics of the disease [50]. Using raw wastewater measurements without accounting for factors that can bias interpretation, such as wastewater dilution or signal decay, may have a significant impact for decision-making when used to complement other sources of disease prevalence.

COVID-19 Wastewater Surveillance in the United Kingdom

England

Sampling of wastewater in England is being carried out by the Environment Agency, UK Water utilities, and the Environmental Monitoring for Health Protection team, part of the Joint Biosecurity Centre created to support government response to the COVID-19 pandemic. Sample collection started in June 2020 at the inlets to 44 sewage treatment works (STWs). The sites were selected to provide good population coverage and geographical representation across the
country. In total, the original sites covered 17.7 million people (over 31% of the population of England). The sampling capacity was increased considerably at the start of 2021 and, as of July 2021, comprised 556 sites, including 263 STWs, 238 network sites (manholes or pumping stations in the sewer catchment), and 55 near-source sites (single or groups of buildings). The sites are distributed across the networks of the nine water utilities in England. By July 2021, wastewater sampling covered 39.4 million people (70% of the population of England).

Recent sites were selected according to multiple criteria including demographic disease risk, population coverage and, for network sites, access points (e.g. manholes, pumping stations) that ensure safe access and well-mixed samples. STWs are sampled four times per week, using either autosamplers (composite) or by grab, or spot, sampling, post influent screening. The method of sampling is typically dependent on infrastructure at the STWs. An example of the potential for large variability in wastewater concentration between samples taken, either as grab or composite, is shown in Figure S3. In-network samples, collected upstream of the STWs, are used to constrain areas of concern in nine ‘core’ cities representing the largest conurbations in England, and three smaller strategic cities (based on historical COVID-19 trends). Samples from network sites are collected daily, mostly as grab samples, while near-source samples are largely taken using autosamplers at a fixed sub-sampling frequency (See Figure S1 for an overview, as of July 2021).

Scotland

Sampling and testing of wastewater across Scotland has been performed by Scottish Water and the Scottish Environmental Protection Agency (SEPA). In total there are over 1,800 sewage and wastewater treatment works in the Scottish Network, serving from fewer than 100 people to populations over 600,000. Initial testing of the premise that SARS-CoV-2 virus fragments were detectable in wastewater began in April 2020 with the development of a national monitoring programme operationalised by late May 2020. A network of 28 sites were initially prioritised, designed to maximise the coverage of population across Scotland’s 14 National Health Service (NHS) Health Regions, while also ensuring that laboratory capacity was available at that time. The 28 sites covered a total of 2.6 million people (just over half of the five million sewered population in Scotland), with the goal of achieving a coverage of 40% in each of the 14 regions. As the need for wastewater monitoring has increased, so too has the monitoring network, which has expanded to 108 sites covering 4.2 million people. Autosamplers are used to obtain composite samples from the influent at each sewage works over a 24-hour period, which are then sent to SEPA for analysis. Results are then published via data visualisation dashboards. One dashboard, designed for the general public, holds the raw virus concentrations for each site (https://informatics.sepa.org.uk/RNAmonitoring), while a second dashboard, designed for public health officials, has additional metrics and comparisons to reported case numbers.

Additionally, Scottish Water, SEPA and a variety of NHS and Public Health professionals from across Scotland have been working together to collect and
analyse samples from within the sewer network itself (via manholes). These were sited at the request of health professionals in order to better understand the virus prevalence in areas of concern within larger sewer networks. These samples are taken by means of a grab sample. In total, 28 such sites have been monitored at one time with 14 still being active as of July 2021.

In total, over 5,000 samples have been tested and recorded as of July 2021. The sampling frequency varies between sites depending on several factors and has changed at different times as the needs of stakeholders has changed over time. Sampling at treatment work inlets has been variable, with the majority sampled at a frequency of once or twice a week, but some as much as 4 times per week, a trade-off between lab capacity and data density. All in-network samples are monitored five times per week in their initial week to establish a baseline before being sampled twice a week thereafter.

Wales

The Wales wastewater monitoring programme started as a pilot in March 2020 as the first wave of COVID-19 spread across the UK [51]. This early work highlighted the potential for tracking SARS-CoV-2 and also led to the development of robust methodologies for extracting and quantifying the virus in wastewater [52]. This pilot phase was then expanded in September 2020 to 20 sites across the country. These sites were initially sampled three times per week, increasing to five weekdays by June 2021, to try and reduce the variability in the wastewater SARS-CoV-2 RNA signal and, thus, improve its usability. One of the major challenges in Wales has been the lack of on-site infrastructure needed to take composite wastewater samples. Therefore, all samples are currently taken as grab samples, targeted at the early morning wastewater peak (between 08:00 and 11:00 h). However, it is now known from deploying the enveloped *Pseudomonas* virus, phi6, into the sewer network that this approach may miss the effluent peak, leading to an underestimation of viral abundance.

Another challenge has been the poor geographical coverage in Wales. The country has two urban corridors centred around the northern and southern coasts in which 80% of the population resides. Consequently, wastewater surveillance has focused in these areas, leaving ca. 20% of the country, mainly in central and western Wales unmonitored, resulting in uncaptured localised outbreaks in small urban centres. Another major issue is that the capital city, Cardiff, is served by a very large centralised STW (930,000 people). Although this captures 30% of the Welsh population in one sample, the lack of granularity prevents the potential for using wastewater surveillance to target regions of the city to control localised COVID-19 outbreaks (e.g. implementation of surge testing and walk-in vaccination centres). The lack of sampling at weekends also prevents capturing of the large migration of tourists from North West England into North Wales. The wastewater samples taken in Wales were also used to pilot their potential to track other viruses of public health interest (e.g. influenza A and B, norovirus, respiratory syncytial virus, enterovirus D68). Analysis showed that wastewater contained all these viruses with the exception of Enterovirus D68. Looking forward, the Wales wastewater surveillance programme is now being expanded...
to many more sites with the aim to capture 90% of the population on mains sewerage and with analysis of a greater number of public health indicators.

Northern Ireland

Wastewater surveillance in Northern Ireland (NI) has several unique challenges compared to other parts of the UK, which are related to the urban and rural distribution of population. NI has an extensive wastewater treatment network operated by Northern Ireland Water (NI Water). In total, there are 1114 STWs in the NI Water network, serving just under 80% of the NI population. Each STW serves a wastewater drainage catchment area of variable sizes. Up to 68% of the NI Population is served by the 40 largest STWs. However, these larger STWs serve predominantly urban, as opposed to rural communities, and tend to be disproportionately located in eastern parts of NI. The integrated wastewater testing and geographic surveillance programme for SARS-CoV-2 in NI is led by Queen’s University Belfast, funded by the Department of Agriculture, Environment and Rural Affairs (DAERA) in collaboration with the Public Health Agency NI (PHA-NI).

Currently there are SARS-CoV-2 wastewater samples being taken at 14 sampling sites at STWs covering 35.3% of the NI population. The current sampling strategy was based on several key factors, including population coverage, geographic distribution of wastewater surveillance and a close alignment and agile response to PHA-NI test and trace results. Consideration is being given to significantly expanding the sampling sites, allowing for the wastewater surveillance of a significant portion of the NI population.

An important aspect of the approach in NI has been the use of Geographical Information Systems (GIS) to develop spatial GIS-based wastewater monitoring and reporting system integrating public health data to model population geographies and align with wastewater drainage catchment areas. Modelling population across NI using GIS provides an approach to estimate populations covered by the wastewater network, the population within individual wastewater drainage catchment areas, and an estimate of how to balance capturing the maximum percentage of the population from a relatively limited number of sample sites, while ensuring an adequate geographic spread across NI. This has been achieved through the development of an interactive wastewater SARS-CoV-2 Surveillance Dashboard. The Dashboard provides a display of the analysis results of sampling at various locations in NI and enables users to see and understand population distribution modelling across NI wastewater network. This offers the most efficient and informative sampling strategy for the programme, and an approach to contextualise wastewater test results in terms of socio-economic deprivation.

An indication of the extent of wastewater surveillance across all four regions, indicating the geospatial locations of sampling sites (as of July 2021), is shown in Figure S2.
Drivers of variability and sources of uncertainty

Population factors

Knowledge of the contributing population size upstream of the sampling location is important for calculation of per capita concentrations and to facilitate comparison between sample sites. It is important to have an accurate estimate of population size, a) to ensure that inter-site comparisons are made on an equivalent basis, and b) to account for the effects of intra-site population change on the loads of measured target(s) in the wastewater. Population size is, however, uncertain and variable. The mean population size may be estimated based on census data and additional demographic statistics, but such estimates cannot be easily updated to account for changes resulting from births, deaths and migration, and can quickly become outdated [53]. Fluctuations in population during the sampling period can contribute further uncertainty. These include, for example, weekly and seasonal variations due to the flux of commuters and tourism or student populations, respectively. Dynamic population estimates may be obtained using water quality parameters such as ammonia and orthophosphate; however, this is subject to bias due to the contribution of additional sources such as industrial discharges [54]. The use of mobile device data [55] and biomarkers present in urine (e.g. caffeine, pharmaceuticals) [56], are alternative metrics that have been shown to significantly reduce measurement uncertainty when used to estimate population size for normalisation of target analyte concentrations.

To illustrate the potential effects of population variability, Figure 2 shows the impact of reporting per capita SARS-CoV-2 loads instead of SARS-CoV-2 concentrations on trends identified at a STW site in England. In this case, a site-specific mean daily ammonia discharge per capita (\bar{X}) is estimated using Equation 1, based on measured ammonia concentrations (X_d) and wastewater flow rates (Q_d) for the entire sampling period and the Office for National Statistics population estimate (P) for the catchment. SARS-CoV-2 gene copies per capita per day (L_d) are then calculated on a daily basis using Equation 2, based on this value and the measured SARS-CoV-2 (S_d) and ammonia concentrations for the current day.

$$\bar{X} = \frac{X_d Q_d}{P} \quad \text{(1)}$$

$$L_d = \frac{S_d \bar{X}}{X_d} \quad \text{(2)}$$

Error bars are included in Figure 2 to indicate standard deviation resulting from variability in the site-specific ammoniacal nitrogen discharge per capita; these do not capture any other sources of uncertainty.

An important and poorly understood source of uncertainty related to proportion of contributing population is the quantity and rate of analyte released into the network through faecal or urinary shedding. Faecal shedding of SARS-CoV-2 RNA varies both between individuals and over the infection course of
any given individual [40]. Indeed, a recent study has indicated, from near-source data, that faecal shedding peaks on average 6 days post-infection (95% Uncertainty Interval 4 - 8 days) [57]. The impact of shedding variability between individuals is attenuated for large catchments and during high prevalence periods because the sewerage system naturally averages the signal from many people [58]. Due to the greater variability in the wastewater measurements compared with clinical data sources, the power of WBE surveillance, at least for COVID-19, is expected to be greatest when transmission (and prevalence) or clinical testing is low; i.e. capturing (re)emergence of disease in a community. However, quantitative estimates of the number of individuals infected are likely to remain elusive when infection prevalence is low or the sampled population is small, such as for near-source sampling. Temporal variability of viral RNA shedding over the infection course implies that the concentration of SARS-CoV-2 gene copies in wastewater is a convolution of disease incidence with the shedding profile [59]. Consequently, techniques for relating epidemiological indicators to wastewater-based signals need to consider multiple time lags, for example by employing distributed lag models [60]. Studies to investigate viral shedding prior to symptom onset are urgently required because existing data have been collected from hospitalised patients [61, 62, 63]. Similarly, the impact of vaccination on faecal shedding of viral RNA is unknown, although data from nasal swabs suggest that viral loads are likely to be reduced [64]. Given this, quantifying virus at near-source with any precision remains elusive, and further work to understand faecal shedding distribution is critical for adoption of wastewater measurements in epidemiological models for estimating transmission rates (i.e. effective reproduction number, R_{eff}) [65]. This information can be applied broadly to other analytes routinely shed in the urine and faeces that correlate to public health indicators, although shedding profiles could be markedly different from those for viruses.
In-network characteristics

Characteristics of the sewage network (proportion of gravity-fed or pressurised pipes; size of the network; retention capacity; location and triggering of combined sewer overflows (CSOs), and use of sustainable urban drainage, infrastructure to separate stormwater flow in the catchment) may impact both the quantity of analytes of interest within the water and their distribution within the sewage volumes.

The daily flow patterns in most wastewater systems are oscillatory, driven by multiple factors such as sewer network design, industrial discharge events and prevailing weather conditions. However, the flow signal, under dry weather flow conditions, is governed by household water usage, which often presents as morning and evening ‘peak flow’ pulses, especially in small catchments. These daily oscillations are damped in catchments with a wide network or large storage capacity where peak flow can be retained and processed later, leading to a homogenisation of the signal [66]. Pumps across the network or at the inlet of STWs can also homogenise analyte concentrations within the flow, with sumps or wet wells acting as small retention tanks. Ingress of non-human derived flow, e.g. from rainfall or snow melt, in combined sewers, or groundwater infiltration in all sewers, can bias measurements by signal dilution.

Sewer network size, sewer gradient, pipe friction, and presence of retention tanks can impact the time-of-travel of wastewater ‘packets’ (typically < 1 to 24-hours in the UK, dependent on catchment size), and may reduce target concentrations that are prone to degradation [67] (i.e. those with a short T90, the time for one log unit reduction in concentration). Moreover, the type of sewage system (gravity-fed or pressurised pipes) can directly impact the decay rate of analytes of interests due to differences in biofilm composition within these two environments [68] (fully anaerobic for rising mains, and mixed anaerobic/aerobic in gravity sewers). Further, the shear stress created by cycling between pressurised and unpressurised pipes might further hasten the decay of labile analytes. Finally, retention tanks may also increase the binding of hydrophobic targets, such as SARS-CoV-2 virions, with suspended solids to form complex matrices [69], which may obfuscate their subsequent detection by laboratory analysis, or result in settling-resuspension phenomena in the sewer pipes [70], decoupling the temporal dynamics of the virus RNA from the discharge event. Significant sewer pipe leakages may also influence the fate of virus, and consequently its downstream detection and quantification, especially in older networks.

Adjusting for the impact of network characteristics across a national programme is challenging due to the need for quantitative, comparable information for individual site networks. In England, this data is typically owned by private water utilities and, in many cases, the precise configuration of the network is not known, unless access is provided by the companies. However, the impact of some site characteristics can be mitigated by taking into account co-dependent, measurable parameters. For example, ammonia concentration can be used as a proxy for the dilution effects in combined sewers, and catchment area is a rough
approximation for network size. While proxy variables are useful in the absence of true measurements, their use in management of target measurement uncertainty may be limited by how representative it is of the variable of interest. The use of multi-biomarkers to better represent human wastewater contribution (See Case Study 4), or GIS-based modelling and public health information to better characterise catchment population are currently employed methods to mitigate this limitation.

Sampling strategy

In the context of WBE and public health surveillance, acquiring a representative sample that captures the analyte of interest is fundamental to support actions that have the potential to impact the well-being of individuals and communities [66]. The source of the analyte(s) targeted, through urine (e.g. metabolites of pharmaceuticals) or faeces (e.g. viruses), can impose additional variability in measurements, and beyond the COVID-19 pandemic, wastewater surveillance programmes will need to build in sampling flexibility to account for this uncertainty [71].

Broadly, there are two ways to take a sample: (i) a ‘grab’ or ‘spot’ sample where a single sample of wastewater is taken using a small container, and (ii) a ‘composite’ sample where samples are taken regularly throughout the day using an automated device (autosampler) and the samples mixed together in a single container. Several autosampling modes may be used to create a composite sample: time-proportional, where a constant sample volume is taken at regular time intervals; flow-proportional, where the time interval is kept constant but the sample volume adjusted to the flow in the sewers; and volume-proportional sampling, where a constant volume sample is taken each time a fixed volume passes through the sewer. Measurement uncertainties are heavily impacted by the type, mode and timing of sampling depending on variability of flow and analyte concentration over time [66]. The difference in the probability of detection between sampling methods becomes greater as prevalence (of the target analyte) decreases. Specifically, when concentration is low, detection likelihood via grab sampling would be much lower than with composites, while as concentration increases, the probability of detection using grabs becomes comparable. This would suggest that composite sampling is preferable during periods of low target analyte concentration. However, if the daily signal is concentrated in time, well-timed grab samples could capture higher concentrations than is possible with composite samples (as shown in Figure 3). The nature of composite samples means that it dilutes a ’sharp’ signal, which can be a disadvantage at low prevalence times. Areas with a more temporally constant signal would be less sensitive to the choice of sampling method. This risk can be mitigated somewhat by the appropriate design and use of autosamplers. However, the autosampling method can also impact measurement confidence. Time-proportional sampling can lead to under- or over-weighting of sample during periods of high or low flow, respectively, resulting in loss of representativeness. A flow-proportional sampler extracts a fixed volume of sewage when a predetermined volume of flow has accumulated. The resulting daily sample will be weighted by flow and could
be argued to be more representative of the conditions of that day, assuming that the substance of interest is distributed uniformly through the day. However, on low flow days the sample volume may be too low for effective analysis, while on wet days the full volume may have been taken long before the end of the sampling period.

As samples are not always collected daily, sampling cadence must be considered when determining WBE sampling strategies. Aliasing effects may result in incorrect interpretation of signal dynamics, or produce artefacts in models used for back-calculation of target stressors, for example [72]. A sampling frequency as close to the daily cadence will reduce uncertainty arising from temporal variability. This has been quantified through a data ablation experiment for 186 network sites monitoring SARS-CoV-2 in England, for which a number of samples were artificially removed to compute the relative bias introduced by reducing the sampling cadence, as shown in Figure 4. Consideration of sampling frequency in relation to sample location in the network is necessary. In small catchments, or near-source applications (e.g. monitoring of critical infrastructure such as prisons, care homes and schools), high-rate composite sampling may not be enough when all discharge events should be captured. Technologies that can provide continuous active sampling or passive samplers are more suitable in this context [73, 74].

Variability due to differences within and between site sampling deployment have a potential be a significant influence on the measurement, particularly when establishing a national surveillance system with a large number of sites and different site personnel involved. Detailed and clear sampling protocols and ongoing training of staff are essential to minimise some of the sources of this
Figure 4: Per-site mean percent bias, compared to the 7-day baseline, in SARS-CoV-2 and other marker measurements when reducing the sampling frequency artificially for 186 network sites across England. Whilst the bias for ammonia, orthophosphate and pH is limited to $\sim 10\%$, a bias of up to $\sim 65\%$ can be introduced in the mean estimate of SARS-CoV-2 when decreasing the cadence frequency.

Sample analysis

Wastewater is a highly complex and variable media, containing compounds that can decrease detection sensitivity, which results in false-negative results, whilst also compromising the ability to quantify the analyte of interest, such as genetic fragments, accurately. As significant knowledge performing sample analysis has been gained while monitoring the COVID-19 pandemic, insights relating to the uncertainty arising from SARS-CoV-2 quantification have been addressed, leading to a consolidated application of wastewater lab-analysis for WBE.

Due to the low concentrations of SARS-CoV-2 in wastewater, methods are required to pre-concentrate the virus prior to analysis. The most commonly used methods include precipitation with salt or polyethene glycol (PEG [52]), electrostatically charged membrane filtration [75], ultrafiltration [76], or adsorption-precipitation with aluminium chloride or silica [77]. Due to the expense, poor availability and potential for blockages with ultrafiltration devices, the English wastewater surveillance programme initially adopted the PEG precipitation method. This was based on previous success at recovering viruses from
wastewater [78] and also that it does not require an extra step for pH measurement and correction. However, the overnight precipitation step in the method increased the time from sample collection to reporting. A decision was then made to switch from PEG to salt (ammonium sulphate, AS) precipitation as the latter only requires a 1-hour incubation step. Parallel studies with duplicate wastewater samples showed no significant differences in recovery between the two methods for SARS-CoV-2 RNA (data not shown). This AS workflow now allows viral RNA to be concentrated, extracted and quantified within a 24-hour window.

Another key step in SARS-CoV-2 determination from wastewater is to produce RNA extracts that ensure consistency in the quantity, quality, and purity of extracted nucleic acids for their applicability in downstream processes (e.g. detection, quantification, sequencing). SARS-CoV-2 determination is generally carried out with a nucleic acid-based PCR assay. However, given the wide-range of PCR inhibitors in wastewater and the options available for handling them, no single method serves all applications; a multifaceted approach being the best solution to avoid amplification failure. Therefore, efficient extraction methods are required to purify inhibitor-free RNA, together with the use of inhibitor-tolerant quantitative reverse transcription PCR (RT-qPCR) mixes containing enhancers/additives to help reduce inhibition (e.g. gp32 and BSA). On the other hand, the low levels of SARS-CoV-2 in wastewater means that sample dilution to alleviate inhibition is not recommended or should be limited [43]. Alternatively, the samples can be analysed by one-step digital-PCR (dPCR) rather than RT-qPCR. To estimate the efficiency of viral RNA recovery, all samples in the English programme are spiked with phi6 virus. Typically, the recovery of phi6 ranges from 1 to 50%, indicating that the viral recovery methods still need to be optimised for some wastewater types. This is supported by studies from England where wastewater has been spiked with heat-treated SARS-CoV-2 and where recovery is often incomplete (ca. 30 - 50% recovery; Kevill et al., 2021, unpublished). Alongside SARS-CoV-2, a range of other faecal-marker viruses (e.g. crAssphage, pepper mild mottle virus) have been measured in wastewater [36]. In the English programme, crAssphage was initially used to help normalise the SARS-CoV-2 results to account for dilution by industrial wastewater and rainfall, however, this created extra workload and delayed the workflow, and was subsequently dropped in favour of other indicators of faecal load (e.g. ammonia). Case Study 3 presents some specific results from our management of laboratory analysis uncertainty and variability across the UK wastewater surveillance programmes.

Management of variability and mitigation of uncertainty

Population normalisation and measurement correction

Measurement correction is key to addressing variation resulting from sampling, sample transport and storage, as well as possible errors linked with sample...
processing (including sample preparation: biomarker extraction from wastewater, concentration, and analysis). Normalisation of data is important to reduce uncertainties related to changing wastewater flows (resulting from diurnal changes and seasonal variability in rainfall patterns), movement of population, biomarker sources (e.g. intake vs. environmental occurrence) as well as biomarker stability and its transformation (e.g. human metabolism or metabolic degradation of sewer microorganisms). WBE in chemical exposure studies (e.g. illicit drugs, pesticides, industrial chemicals, pharmaceuticals) has been subject to comprehensive evaluation of uncertainties due to its application requiring a reliable quantitative measurement (e.g. per capita drug consumption). In chemistry-based WBE, 24-hour composite sampling is strongly advised, as well as having labelled internal standards (analogues of biomarkers that do not exist in nature, e.g. benzoylecgonine D8, which is used as an internal standard to benzoylecgonine) used to compensate for errors occurring throughout sample storage, processing and analysis. Flow measurements of wastewater are required, as well as an understanding of stability of biomarkers in wastewater and their extraction efficiency/matrix effects (e.g. interfering chemicals during analysis). However, with biology- or pathogen-based WBE, grab sampling is still the norm and there is an inherent lack of flow measurements in large national campaigns, as well as in near-source applications, which skew the results and make the studies more qualitative in nature. Biomarker selection in chemistry-based WBE requires its pre-use validation including the following requirements: (1) originating in human (with no other sources), (2) accounting for human metabolism, (3) stable in sewers, and (4) with excellent analytical performance in biomarker quantification (the latter is usually followed by inter-lab studies, or ‘ring trials’). These factors are yet to be fully evaluated in biology-based WBE (and indeed in new chemistry WBE applications), where biomarkers are stressors themselves, and there is limited (albeit rapidly increasing) understanding of analytical method performance and stability of biomarkers. Most importantly, it is currently impossible to differentiate between different sources of stressor release to the sewerage systems.

Chemical analysis of certain biomarker groups, especially metabolites of high-usage, prescription only pharmaceuticals (e.g. antidepressants, antidiabetics, and antiepileptics) with well-defined consumption patterns, can provide important insights into diurnal changes in population size contributing to wastewater. Antidepressants are shown in Figure 5 as an example. Measurements were undertaken over seven consecutive days in five English towns/cities as discussed in Case Study 4. A significant positive relationship between the daily loads of antidepressants, their metabolites and the population size served by respective wastewater treatment plants was observed (Pearson coefficient, $r \geq 0.997$, $p < 0.0002$). As expected, metabolites showed the lowest spatiotemporal variability in the studied intercity catchment (<16% for desmethylvenlafaxine and <12% for desmethylcitalopram), when compared to their respective parent antidepressants (venlafaxine and citalopram), which can be directly disposed-off into the drain. This indicates their suitability as population markers. Figure 5 also indicates the benefit of normalisation in trying to understand consumption patterns.
In the figure, double normalisation was applied to account for variable flows and population. As a result, per capita change in consumption patterns can be observed and conclusions drawn regarding the variable consumption patterns in cities with different socioeconomic status. Further discussion on how certain variables affect back-calculations of chemical intake can be found in Case Study 4.

![Figure 5: Population normalised daily loads (PNDL) of antidepressants (mg/day/1000 inhabitants) and their metabolites.](image)

Design and implementation of sampling

The sampling strategies employed for SARS-CoV-2 surveillance across the UK have aimed primarily to address two key factors: percentage of the population covered and geographic representation, which includes both urban and rural area coverage. In addition, the sampling strategies have needed to allow for an agile sampling response to assist with surveillance of COVID-19 incidence clusters, as highlighted by governmental public health testing strategies. For sampling at STWs, these factors need to be facilitated by the regionally diverse privately and publicly owned sewage networks. Uncertainties arise in the actual population represented by the sampling strategies due to a mismatch between census administration geographies and population equivalents calculated for STWs. These may include estimates of the number of actual residents within a STW catchment, transient populations (i.e. those at workplaces, educational facilities, or communal gatherings such as sports or entertainment events), and the load placed upon each STW by industrial activity. Spatial data analysis approaches can be used to characterise the contribution of STW catchments to administrative geographies, which enable greater integration with public health case data [79].
For sampling at STWs, the use of composite samples can help mitigate uncertainty associated with diurnal flow variations (see Figure 3) but such samples may underestimate the magnitude of the peak concentration and, therefore, are more suited to understanding the average daily load within the sewer network catchment. Consideration of the ideal sampling site at each STW needs to account for the specific configuration of the inlet channels, equalisation storage, and mixing characteristics. In many cases, it is not possible to get a well-mixed sample with equal representation of all parts of the sewer catchment because of the design of the STW inlet piping. Several studies have sampled primary sewage sludge for SARS-CoV-2, with generally higher detection than from liquid influent samples [80, 81], although data on STW flows and process operation dynamics is required to fully characterise the period of time that each sample would represent. Sampling of solids has not been extensively performed in the UK. Mixed or combined sewerage systems (e.g. those receiving stormwater or industrial effluent) can also have a significant impact on sampling performance as dilution from additional flow and a more complex, or inhibitory, mix of wastewater constituents may obfuscate the ability to detect the signal (See Case Study 1 and Figure S4).

For network and near-source sampling, the large size and spatiotemporal complexity of urban water networks means that it is not economically or logistically feasible to collect a sufficient number of samples to ensure statistical significance of sampling results for estimating system wide average concentrations [82]. Consideration of the diurnal variation of flows from both domestic and industrial sources and impact of rainfall can help to select sampling locations that are less vulnerable to influence by these factors. Well-calibrated hydraulic models of the sewer networks can be a useful tool to understand dry weather and wet weather dynamics. For example, Figure 6 illustrates the modelled dry weather contribution to wastewater flow for one of the core cities sampled by the surveillance programme in England, showing that some locations are dominated by infiltration flows with less than 40% of total daily flow derived from domestic wastewater. Many of the network sites initially sampled in the UK consistently showed non-detectable levels of SARS-CoV-2 and ammonia, consistent with the model results, and these locations were subsequently removed from the sampling programme. Grab samples in sewer networks require precise timing to capture flows because many manholes are dry for large portions of the day, including near-source locations and upstream ends of the network. Many individual grab samples from network locations had non-detectable levels of SARS-CoV-2 in the core cities (see Figure S5). Sampling these locations daily, ideally with a slight variation in the time of sample collection, does not mitigate the underlying uncertainty associated with grab sampling but can assist with visualisation of trends and patterns despite the variability in individual sample results.
Case studies from the UK Wastewater Surveillance Programmes

Case study 1: Flow normalisation

Several approaches have been developed within the UK wastewater surveillance programmes to account for rainfall dilution of SARS-CoV-2 RNA measurements in wastewater. Given that flow data is only partially available across all the monitored sites, indirect normalisation techniques using other biochemical markers as a proxy for the real flow can be used, with an assumption that the majority of markers originated from a source with a constant load. Note that these corrections account for the temporal variability, but are not sufficient to estimate the average flow level, which can vary significantly between sites (as shown in the population normalisation section). Different techniques, based on a similar premise, are presented below for flow variability correction in (a) Scotland and (b) England. Dilution effects appear to only have a minor impact on SARS-CoV-2 concentrations in wastewater, with significant changes occurring only during heavy rainfall events or discharges from other sources. That is, variation due to dilution effects with sample-by-sample variability from other sources of noise (e.g., faecal shedding), appears to be minimal. However, from an epidemiological perspective, highly diluted measurements caused by storm events, for example, may result in the need to correct values by factors as much as 0.6 (results not shown), which would significantly skew interpretation of disease prevalence if ignored when interpreting the data.
a) Flow normalisation, as applied by the Scottish COVID-19 surveillance programme

In Scotland, in addition to detecting and quantifying SARS-CoV-2, chemical analytes, in particular ammonia, have been collected and processed from the wastewater. These are available up to two weeks prior to flow measurements - with flow, at some sites, not measured at all. As a result, a cross-site model is used to relate ammonia concentrations with flow measurements, taking into account population size as a proxy for faecal shedding in the catchments.

A linear mixed model (LMM), with flow related to ammonia and population (on log10 scales), was developed and random intercepts and slopes were included for each site. This model was shown to fit the Scottish data better than a simpler linear regression model with the slopes for log10(ammonia concentration) and for log10(population) fixed at -1 and +1, respectively. Model performances were compared using Akaike Information Criterion (AIC) and a Kenward-Roger approximation of the Wald test for LMMs. A review of the Scottish data at each site, using a generalised additive model (GAM) with the Tweedie distribution, showed that unnormalised data was equally or more noisy than normalised (but scaled) data once trends were taken into account. A graph of example sites with fitted ammonia/flow curves is shown in Figure S7.

Current practice in Scotland is to normalise by flow rate if available, then ammonia concentration. If neither are available, then an estimate of flow based on a spline function using recent ammonia trends is used (fitted on overall national trends over time plus site specific effects). If ‘capping’ is an issue, where CSOs prevent sewer overloading by discharging to natural water bodies, then normalising against ammonia would be preferential as a more representative measure of true flow. Anecdotally, it is not thought that capping is a major issue in Scottish wastewater networks, based on communication with water sector professionals.

b) Flow normalisation, as applied by the English COVID-19 surveillance programme

The approach assumes that the flow F_t at time t is not directly observable. Therefore, information about the flow can be obtained by observing the correlation of concentrations ρ_{ti} of different markers i and that a dilution estimate based on a single marker is not robust enough as it is not possible to distinguish between a decrease in flow and an increase in marker load, e.g. due to a one-off industrial or agricultural discharge. The model assumes

$$\log F_t \sim \text{Normal} \left(0, \lambda^2 \right)$$
$$\log x_{ti} \sim \text{Normal} \left(\mu_i, \sigma_i^2 \right)$$
$$\therefore \log \rho_{ti} = \log x_{ti} - \log F_t,$$

where λ^2 is the flow variance, μ_i and σ_i^2 are the mean and variance of the load of marker i (all in log space). $\langle \log F_t \rangle$ is fixed at 0 to identify the model.
Accounting for variable dilution using multiple markers relies on the same basic premise as the approach presented for Scotland’s case study, although with three key differences: first, using multiple markers (such as ammoniacal nitrogen and orthophosphate) jointly to estimate flow variability improves the accuracy of estimates. It also allows us to identify outliers (such as one-off discharges), and estimate flow variability as long as at least one marker is quantified (although with larger error bars). If no marker is quantified, the model predicts average flows with substantial error bars. Secondly, rather than assuming total marker loads are constant, they are assumed to be constant in expectation. In other words, natural variability of biomarker loads is accounted for. This allows to assign variable importance to different markers in a data-driven fashion. For example, crAssphage gene copy concentrations exhibit more natural variability than ammonia-nitrogen concentrations, and more importance should be assigned to the latter – although both can inform our dilution estimates. Finally, a generative modelling approach is used to test hypotheses in silico, and any inferences in the form of posterior distributions over parameter values include principled estimates of uncertainty. The model also handles missing data gracefully and can incorporate limits of detection where appropriate (not further considered here). Unfortunately, the model needs to be fit whenever new data become available, and it is more computationally expensive than other methods. Any combination of two or more markers can be used to estimate flows using the multi-marker method provided that their total loads are constant in expectation. An example of the correction for an English STW is presented on Figure 7.

Case study 2: Handling data anomalies

Identifying and reconciling anomalously low measurements in England

As discussed, the devolved administration programmes for COVID-19 wastewater surveillance have generated a large number of SARS-CoV-2 virus RNA measurements. As with all environmental measurements, the signal recovered will be subject to anomalies, or outliers, that diverge from the expected data trends, with some defined statistical significance. Measurements can vary by several orders of magnitude, with extrema possibly representing unaccountable occurrences such as ‘super-spreader’ events, single release of highly concentrated sewage (e.g. transported from non-networked sites, in-network holding tanks or wet wells), or due to sample capture of a highly aggregated, unmixed load. Alternatively, anomalies may represent measurement error or uncertainty due, for example, to inappropriate sampling frequency, miscalculation or unknown peak flow (for grab samples), or sample/laboratory contamination. Such data anomalies can cause many problems for further analysis or visualisation, and depending on context, different interventions are typically needed when they are detected.

In the English programme, post-laboratory analyses were conducted to attempt to identify measurements that may be anomalously low, by defining the likelihood that a measurement falls within some expectation criteria. In particular, a machine learning approach, using a Gradient Boosting for regression
Figure 7: SARS-CoV-2 concentration (gc/L) over time with flow variability correction: example with Bolton sewage treatment works. Blue points represent the original uncorrected SARS-CoV-2 concentrations and red points and associated 95% confidence intervals are the estimates after accounting for flow variability.

model, was trained with a quantile loss function to predict 90% SARS-CoV-2 concentration intervals at the sampled sites. These predictions were used to explore unexpectedly low data points (below the 5th percentile prediction interval) where similar sites in terms of geography and collection method exhibited relatively high measurements.

The analysis identified 762 samples as anomalous out of 25,957 that did not report a quantified value. In particular, the model highlighted low measurements during January and February 2021 despite infection rates across the country were high. The analysis could be extended to explore any recorded values that do not fall within the predicted range, whether low or high. Figure 8 illustrates the frequency of anomalous data points when compared to ammonia concentrations, suggesting that lower concentrations of ammonia are associated with a higher proportion of unquantifiable samples. This suggests that flow dilution has the impact of reducing SARS-CoV-2 concentrations below the 5th percentile prediction interval.

Tracking measurement outliers in England

On a weekly basis, sites with rapid and sudden increase of SARS-CoV-2 are identified using parametric confidence bands around a linear regression model fit to the data. The model is used to predict the SARS-CoV-2 concentrations 7-days in advance and a 80% confidence band is calculated for this extended
Identifying and reconciling anomalously high measurements in Scotland

Under the Scottish programme, Biomathematics and Statistics Scotland (BioSS) conducted a similar procedure, though instead the focus was on anomalously high values (e.g. spikes), with the aim of flagging and potentially removing anomalies as soon as they are recorded. A Generalised Additive Model (GAM) was used to identify when high amounts of wastewater COVID-19 (relative to case rates, or relative to the previous variability of the site) is indicative of the wastewater measure not corresponding to future cases. With a suitable threshold, this was used to remove these measurements from aggregates, and/or...
trigger further investigation [83].

Case Study 3: Uncertainty arising from laboratory analysis of SARS-CoV-2, and its mitigation within the UK wastewater surveillance programme

The analytical variability, in terms of both replicability and reproducibility, for the estimation of SARS-CoV-2 in wastewater has been a major focus of the UK wastewater surveillance programmes. In England, the use of two main laboratories (required due to the need for high throughput analysis capacity) provided significant challenges, but also opportunities to assess the reproducibility of sample analysis. Both laboratories employed the AS precipitation and, despite some differences in the use of RT-qPCR reagents and quantification standards, duplicate samples were analysed and found to be comparable (data unpublished). In addition, an inter-laboratory ring trial was carried out involving five laboratories across the four nations, three using AS precipitation and two using filtration (Walker et al., 2021, unpublished). Significant differences were found in the absolute SARS-CoV-2 concentrations measured by all laboratories. However, these differences (less than one log between labs) were much lower than reported in other ring trials [84]. Further, the variability between the laboratories was similar to previous inter-laboratory trials for quantifying viruses (e.g. Norovirus, Hepatitis A) in shellfish [85]. The differences in the SARS-CoV-2 recovery between laboratories is likely due in part to the differences in the initial virus concentration method (e.g. ultrafiltration versus AS precipitation) and the use of different RT-qPCR standards. The UK is now contributing to discussions on the development of an ISO standard for quantifying SARS-CoV-2 in wastewater. The development of an ISO standard will enable a greater degree of international collaboration and provide the basis for external proficiency testing schemes. The latter will give laboratories and accreditation services a means to assess laboratory performance and flag potential quality issues that require investigation.

The efficiency of downstream applications depends strongly on the purity of the RNA sample used. In this regard, MIQE guidelines stipulate that a measurement of a nucleic acid quantity is essential, while an assessment of purity is desirable [86]. This is particularly important to avoid false negatives when SARS-CoV-2 concentrations are too low to be quantified after dilution, requiring the use of internal or external controls, such as RNA/DNA spikes, to detect inhibitors and verify several other parameters of the workflow (See Figure S9). Furthermore, the effect of wastewater properties has been assessed in a range of mesocosm-based wastewater studies. These found that the presence of suspended solids (turbidity range 10 - 400 NTU) or surfactants (0 - 100 mg/l) had minimal impact on RNA recovery using PEG or AS precipitation methods unless present at very high concentrations atypical of UK wastewater.

RT-qPCR can introduce additional variability at different steps during the quantification of SARS-CoV-2. Firstly, the reverse transcription can vary with the same samples by two to threefold depending on the amount and quality of RNA [87]. On the other hand, sample variability increases when the target complementary DNA (cDNA) is diluted, mainly when the quantification cycle (C_q)
values are greater than 30. This is due to stochastic amplification, measurement uncertainty, and subsampling error [88]. The RT-qPCR variability can easily range between 10% to 200% of the coefficient of variation (CV) and can only be minimised by interrogating a larger proportion of the sample using more technical replicates and applying the average C_q [88]. Figure S10 shows the variability of SARS-CoV 2 measurements in wastewater at different C_q values from an England pilot study.

Case Study 4: Population normalisation and measurement correction: lessons learned from WBE application in exposure studies beyond COVID

A study of multi-group chemical profiling in five contrasting urban populations, each served by a major STW contributing to one river catchment in South-West England and covering an area of approximately 2000 km² and a population of approximately 1.5 million (this constitutes >75% of the overall population in the catchment) was undertaken to understand measurement variability at an inter-city granularity (See Figure S6 for a map of the five study locations, and Table S1 for data on their network characteristics). A detailed discussion of multi-chemical fluxes in urban catchments has been provided by Proctor et al. [89] and the methodology used to measure chemicals and back-calculate mass loads and intake are found in recent literature [90, 10]. Key contributing factors to WBE uncertainties are carefully considered and included in the study to enable a fully quantitative measurement of city-wide intake for selected chemicals:

- Robust sampling and sample collection involving 24-hour flow proportional sampling in ice packed or refrigerated autosamplers maintaining biomarker stability;
- 7-day consecutive sampling to allow for temporal (weekday versus weekend) changes in biomarkers to be observed;
- Robust wastewater flow measurement and population size estimates;
- Fully validated analytical methods and the highest level of quality assurance (e.g. limits of detection and quantification, intra- and inter-day accuracy and precision, recovery from matrix);
- Characteristic biomarker selection for back-calculation of chemical exposure (e.g. metabolite versus parent compound to account for direct disposal of unused chemicals);
- Full biomarker mass balance in wastewater that accounts for biomarker presence in both solid and liquid phases with a full understanding of percentage biomarker recovered from the matrix.

The aim of the study is to understand and characterise key uncertainties to enable accurate back-calculation of city-wide exposure to chemicals. To validate the developed back-calculation protocol, high-resolution spatiotemporal NHS
pharmaceutical prescription databases are used for system calibration, in terms of biomarker selection and its correction factor, as well as for overall spatiotemporal system performance evaluation. A detailed discussion on multi-chemical exposure can be found in [10]. Here, focus is only given to carbamazepine and citalopram, two model chemicals, and two key variabilities for back-calculation of their usage at an inter-city level (that are not currently considered for UK SARS-CoV-2 monitoring): characteristic endogenous biomarker selection and establishment of correction factors accounting for human metabolism.

Carbamazepine intake (Figure 9: red line) is back-calculated using both parent compound (source carbamazepine) and its metabolite (carbamazepine-10,11-epoxide, CBZ10-11). While both biomarkers correlate well with NHS prescription data (Figure 9: blue line), using carbamazepine as a biomarker might lead to an overestimation of intake if direct disposal of unused carbamazepine takes place (see city A, Sunday, Figure 9). Interestingly, this is not the case if CBZ10-11 is used (no spike in city A during Sunday), which indicates its superiority over carbamazepine itself.
Figure 9: Comparison of carbamazepine daily loads, intake (calculated using both carbamazepine and carbamazepine-10,11-epoxide) and prescribed carbamazepine in five cities over a 7-day sampling week.
An understanding of the extent of metabolism of biomarkers or metabolic formation of biomarkers is key in quantitative back-calculation of chemical intake. Figure 10 shows an example of a significant overestimation of citalopram intake observed when using commonly applied weighted average correction factors based on the existing literature. This often include only phase I metabolism of chemical excreted in urine (desmethylcitalopram in this case), as opposed to the focused approach, where metabolism correction factors (mCFs) are calculated using only comprehensive datasets from studies combining phase I and II metabolites (glucuronides) excreted in both urine and faeces. Understanding biomarker excretion in faeces is of critical importance for compounds with a more hydrophobic nature, such as citalopram as it is, to a large extent, excreted in faeces. Additionally, citalopram and its metabolites undergo extensive glucuronide conjugation. Overlooking excretion in faeces and phase II metabolism will lead to incorrect CFs as seen in Figure 10. Having prescription data per 10 - 100 households/postcodes allows for the validation of the correction factors used. Prescription databases (if associated with well-defined regional units such as streets) can therefore serve as internal calibration systems.

Figure 10: Citalopram intake calculated using citalopram and desmethyl-citalopram, with and without inclusion of phase II metabolites (Note: (*) indicates no inclusion of phase II metabolism, which leads to overestimation of intake).

This case study shows the importance of careful biomarker selection to enable highly accurate 'quantitative' calculation of per capita stressor intake. This is not currently performed with SARS-CoV-2 surveillance, where the stressor itself is used as a biomarker. As a result, various sources of the genetic material present in the wastewater sample are accounted for and, hence, calculation of...
the per capita intake (or viral load) is not possible. Further work is required to
establish a biomarker suite enabling quantitative measurement of SARS-CoV-2.
In the interim, it is likely that WBE can only be used as an early warning system
for SARS-CoV-2 surveillance and verification of disease prevalence trends at
the community level, and not as a quantitative measure of community infection
rates.

Conclusions

The scale of the COVID-19 pandemic has resulted in an unparalleled re-
sponse from a diverse community of stakeholders, working collaboratively to
to control and reduce the transmission and impact of the disease. The early
demonstration that wastewater was a viable medium for tracking the virus, led
to academic and government initiatives to operationalise wastewater-based epi-
demiology for monitoring its dynamics at local, regional, and national scales. In
the UK, COVID-19 surveillance programmes across the four nations (England,
Wales, Scotland, and Northern Ireland), have demonstrated, perhaps uniquely,
the opportunity for WBE to be used routinely and at unprecedented scale to
combat a public health emergency. From their inception, the national wastew-
ater surveillance programmes have delivered insights to support public health
decision-making and to guide Government and key stakeholders in interpreting
the measurements of SARS-CoV-2 in wastewater to provide a broader under-
standing of the disease in the populations.

This work has allowed for a broader appreciation of WBE as a tool for mon-
itoring public health in populations at scale, with initiatives likely to focus on a
‘beyond COVID’ uplift of WBE as part of establishing One Health programmes
across the world. However, their effectiveness requires that the data gener-
ated to support the function of WBE is meaningful and representative of the
target(s) being monitored. Wastewater is a more complex environment than
typical media used for monitoring of human health, with multiple factors po-
tentially accounting for greater uncertainty or variability in the measured signal
that in, for example, a clinical setting. Managing this uncertainty is one of
the key challenges to ensure successful employment of WBE for public health
protection.

Here perspectives are provided on the confidence in wastewater-derived mea-
urements by those working across the national programmes, given work per-
formed to understand, quantify and manage measurement uncertainty and vari-
bility. The work emphasises that while some sources of uncertainty may not
be impactful, or can be adequately accounted for (e.g. extraneous flow dilu-
tion, sampling method), other sources are inconsistent or difficult to quantify
directly (e.g. shedding distributions, in-network behaviour). While these in-
tractable factors will, with consolidated research efforts, become less opaque,
there is unlikely to be a general approach to manage measurement uncertainty
for all applications of WBE beyond COVID. Making use of the greatly increased
capacity for WBE in the UK, and more widely, will require new methods for
extracting actionable information from wastewater data, but also methods for determining the limits of its application.

Acknowledgments

The United Kingdom Government (Department of Health and Social Care) fund the sampling, testing, and data analysis of wastewater in England. The Scottish Government (Rural & Environmental Science and Analytical Services division) funds the sampling, testing, and data analysis of wastewater in Scotland. The Welsh Government (Technical Advisory Cell) funds the sampling, testing, and data analysis of Wastewater in Wales. The initial phase of the “SARS-CoV-2 wastewater surveillance and reporting SARS-CoV-2 in Northern Ireland project” was funded under the joint Science Foundation Ireland – Department of Agriculture, Environment and Rural Affairs (DAERA) COVID-19 Rapid Response Funding Call (20/COV/8460-1). The second stage of the project is funded by DAERA in collaboration with the Public Health Agency NI (PHA-NI). The project partners include DAERA, PHA-NI, the NI Environment Agency, Department of Health, Department for Infrastructure, Belfast City Council and NI Water Ltd. We would also like to acknowledge NI Water for providing access to use spatial data for the NI Water’s Wastewater Network. The following funding sources are acknowledged by the contributing authors: "National COVID-19 Wastewater Epidemiology Surveillance Programme" (NE/V010441/1) UKRI-NERC COVID Response [DG, DJ, AS, VS, BK-H]; “Building an Early Warning System for community-wide infectious disease spread: SARS-CoV-2 tracking in Africa via environment fingerprinting” (EP/V028499/1) GCRF/Newton Fund [BK-H]. We thank Roisin Murray-Williams (Scottish Environmental Protection Agency) for support in producing Figure S2, and Drs. David Walker and Mickael Teixeira Alves (Centre for Environment, Fisheries and Aquaculture Science) for comments on the manuscript.

Disclaimer

Joint Biosecurity Centre [MJW, ALJ, MRB, JTB, JG, TH, CJL, MM, CSo, CSw]: The views expressed in this paper are those of the authors and do not necessarily reflect the views or policies of the Department of Health and Social Care.
References

Supporting Information

Views from the UK wastewater surveillance programmes

Figure S1: A view of all wastewater sampling sites in England as of July 2021, indicating relative number of grab versus composite samples across the three site location types (near-source, in-network, and STW).
Figure S2: Maps of the four regions of the United Kingdom showing the wastewater sampling locations for the respective national COVID-19 surveillance programmes (as of July 2021). Markers represent centroids of the catchments serving the sample point and shading is the 7-day average SARS-CoV-2 RNA concentration (gene copy per litre) measurements at each site over the last week of June 2021. This is only an example of the spatial distribution of sampling in the UK and comparisons of concentrations between sites should not be made from these figures due to differences in sampling frequency and network characteristics across locations.
Figure S3: A visual representation of wastewater concentration variability between sampling methods (spot = grab, comp = composite) at a STW site in England. The samples were collected at the same time (09:00 h) on consecutive days for laboratory analysis at Bangor University. The darker the sample, the higher the likelihood of capturing a representative sample, while lighter samples suggest greater flow dilution, or that the sample has missed the peak discharge window.
Figure S4: Comparison of grab and composite samples taken from two sites as part of the English wastewater surveillance programme: Site 1 - Domestic source; Site 2 - Domestic + Industrial sources. The boxplots suggest a greater degree of within sample and between-method variability for Site 2 than Site 1, suggesting that combined sewerage systems (i.e. those receiving stormwater or industrial inflow in addition to domestic flow) may impart greater signal variability. Additionally, the lower SARS-CoV-2 measurements for grabs at Site 2, implies that autosampling is more likely to capture the target analyte signal in complex or dilute media.
Figure S5: An anonymised heatmap view of 'core city' SARS-CoV-2 RNA concentrations measured in wastewater over a one month period from June - July 2021. Each row is an in-network sample location in the city and each column represents a sample day. Missing values represent a missing sample or no sample taken. Values are the log10 virus RNA concentrations (gene copies per litre). Cells with blue borders are flagged as likely being influenced by high dilution events, and < LOD are measurements below the laboratory limit of detection.
Population estimation

Figure S6: Site locations of studied STWs and corresponding cities and towns.

Table S1: Network characteristics for the studied sites. Residence times are given for typical summer dry-weather flows. P.E. = Population Equivalent.

<table>
<thead>
<tr>
<th>Site</th>
<th>Sewer residence time (h)</th>
<th>Popn. served (P.E.)</th>
<th>Ind. contrib. to P.E.</th>
<th>Mean flow rate (m3 d$^{-1}$)</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td><0.5 - 4</td>
<td>37,714</td>
<td>0.4 %</td>
<td>8.242 ± 3,085</td>
</tr>
<tr>
<td>B</td>
<td>< 0.5 - 4</td>
<td>68,453</td>
<td>30.0 %</td>
<td>11.202 ± 3,202</td>
</tr>
<tr>
<td>C</td>
<td>< 0.5 - 9</td>
<td>109,543</td>
<td>1.2 %</td>
<td>24.875 ± 2,167</td>
</tr>
<tr>
<td>D</td>
<td>< 0.5 - 2</td>
<td>18,274</td>
<td>0.1 %</td>
<td>2.924 ± 199</td>
</tr>
<tr>
<td>E</td>
<td>< 1 - 24</td>
<td>867,244</td>
<td>23.9 %</td>
<td>153,061 ± 12,245</td>
</tr>
</tbody>
</table>
Figure S7: Relationship between flow rate and 1/ammonia concentration at Scottish wastewater sites with more than 40 coupled observations (up to 25 May 2021). The lines show the fitted regression estimates: blue is for the full random coefficient model and red is for the model with the slope for log ammonia fixed at -1. The strength of the relationship varies between sites, as shown by the correlations given. At some sites (e.g. Lockerbie), the fitted lines are quite close, and in other cases (e.g. Shieldhall), the difference is more marked.
Outlier detection and visualisation

Figure S8: An example output from a tool developed by the Environment Agency to visualise outliers in SARS-CoV-2 time-series measurements collected as part of the wastewater surveillance programme in England. Inset: Outlier detection using an 80% confidence interval around the linear regression; four weekly samples (black points) are used to generate a linear model and parametric confidence interval, a new sample (red point) is assessed against the confidence band and flagged as an outlier if it falls outside the band. This map was created using ArcGIS® software by Esri. ArcGIS® and ArcMap™ are the intellectual property of Esri and are used herein under license. Copyright © Esri and its licensors. All rights reserved.
Figure S9: Inhibition level of clean samples spiked with synthetic single-stranded RNA (ss-RNA). The inhibition level was calculated by spiking ssRNA into wastewater extracts and comparing the measured C_q to RNA spiked into molecular negatives (no template controls). The modified PEG method keep the inhibition level below 1.0 C_q and the RNA quality between 2.0 and 2.2.

Figure S10: SARS-CoV-2 N1 gene variability between biological duplicates. The C_q variability increased with lower target concentrations (higher C_q). The CV was 1.0 ± 0.9 and 2.6 ± 2.3 for samples with C_q values below and above the LOQ, respectively.